
Dhinaharan Nagamalai et al. (Eds) : SAI, NCO, SOFT, ICAITA, CDKP, CMC, SIGNAL - 2019 

pp. 173-186, 2019. © CS & IT-CSCP 2019                                                      DOI: 10.5121/csit.2019.90713 

 

REVIVING LEGACY ENTERPRISE SYSTEMS 

WITH MICROSERVICE-BASED ARCHITECTURE 

WITHIN CLOUD ENVIRONMENTS 

 

Safa Habibullah
1
, Xiaodong Liu

1
, Zhiyuan Tan

1
, Yonghong Zhang

2
, Qi 

Liu
2
 

 
1
School of Computing, Edinburgh Napier University, Edinburgh, UK 

2
School of Automation, Nanjing University of Information Science and 

Technology, China 
 

 

ABSTRACT 
 

Evolution has always been a challenge for enterprise computing systems. The microservice 

based architecture is a new design model which is rapidly becoming one of the most effective 

means to re-architect legacy enterprise systems and to reengineer them into new modern 

systems at a relatively low cost. This architectural style has evolved based on a number of 

different approaches and standards. However, there are quite a few technical challenges which 

emerge when adopting microservices to revive a legacy enterprise system. In this paper, an 

evolution framework and a set of feature-driven microservices-oriented evolution rules have 

been proposed and applied to modernise legacy enterprise systems, with a special emphasis on 

analysing the implications as regards runtime performance, scalability, maintainability and 

testability. Testing and evaluation have been carried out in depth, aiming to provide a guidance 

for the evolution of legacy enterprise systems. 

 

KEYWORDS 

 

Microservice, Legacy System, Software Evolution, Cloud Environment  

  

1. INTRODUCTION 
 

The size of a monolithic system increases along with changes in business requirements over time 

and need for new functionality in a new iterative release. This makes continuous improvement 

and service delivery extremely difficult, as the entire system has to be tested and redeployed, 

even with a minor change in its code. Besides, it is difficult to scale a monolithic system when 

different services have conflicting resource requirements. To tackle these pitfalls of monolithic 

systems, which are designed as a unit of tightly coupled, entangled services, microservice 

architectures have been endorsed by software development communities in recent years.  
 

As one of the recommended solutions to evolving legacy monolithic systems, microservice 

architectures decompose a monolithic system into small distinct services instead of deploying it 

as a single unit. This improves software development agility, making it easier to expand and scale 

up. This also results in faster deployment in cloud environments and allows systems to 

interoperate efficiently. Moreover, each microservice is responsible for a defined task, and all 

microservices can be linked together through a common Application Programming Interface 

(API).   

 



174 Computer Science & Information Technology (CS & IT) 

However, nothing is perfect, so do microservice architectures. There are challenges in engaging 

such architectures in development and real-life deployment. These challenges must be addressed 

and their root causes must be well-studied. As such, a foundation for the successful refactoring of 

monolithic applications into microservice architectures will be founded. 
 

This paper presents a progressive extension of our previous research [1] on evolving a legacy 

enterprise system using a microservice architecture. The key innovative contributions of this 

study include: 
 

• Adopting feature-driven microservice-specific transformation rules to modernise a legacy 

enterprise system, and 

• Evaluating a legacy monolithic architecture with a microservice architecture for industrial 

adoption with an emphasis on performance, maintainability, scalability and testability. 
 

The rest of this paper is structured as follows. Section 2 presents an analysis of the related work. 

Section 3 presents the microservice-based evolution approach. A case study is described in 

Section 4. The implementation of the legacy system evolution and its deployment in the cloud 

environment is presented in Section 5 and Section 6, respectively. Section 7 presents a detailed 

description of the test and the analysis. Conclusions are drawn and future work is presented in 

Section 8. 
 

2. RELATED WORK 
 

Microservice represents the latest advance of the Service-Oriented Architecture towards higher 

system agility, better modularity and maintainability. The microservice-based architecture 

represents the latest approach to developing new applications or restructuring legacy systems. It is 

believed to be more effective as compared to the older service-oriented architecture in a number 

of ways: for instance, maintainability, reliability, scalability, and agility [2]. An in-depth study 

has therefore been carried out to discover the state-of-the-art as regards to microservices 

architectures. Several projects involving this architecture have been analysed from a spectrum of 

views. 
 

2.1. Microservices Architecture and Design 
 

The term ‘microservice’ indicates the use of an architectural style which is focused on system 

agility [3]. This approach unravels the challenges of a single large monolithic development 

through dividing the functions of the application into independent services which are small 

enough to be manageable.  These services may be written in a number of diverse languages and 

also might use diverse data storage methods. There are, however, still a number of challenges in 

terms of fully comprehending this type of architecture. Balalaie et al. [4] recommended a set of 

patterns describing the kinds of introductory repositories which can be used for the microservice 

migration process. Diverse patterns were specified in relation to the decomposing of legacy 

systems, and the discovery of the recommended resolution was deliberated upon.  
 

Brown & Woolf [5] attempt to show how microservices ought to be designed, the ways they can 

fit into a larger architectural picture, also the ways in which they can be built so that they operate 

efficiently. Their study deals particularly with matters relating to microservices efficiency, 

systems design, and microservices design. According to Taibi et al., the microservices 

architectural pattern can be determined via a catalogue [6]. In accordance with their systematic 

mapping study, they showed the drawbacks and benefits of each pattern, so that developers can 

select that the most appropriate for their purposes. For practitioners however, this process of 

identifying patterns or, indeed, not being able to identify a pattern, is unclear since the process 

has not actually been implemented.  



Computer Science & Information Technology (CS & IT)                                   175 

In relation to the microservices architecture migration process, Carrasco et al. [7] introduced what 

he termed ‘bad smells’, i.e., situations which should trigger caution, with the purpose of assisting 

developers understand how to proceed with their designs and either deal with, or evade, these 

pitfalls. 
 

In accordance with the survey that was carried out amongst professionals in Germany, Knoche et 

al. pointed out the major motivations which guide companies and developers towards adopting a 

microservice architecture [8]. One of these motivations was the desire for high elasticity and 

scalability. In addition, the lack of developers who have the necessary skills was highlighted as 

one of the major obstacles to the adoption of microservices. That survey only covered Germany, 

so we cannot generalise it to other parts of the world.  
 

In [9], a different method discussed on how to portion a microservice. Then, a Domain Driven 

Design (DDD) method used for portioning a microservice into a set of the subdomain. This 

technique guides the developers in sizing the microservice; and how each microservice will have 

a specific function and a single database to be implemented later. 
 

2.2. Evolution into Microservices Architecture 
 

Dragoni et al. [10], described a real-world case study of a mission critical system - the FX 

(Foreign eXchange) core system at Danske Bank. This is constructed using a legacy system 

architecture, to address the major concerns involving the scalability of the system. It was revealed 

that using, in addition, a microservices architecture might be a promising methodology for 

reducing the code complexity. Furthermore, a number of microservices could be decoupled via 

the use of service discovery. As pointed out in [10], switching to a microservices architecture 

brings about enhanced scalability through the application of several techniques, for instance load 

balancing, horizontal scaling, and cache and clustering methods [10]. The FX system can be 

improved through the implementation of the aforementioned methods for the purpose of 

supporting additional qualitative characteristics. A case in point is including additional security 

with the intention of delivering, to the client, a user-experience which is innovative. 
 

Villamizar et al. [3] described an enterprise case study. The application under examination was 

established on the cloud podium. Two versions were constructed, one using microservices and the 

other using a monolithic architecture. The authors analyzed the performance of both architectures 

in terms of response times - and they recognized that, so far as the microsystems architecture was 

concerned, additional provisions in terms of performance should be considered for the future. It 

was pointed out in [10] that the performance downgrade which appears to be involved when 

moving to a microservices architecture are due to the significantly increased network use and the 

existence of the container. Gouigoux & Tamzalit [11] dealt with some feedback they encountered 

after moving the MGDIS SA (a French software vendor editing application) monolithic software 

to an independent service. Among the benefits they encountered was an up-surge in performance, 

and this is somewhat contrary to the results from our case study. 
 

Bogner et al. [12] interviewed with an expert from 10 different companies based on Germany; 

some of these companies have been active in Europe or even globally. The discussion covered 

three main aspects, the technology that used to implement the microservices, the popular features 

that play a significant role to adopt a microservice architecture and the impact of the microservice 

on different software quality attribute. The analysis presents that maintainability was rated as the 

most improved attribute when moving to the microservice architecture. Related to the 

performance the participants divided into two groups. The first group has noticed a significantly 

improved on the response time. While the other group believed the response time would not 

affect. Also, there is still a debate about security and how to deal with these challenges. 



176 Computer Science & Information Technology (CS & IT) 

Regarding the performance issues highlighted above, there appears to be no clear upshot; it is 

therefore necessary to continue to look at the differences between the performance of 

microservice implemented applications and that of those which use a monolithic architecture.  

It is believed that the performance issues differ in relation to a number of factors, for instance, the 

programming languages used, the host environment, and the container technology. 

 

3. THE MICROSERVICE-BASED EVOLUTION APPROACH 
 
This study focuses on three elements: legacy systems, microservices and cloud computing. The 

objective is to formulate a scheme that is highly effective and based on evolutionary structures 

and specific rules concerned with modernising legacy systems. An innovative approach is created 

which enables the evolving of a legacy enterprise system into one which fits into a lean system 

framework, supported by cloud computing and microservices.  

 

The suggested architectural design concentrates on how legacy systems can be modernised 

through the use of a microservices framework and migration to a cloud-based platform. To 

develop this system further, we identified a set of features-driven microservice-oriented evolution 

rules for changing monolithic systems into microservice-based systems. Based on this feature-

driven development, a set of system requirements have been defined for the migration: 

performance, functionality, and security are the three main features.  

 
A list of sub features and the relationships between them has been identified. Regarding the 

features list, a set of rules have been introduced; the intention is that these rules will significantly 

enhance the functionality and quality of the resultant software system (e.g., in terms of 

maintainability, modularity, and interoperability). These evolution rules have been documented in 

a pseudo-code format and each rule has been given a title based on its context.  
 

The rules can be used to deconstruct and reorganize legacy applications into microservices 

architecture systems. Each rule consists of an assumption which reflects the main problem of the 

system, an action as the solution, and an impact on system features which explains the concerns 

that might arise when the rule is applied. A detailed definition of the rules (e.g., the single 

responsibility principle, the separate database principle, the computational task rule, the I/O 

processing rule, and the throughput rule), along with the framework of evolution processes, has 

been presented in [1]. Table 1 provides an overview of the rules. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Computer Science & Information Technology (CS & IT)                                   177 

Table 1. Overview of Microservice-Oriented Evolution Rules 

 

 

This paper focuses on evaluating the proposed framework and the evolution rules by applying 

them in a case study. New microservices have been identified and developed, and each service 

has been deployed in the AWS cloud. Also, each service has been tested from the source code 

stage to deployment. 
 

4. CASE STUDY 
 

In this paper, we present a case study which examines a monolithic system called ‘RosarioSIS’ 

[13], which we analyzed and then evolved into a new microservice-based architecture. The new 

system was fully implemented and was deployed on a cloud platform. This section presents an 

introduction to the original monolithic RosarioSIS system first, followed by a description of its 

evolution into a microservices architecture.  

 

The application is a school management system which is available across several schools for the 

management of the school, the staff, the students and grades. The application offers many 

services such as payment, etc.  The new microservices architecture was built using a Laravel and 

swagger API framework.   

 

However, in order that the case study remained relatively simple, the application was designed to 

support only the four most popular services. The first service, ‘School’ is for managing the school 

itself. The second service ‘Student’ is responsible for adding, updating, and deleting student 

records. The third module is the User microservice, which presents user profiles and teacher 

programs. The last service ‘Grades’ presents the student grades and manages the GPA.  

 

4.1. RosarioSIS Monolithic Architecture 
 

RosarioSIS [13], an open source legacy Student Information System (SIS), has been chosen for 

this case study. It runs as a publicly accessible web application. The prime objective of 

RosarioSIS is to provide schools with a platform whereby they can manage their staff and 

students. It is presented as a number of different components via which the school admin can 

manage teachers, students, attendance, fees, events, courses, and resources. 

Rules Action and Impact 

Decomposing 

legacy system 

to microservice 

Applying this rule will improve modularity and simplify scaling a particular 

microservice to meet the new demands and requirements. 

However, separate microservices add complexity and new problems, 

including network latency. 

Single 

responsibility 

principle 

Decomposed legacy system into small service, with a specific function, by 

applying the single responsibility problem concept. 

This rule will improve scalability and has a consistent code base. 

Separate 

database 

Keeping a separate data store for each microservice helps the developer 

choose the database type based on the microservices’ needs. 

It can introduce some distributed data management challenges 

Computation 

task 

Breaking a monolithic system into a microservice should decrease response 

times and to improve computation tasks. 

I/O processing In order to enhance the legacy system response time, the system will be 

deconstructed to a set of microservices. 

This will improve response times by reducing unnecessary I/O processing. 

Throughput To improve the legacy system network throughput, the system will be 

constructed into a set of services. 

This will increase the number of the throughput (i.e. messages processed by) 

of microservices by reducing the number of the memory intensive functions. 



178 Computer Science & Information Technology (CS & IT) 

Furthermore, there are several roles, such as teacher, staff member, payroll, administrator that can 

be registered with the system by the school admin. Every role has a certain number of duties 

associated with it, as also determined by the school admin. Also, each student will have their own 

web panel from which they can manage their leave, their fees and other important details.  

 

The current system is built in PHP 5.3, which is not widely supported, and the application has a 

3-tiered architecture; this makes the system an excellent candidate for the adoption of the 

microservice architecture. The architecture of the monolithic application is shown in Figure 1. 

 

4.2. RosarioSIS Microservices Architecture  
The ultimate goal of adopting a microservices architecture is to benefit from the single 

responsibility and independent deployment of each service. However, we must think carefully 

about how to design and build a microservice in isolation and then test all the services together in 

the implementation stage before the final release. It is also critical to think properly about the 

scope and size of each microservice. To construct a microservices architecture, the system was 

analysed in depth so that the entire architecture was understood.  

 

The process that was used to deconstruct the system into a microservices architecture was as 

follows: 

 

1- Understand the code and define the system’s boundaries. 

2- Build a class diagram for the existing system which helps to understand the relationships 

between the system classes and plays an essential role in determining the service.  

3- Determine the problems that the design of the microservices architecture should address. 

4- Identify services from the monolith by applying a domain-driven design (DDD). DDD is a 

technique in which a business domain is deconstructed into smaller functional components 

and describes the independent steps of the problem which comprise the bounded context; a 

bounded context includes the details of each domain, such as the domain model, the data 

model, and the application services [14]. 

5- Understand the shared database schema and break up the database in order to extract the 

tables and place each in an isolated independent database to be used later by one of the 

microservices.  

6- Recognize and determine which rules are going to apply. For this case study, three rules have 

been considered necessary to implement: the decomposing legacy to microservices rule, the 

single responsibility principles (SRP) rule, and the separate database rule. 

 

The first step is to reconstruct the existing system in order to discover, from the code, what the 

service elements are. The microservices were derived by applying the first and second rules: 

decomposing the legacy system into microservices (rule 1) and then the SRP rule (rule 2). 

Implementing a set of persistent and cohesive services can be achieved by using the SRP rule. 

  

 
 

Figure 1. Monolithic architecture 



Computer Science & Information Technology (CS & IT)                                   179 

Each service has a solo specific function. This rule makes clear boundaries of each microservices 

and indicates where code changes should go. Bounded context is an efficient way of designing a 

microservice.  

 

In the case study, using DDD gives us an idea of how to figure out the boundaries of the problem 

in various types of RosarioSIS legacy systems, such us user management, educational, and food 

service systems. Breaking the bigger context into smaller chunks provides a clear idea how data 

will move from one component to another. As microservices have to be isolated, it is critical that 

each component remains in their own bounded context and has an obvious responsibility. For 

instance, there is a student module in RosarioSIS, so a student management is required. Also, 

each student has to associate with their parents, so there is a parent’s profile in this subdomain. 

The same process has been applied to the other modules until a clear domain and subdomains of 

the RosarioSIS legacy system have been identified. The bounded context of student, school, user, 

and grade is presented in Figure 2,3,4,5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The next step is to decide which data is related to which problem. This will lead us the most 

important part in any application: data management. In a microservice architecture, to achieve 

independent and loose coupling microservices, a separate database per microservices (rule 3) is 

applied. This means that all the microservices databases are independent of each other. A change 

in one database should not affect any other.  

 

In our case study, we break the database based on the domain and figure out all the information 

present in a specific domain. Different domains are identified, and we then break each domain 

into smaller parts based on relevant data.  

School 

School 

informatio

Access 

Log 
Calendar 

Entry  

Portal 

Notes 

Figure 2. School context 

Student 

Parent 

profile 

Student 

Schedulin
Student 

profile 

Student 

Report  

Figure 3. Student context 

User 

Teacher 

Program  

User 

Permissio
User 

Informatio

User 

Preference 

Figure 4. User context 

Grade 

Grade 

Report 

Grade 

Setup 
Honor 

Roll 

Class rank 

list  

Figure 5. Grade context 



180 Computer Science & Information Technology (CS & IT) 

After splitting the function of the monolithic into different microservices, we prioritise the 

services to be built and ensure the main services are available. As a result, four services (μS1, 

μS2, μS3, and μS4) were derived from the legacy PHP code. Each service addresses a specific 

business scope and they are fully decoupled from each other.  

 

To adopt the microservices architecture, it is important to decide on the number of microservices 

to be built. For this case study, we selected the above four microservices.  

 

Each micro service is developed as an independent Laravel MVC framework. The gateway was 

developed as a light web application which receives requests from end-users (browsers) through 

the Internet and consumes the private services offered by the microservices (μS1, μS2, μS3, and 

μS4) through REST. The message interchange protocol which connects the browsers to the 

gateway, and the gateway to each microservice, is JSON. The gateway does not store any 

information. The microservice architecture will be deployed on the Amazon ECS cloud platform 

using the deployment illustrated in Figure 6. 

5. IMPLEMENTATION 
 

The RosarioSIS legacy system was implemented as a set of web applications. Its architecture is 

very monolithic with rather modularity. It can be accessed through an intranet with no Internet 

access (i.e., offline). 

 

• The web application. This application was developed using PHP 2.10.2, The relational 

database used was PostgreSQL. 

 

• The front-end application. This application was developed in HTML-5, CSS 3, and 

jQuery. 

 

In contrast, after the transformation into microservice-based architecture, the microservices 

architecture operated by the AWS cloud is implemented as four independent applications: 

 

• The microservices μS1, μS2, μS3, and μS4. These applications were developed using PHP 

7.1, and the Relational Database is MySQL 5.0.12. 

• The gateway application. This application was developed using the Swagger API.  

 

 

Figure 6. Microservice architecture 

 



Computer Science & Information Technology (CS & IT)                                   181 

6. DEPLOYMENT IN A CLOUD ENVIRONMENT 
 

Comparing the infrastructures which support each architecture, first, the monolithic architecture 

and the microservices architecture were deployed using Amazon ECS. ECS runs containers on a 

cluster of Amazon EC2 (Elastic Compute Cloud) virtual machine instances. It handles installing 

containers, scaling, monitoring, and managing these instances through both an API and also the 

AWS Management Console. It simplifies the view of EC2 instances to a pool of resources, such 

as CPU and memory. The specific instance a container runs on, and the maintenance of all 

instances, is handled by the platform. This service is deployed to a Cluster of ECS container 

instances that provide the pool of resources needed to run and scale the application. Additional 

services can be deployed to the same Cluster. Amazon ECS, or in fact any container management 

service, aims to make this provision of resources as simple as possible, abstracting away many of 

the complexities of running infrastructure at scale [15]. 

 

The legacy RosarioSIS monolithic architecture is deployed in the AWS cloud. The instance 

details in given in Table 2. 

 
Table 2. Monolithic Instance Details 

Instance 

type 

  vCPU CPU Credits 

/hour 

Mem 

(GiB) 

Storage Network Performance 

T2.micro 1 6 1 EBS-Only Low to Moderate 

 

The new RosarioSIS microservice architecture is operated by the cloud customer. The four 

applications are deployed as shown in Table 3. 

 
Table 3. Microservice Instance Details 

 
Instance 

type 

 vCPU CPU Credits 

/hour 

Mem (GiB) Storage Network 

Performance 

T3.small 2 24 2 EBS-Only Up to 5 

 

7. TEST AND ANALYSIS 
 

All the tests were undertaken using a test plan relating to the JMeter tool. This tool provides for 

all the performance aspects of testing such as the measurement of the error rate, the throughput 

and the average response time. These features work as a guide to understanding what will happen 

when the number of users is increased. 

 

We started the comparison by performing a targeted test for each microservice to identify the 

maximum number of users that each service could handle simultaneously. Then, we executed the 

performance test for the monolithic architecture to calculate the number of requests it could 

handle at the same time, in a specific ramp up period. 

 

The development of the application for the case study allowed us to compare the performance of 

each architecture by executing different stress tests. The corresponding results from the 

experiments are described below. 

 

7.1. Performance Tests 
 

To test and compare the performance and infrastructure of the four microservices, we defined the 

same scenario for all the microservices and configured the response time. The first scenario was 

designed so that 40% of the requests made to μS1, μS2, μS3, and μS4 would be consumed. In the 



182 Computer Science & Information Technology (CS & IT) 

second scenario, each service received 50% of the requests. The third scenario sent 75% of the 

requests to all the services. The next scenario was planned to receive 85% of the requests. The 

last scenario was designed to receive 90% of the requests.  

 

To execute the stress tests for each service, JMeter was used to simulate a constant workload; this 

depended on the scenario and the number of requests per second which had been configured. 

Also, the duration was defined to be between 0.5 and 5 sec. In the course of the performance 

tests, both the monolithic, and the microservice architecture was operated by the Amazon ECS 

cloud.  

 

The stress tests were executed with the intention of identifying the maximum number of requests 

supported by the microservices. This number was determined by increasing the number of 

requests for each scenario until the application began to generate errors or the time defined for 

responses from μS1, μS2, μS3, or μS4 were not met. The results of the performance tests 

performed on the microservices architecture are shown in Figures 7, 8, 9, and 10. 
 
We executed stress tests for the monolithic architecture, based on the number of requests per 

second supported by the microservices architecture. The performance tests were executed with 

the goal of identifying the maximum number of requests supported by the monolithic 

architecture in Amazon AWS. This number was calculated by increasing the number of requests 

for each scenario until the application began to generate errors or the time limits defined for 

responses from the monolithic architecture were not being met. The results of the performance 

tests executed on the monolithic architecture are shown in Figure 11. 

 
These results show that the monolithic architecture provides better performance than the 

microservices architecture. The reason for this is that we use only one instance for each 

microservice, i.e., one CPU for each microservice. However, if we were to increase the number 

of instances for each service, we would achieve better performance. 

 

There are two types of requirements which must be adhered to when building a microservices 

architecture. The first comprises the functional requirements. The second comprises the non-

functional requirements - also known as the quality attributes. The following subsections show 

how a microservices architecture can improve the quality attributes of an enterprise system.  

 

7.2. Security  
 

To understand the microservice security regime implemented here, we must first look at the way 

security works in monolithic applications; this will help us to see the differences between the 

authentication and authorization mechanisms of the RosarioSIS monolithic system and of the 

RosarioSIS microservices system. 

 

In a monolithic application, the purpose of authentication is always to verify the identity of a 

user. In addition, authorization manages what a user can or cannot access (in other words, 

permissions). Also, the data which is passed between the client and the server can be encrypted. 

Usually, the user enters a username and password through a web browser. Then, the server 

verifies these given credentials. A ‘session’ is created, and this is stored in the database. A 

cookie and session id will be kept in the web browser (client side). The session will be removed 

from both the web browser and the sever side once the user logs out. 

 
In contrast, the microservice API authentication, here, has been implemented with the use of 

Laravel passports. This represents a form of token-based authentication. The user enters a 

username and password. Then the server verifies these user credentials and generates a token. 



Computer Science & Information Technology (CS & IT)                                   183 

 

Figure 8. Performance results for user service 

The token is stored on the client side. The server verifies the token (a JSON web token) and 

returns the required data. Once the user logs out the token is destroyed. By applying this 

technique, we make sure that the service user is allowed to access each specific service that they 

require.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.3. Scalability 

 
The scalability and performance issues relating to microservices architectures are entwined with 

each other because of the effects each on the efficiency of the system. To improve microservices 

performance, we need the microservices to react to changing workloads.  However, other 

significant factors must be considered when building a scalable microservice. The first issue is 

that of determining the load growth in term of requests per second by applying load testing 

(testing a microservice with higher traffic loads). This type of test helps to predict how the system 

can be expected to behave under heavier and increasing loads and provides a perspective on what 

the traffic loads are at peak and off-peak hours, and also where the bottlenecks are. It also assists 

in working out whether there are any issues which may lead to unavailability of the service.  

 

Figure 7. Performance result for student service 

Figure 10. Performance results for school 

service 
Figure 9. Performance results for grade 

service 

Figure 11. Performance result for monolithic system 



184 Computer Science & Information Technology (CS & IT) 

Another factor is resource allocation, and how efficient usage of the resources (CPU, memory, 

data storage) may be enabled for each microservice by utilizing a container technique which 

allows for automatic resource allocation for each service. The scaling of microservices can take 

place during runtime as each microservice is deployed independently of the other microservices, 

based on the most efficient use of resources and on changes in the workload [16]. 

 

7.4. Maintainability 

 
The RosarioSIS monolithic system is complex and tightly coupled and indeed this is one of the 

main reasons we started to look at breaking up the system into a number of smaller units, i.e., the 

microservices, each of which focuses on only one business function and aims to deliver it well, so 

as to achieve a perfect loose coupling. These loosely coupled components are the key to 

improving the maintainability of RosarioSIS services. These smaller (‘micro’) systems are much 

easier to understand, change and test. The RosarioSIS microservices are clearly separated from 

each other as ‘independent units’, and there is no necessary sharing of information between one 

service and another. Loose coupling means that the RosarioSIS microservice design is more 

flexible and so will more easily facilitate future changes: error fixes and/or new functionality 

[10]. 

 

7.5. Testability 
 

All of the components in the RosarioSIS microservices architecture are separate and isolated; so, 

testing can be scoped and also isolated. Since RosarioSIS microservices are autonomous and 

loosely coupled, testability is much improved in relation to the legacy RosarioSIS system. 

Moreover, regression testing for a specific microservice is much easier than it is for the testing of 

a particular functionality of the RosarioSIS monolithic system; with microservices it is possible to 

change part of the system and isolate it in order to test it independently from the rest of the system 

[10]. 
 

8. CONCLUSION AND FUTURE WORK 
 

In this paper, a microservice-based evolution framework has been proposed and evaluation by 

applying the feature-driven microservice evolution rules to the RosarioSIS legacy system. We 

have analyzed the differences in the performance testing of the monolithic as compared to the 

microservices based systems in relation to pre-specified time periods and have observed how both 

of these systems behave under heavy loads. Other qualitative attributes have been analyzed in 

relation to the adoption of microservices for the RosarioSIS system, including scalability, 

maintainability and testability. 

 

It is concluded as a result of the experiments that the microservices architecture has significant 

value in terms of solving the problems that may arise in legacy enterprise applications. In terms of 

future work, the evolution rules will be further enhanced to satisfy the needs of more complex, 

very large, enterprise systems. These enhanced rules will be applied to a very large enterprise 

system to evaluate the efficiency and scalability of the feature-driven evolution framework and 

the micro service-based evolution rules. 

 

ACKNOWLEDGEMENTS 

 
This work has received funding from the Royal Society of Edinburgh, UK and China Natural 

Science Foundation Council (RSE Reference: 62967_Liu_2018_2) under their Joint International 

Projects funding scheme.  



Computer Science & Information Technology (CS & IT)                                   185 

 

REFERENCES 
 

[1]   S. Habibullah, X. Liu, and Z. Tan, An approach to evolving legacy enterprise system to microservice-

based architecture through feature-driven evolution rules, International Journal of Computer Theory 

and Engineering, 10(5), 2018. 

 

[2] S. Daya, N. Van Duy, K. Eati, C. M. Ferreira, D. Glozic, V. Gucer, M. Gupta, S. Joshi, V. Lampkin, 

M. Martins, et al., Microservices from Theory to Practice: Creating Applications in IBM Bluemix 

Using the Microservices Approach. IBM Redbooks, 2016. 

 

[3] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casallas, and S. Gil, Evaluating 

the Monolithic and the Microservice Architecture Pattern to Deploy Web Applications in the Cloud, 

the 10th Computing Colombian Conference (10CCC), Bogota, 2015, pp. 583-590.  

 

[4] A. Balalaie, A. Heydarnoori, and P. Jamshidi, Microservices migration patterns, Technical Report no. 

1 TR-SUTCE-ASE-2015-01, Automated Software Engineering Group, Sharif University of 

Technology, Tehran, Iran, 2015. 

 

[5] K. Brown and B. Woolf, Implementation patterns for microservices architectures, Proceedings of the 

23rd Conference on Pattern Languages of Programs (PLoP’16), Monticello, USA, Oct. 2016.  

 

[6] D. Taibi, V. Lenarduzzi, and C.Pahl, Architectural patterns for microservices: a systematic mapping 

study, the 8th International Conference of Cloud Computing and Services Science (CLOSER’18), 

Funchal, Portugal, March 2018. 

 

[7] A. Carrasco, B. van Bladel, and S. Demeyer, Migrating towards microservices: migration and 

architecture smells, Proceedings of the 2nd International Workshop on Refactoring, Montpellier, 

France, 2018, pp. 1-6. 

 

[8] H. Knoche, and W. Hasselbring, Drivers and Barriers for Microservice Adoption – a Survey among 

Professionals in Germany, Enterprise Modelling and Information Systems Architectures (EMISAJ), 

International Journal of Conceptual Modelling, 14(1), 2019. 

 

[9] I. J. Munezero, D. Mukasa, B. Kanagwa and J. Balikuddembe, Partitioning Microservices: A Domain 

Engineering Approach, IEEE/ACM Symposium on Software Engineering in Africa (SEiA), 

Gothenburg, 2018, pp. 43-49. 

 

[10] N. Dragoni, S. Giallorenzo, A. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and L. Safina, 

Microservices: yesterday, today, and tomorrow, in Present and Ulterior Software Engineering, M. 

Mazzara and B. Meyer, Eds. Cham: Springer International Publishing, 2017, pp. 195–216. 

 

[11] J. P. Gouigoux, and D.Tamzalit, From monolith to Microservices: Lessons learned on an industrial 

migration to a web oriented architecture, the IEEE International Conference on Software Architecture 

Workshops (ICSAW), Gothenburg, Sweden, 2017. 

 

[12] J. Bogner, J. Fritzsch, S. Wagner, & A. Zimmermann, Microservices in Industry: Insights into 

Technologies, Characteristics, IEEE International Conference on Software Architecture Companion 

(ICSA-C), Hamburg, Germany,2019. 

 

[13] Francoisjacquet, “francoisjacquet/rosariosis,” GitHub. [Online]. Available: 

https://github.com/francoisjacquet/rosariosis/blob/mobile/INSTALL.md. [Accessed: 25-Apr-2019]. 

 

[14] M. Fowler, bliki: BoundedContext. [online] martinfowler.com. Available 

at:https://www.martinfowler.com/bliki/BoundedContext.html [Accessed 12 Jan. 2019]. 

 

[15] Amazon Web Services, Inc.. Amazon ECS - run containerized applications in production. [online] 

Available at: https://aws.amazon.com/ecs/ [Accessed 11 Feb. 2019]. 

 



186 Computer Science & Information Technology (CS & IT) 

[16] S. J. Fowler, Production-Ready Microservices: Building Standardized Systems Across an Engineering 

Organization. O'Reilly Media, Inc., 2016. 

 

 

AUTHORS   

 

Safa Habibullah is a PhD candidate in the School of Computing in Edinburgh Napier 

university, UK. She holds a master’s degree in software technology for the web from 

Edinburgh Napier University, UK. She is a lecturer at the School of Computing, Jeddah 

University, Saudi Arabia. 

 

Prof. Xiaodong Liu received his PhD in Computer Science from De Montfort University 

and joined Napier in 1999. He is currently leading the Intelligence-Driven Software 

Engineering research group in the School of Computing, Edinburgh Napier University. 

He is an active researcher in software engineering focusing on its emerging themes 

including pervasive systems, microservices-oriented architecture, and cloud service 

evolution. He has led 10 externally funded projects as the PI, and published 125 papers in 

established international journals and conferences, 5 book chapters and 3 research 

handbooks. He is the inventor of 1 patent and the founder of a spin-out company. He has been the chair, co-

chair or PC member of a number of IEEE International Conferences. He is the editorial board member of 4 

international journals and editor of 2 journal special issues. He is a Senior Member of IEEE Society. 

 

Dr. Zhiyuan Tan holds a PhD in Computer Systems from the University of Technology, 

Sydney, Australia. He is a Lecturer at the School of Computing, Edinburgh Napier 

University, UK. Prior to joining ENU, he held a Postdoctoral Research Fellowship at the 

University of Twente, the Netherlands and the University of Technology, Australia. His 

research has been supported by various funding agencies, including the Commonwealth 

Scientific and Industrial Research Organisation, Australia. His research findings have 

been published in leading journals, including IEEE Transactions on Parallel and 

Distributed Systems (TPDS), IEEE Transactions on Computer (TC), IEEE Transactions on Cloud 

Computing (TCC), Future Generation Computer Systems (FGCS), and Computer Networks (CN). He has 

won various research awards including the National Research Award 2017 from the Research Council of 

the Sultanate of Oman. He has engaged in international conferences and journals as technical committee 

member, organising chair and guest editor. 
 

Prof. Yonghong Zhang is the Vice President of Nanjing University of Information 

Science and Technology, and the professor in the School of Automation. He has been 

appointed as the “Summit of the Six Top Talents” Program and the “Young academic 

leaders” of the Qing Lan Project in Jiangsu Province, China. He is a CMES (Chinese 

Mechanical Engineering Society) Senior Member, IEEE Member and CMS (Chinese 

Meteorological Society) Member. His major research interests focus on Dynamics 

Modelling of Mechanical Systems, Stability Analysis of Complex Systems, Pattern 

Recognition and Intelligent Systems, Neural Networks and Wavelet Analysis. He has secured over 10 

international and national research projects and published over 40 academic papers.  

 

Prof. Qi Liu received the B.S. degree in Computer Science and Technology from Zhuzhou 

Institute of Technology, China in 2003, and M.S. and Ph.D. in Data Telecommunications 

and Networks from the University of Salford, UK in 2006 and 2010. His research interests 

include context awareness, data communication in MANET and WSN, and smart grid. His 

recent research work focuses on intelligent agriculture and meteorological observation 

systems based on WSN. 

 


