
Natarajan Meghanathan et al. (Eds) : CSEIT, CMLA, NeTCOM, CIoT, SPM, NCS, WiMoNe, Graph-hoc - 2019
pp. 91-100, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.91308

AUTOMATED GENERATION OF COMPUTER

GRADED UNIT TESTING-BASED PROGRAMMING

ASSESSMENTS FOR EDUCATION

Sébastien Combéfis1, 2 and Guillaume de Moffarts2

1ECAM Brussels Engineering School, Brussels, Belgium
2Computer Science and IT in Education ASBL, Louvain-la-Neuve, Belgium

ABSTRACT

Automatic assessment of code, in particular to support education, is an important feature

included in several Learning Management Systems (LMS), at least to some extent. Several kinds

of assessments can be designed, such as exercises asking to “fill the following code”, “write a

function that”, or “correct the bug in the following program”, for example. One difficulty for

instructors is to create such programming exercises, in particular when they are somewhat

complex. Indeed, instructors need to write the statement of the exercise, think about the solution

and provide all the additional information necessary to the platform to grade the assessment.
Another difficulty occurs when instructors want to use their exercises on another LMS platform.

Since there is no standard way to define and describe a coding exercise yet, instructors have to

re-encode their exercises into the other LMS. This paper presents a tool that can automatically

generate programming exercises, from one single and unique description, and that can be

solved in several programming languages. The generated exercises can be automatically

graded by the same platform, providing intelligent feedback to its users to support their

learning. This paper focuses on and details unit testing-based exercises and provides insights

into new kinds of exercises that could be generated by the platform in the future, with some

additional developments.

KEYWORDS

Code Grader, Programming Assessment, Code Exercise Generation, Computer Science

Education

1. INTRODUCTION

Being able to automatically grade code produced by learners, and in particular students in schools

and universities, is a very demanded feature for Learning Management Platforms (LMS) [1]. In

particular, professors in charge of programming courses need to assess the programming skills of
their students. It is of course also the case for other courses that may require some programming,

such as data mining or natural language processing courses, for example. The main issue is that

this assessment cannot be done manually, especially if there are a large number of students [2-3].
Another situation, where automatic code assessment is mandatory, is Massive Open Online

Courses (MOOCs), for which students are spread all over the world and are even more numerous

[4-5]. Of course, the automatic grading of code must be more advanced than just assessing

whether the code compiles and produces the correct result for some test cases. It should provide
useful feedback to the learners. It is even more important when the number of students is large or

in the case of MOOCs for which learners have a more limited access to the professors to get more

individualised feedbacks.

92 Computer Science & Information Technology (CS & IT)

This paper proposes a tool to generate coding exercises that can be solved in several
programming languages and that can be automatically graded. Exercises are generated from a

single language-agnostic configuration file. The same configuration can therefore be used to

generate several instances of the same exercise for different programming languages. Feedbacks

generated by the tool, and provided to the learners, are designed to help the learners to identify

and understand their faults. They are also more suited for education and designed to support their

learning. The first prototype of the tool [6] has been used to support a university course, at the
Université catholique de Louvain (UCLouvain), introducing students to programming concepts

and paradigms, as well as for a MOOC on the same topic [4]. The more recently rewritten version

adds generic unit testing-based exercises [7]. It has been used for a second bachelor course about
Python programming at the ECAM Brussels Engineering School, a higher education institution

for future engineers. Finally, the last version of the tool, presented in this paper, supports

automatic generation of unit testing-based exercises. It is currently tested with EDITx, a private
company that organises IT challenges targeted to IT students and IT professionals, all around

Europe.

1.1. Motivation

A lot of tools that can automatically grade codes do exist. They can generally be split in three

categories: (a) code grading for programming competitions (online or onsite), (b) code evaluation

for test-driven development and (c) code grading for education. For competitions, it is important
to be able to guarantee the same execution environment and conditions for all the code

evaluations. The main reason being that code evaluations are used to establish the ranking and to

offer prizes to the participants. For example, it should be possible to impose time and memory
limits that cannot be exceeded during the execution of participants’ code submissions. Those

graders must also be very robust to hold on during the whole competition, and must guarantee

code and grading traceability in case of complaints [8]. For development, programs are typically

tested to check whether their code is functionally correct regarding the executed test cases,
following the Test-Driven Development (TDD) approach. For such assessments, time and

memory constraints are less useful, but defining and controlling the test environment is also

important. It should also be important to test the same code under different situations, for
example to evaluate some fault tolerance levels. Finally, when it comes to assess code for

educational purposes, several additional requirements arise. First, the feedback provided to

learners must support their learning and cannot be limited to the classical “pass/fail” verdict of
standard graders. The feedbacks must help learners to understand their faults and to make

progress. Then, graders for education must support a larger number of different execution

environments and programming languages than competition or development graders, that are

often more specific. Finally, learner’s code must be executed in a safe environment, for example
isolated in sandboxes, because learners may produce wrong or dangerous code, whether it is

voluntary or not.

All these observations led to the development of Pythia, a platform that combines requirements
from the three categories of graders presented above. This platform has been designed to support

education and, in particular, the teaching and learning of programming [6-7]. The main

motivation that gave birth to the Pythia platform is to propose a tool on which several kinds of
programming exercises can be automatically graded. It must also be flexible enough so that codes

produced by the learners can be thoroughly analysed with existing tools. Therefore, the Pythia

platform can support various assessments based on several criterions (functional correctness, code

quality, execution performance, memory consumption, etc.). Finally, the platform should allow
instructors to easily produce exercises following existing templates, or to build their own

Computer Science & Information Technology (CS & IT) 93

exercises specifically tailored for their students. From the competition graders, Pythia took two
ideas: isolated sandboxes to safely execute code and possibility to impose constraints (such as

time and memory limits). From the “TDD graders”, Pythia took the idea of the systematic way to

test codes against test suites. Finally, from education graders, Pythia took the idea of working on

tailored “intelligent” feedbacks that support learning.

1.2. Related Work

As detailed above, many code graders have been developed, but most of them are either
competition graders or specific ones only being able to handle certain kinds of exercises [9].

Several reviews have been conducted and interested reader can refer to them [10-13]. Among

those graders, some follows the “TDD grader” philosophy and are based on tests [13]. When
graders are to be used for educational purposes, reviews agree that feedback is important and that

good feedback helps the learners and support their learning [14-15]. Finally, concerning

automatic generation of programming exercises, only some solutions have been developed, but it
is important in particular in the case of large classes to be able to easily diversify the number of

available exercises [16-17].

The remainder of the paper is structured as follows. Section 2 presents a global overview of the
architecture of Pythia. Then, Section 3 presents how to define an exercise and how it will be

generated. Finally, Section 4 concludes the paper with some discussions and future works.

2. PYTHIA PLATFORM ARCHITECTURE

Pythia is a distributed application with several components. It has mainly been developed with

the Go programming language. It uses UML virtual machines to execute code in a safe and
controlled environment. The details of the architecture of the Pythia platform not being the

purpose of this paper, the interested reader can refer to [6], or can directly delve into its code

available here: https://github.com/pythia-project, to get a better understanding of it. Figure 1
shows a global overview of the architecture of the Pythia platform. The client interacts with the

platform through an API server. This latter is connected to the Pythia backend, which manages

the code execution within virtual machines (VM). Tasks to be executed and environments in
which tasks can be executed are available to the backend and API server. They are in fact

SquashFS read-only file systems stored on disk as files (TaskDB and EnvDB).

Two scenario examples are illustrated on Figure 1:

1. An instructor can call a specific route on the API server to create a new task. The task

generator component will create it and store it in the TaskDB.

2. A learner can call a specific route on the API server to execute a task. The
submission grader component will execute the task with the submission of the learner

on the backend and return the generated feedback to the learner.

94 Computer Science & Information Technology (CS & IT)

Figure 1. The Pythia platform is a distributed application with a backend managing VMs. It can be accessed

through an API server that also manages tasks and execution environments.

2.1. Submission Grader

The submission grader is the component in charge of gathering the submission of the learner for a

specific task and to evaluate it. The POST /api/execute route of the API server takes two
parameters: the unique identifier of the task to execute and an input, which is a string containing

the submission of the learner. The API server responds with three elements: the unique identifier

of the task that has been executed, the status of the execution by the Pythia backend (success,
timeout, overflow, etc.) and the output produced by the execution of the task (which contains

among others the feedback). Depending on the kind of exercise, the input provided to the Pythia

backend and the output produced by the execution of the task can be structured following a
specified format. The Pythia platform does not impose anything on input and output. They just

have to be strings, with a limitation on the number of characters for the output.

For example, Figure 2 shows the input and the output produced by the execution of a unit testing-
based exercise where the student has to write the body of a function that computes the subtraction

of its two arguments. The input should be a JSON object with two keys, one with a unique

submission ID and one with the set of pieces of submitted code. For this particular exercise, there

was only one field to fill out, named f1. The produced output contains the unique submission ID,
the status of the execution of the tests (success, failed), and some feedback information. In this

case, the feedback contains four elements:

 a score: 0.14285715,

 some statistics about the tests: 2 succeeded tests on a test suite with 14 tests,

 an example of inputs for which a test failed: for input (10,5), the expected answer is 5

(that is, 10 – 5) and the answer computed by the learner’s code is 10, and finally

 a message to help the learner find his/her fault: “Have you subtracted the 2nd
parameter?”.

The score and the statistics help the learner to evaluate how far from the completion of the

exercise he/she is. The goal is to reach a score of 1, that is, to succeed all the tests from the test
suite. The learner can also evaluate his/her own progress between submissions for the same

exercise thanks to those statistics. Thanks to the example of inputs for which a test failed, the

learner can trace his/her code execution to understand why it produced a wrong result. The
learner can also check his/her corrected code before submitted it again, thanks to the provided

expected answer. Finally, the message associated to the example of input should help the learner

Computer Science & Information Technology (CS & IT) 95

to find his/her fault. Since this message is more intuitive and related to the statement of the
exercise to solve, it should encourage the learner to think about his/her solution, and not to try to

change the code just to pass the failed test.

The handling of this specific input and the generation of this specific output are managed by code
embedded in this particular task. In the Pythia platform, a task is in fact just a bunch of code that

is executed in a safe environment, namely the UML virtual machine, taking a string as input and

producing a string as output. An instructor can therefore create any kind of exercise, as long as

he/she is able to write a code to parse the provided input, to evaluate the learner submission and
to produce an output. He/she also has to define precise specifications for the input provided to

his/her task and the generated output. Since the execution takes place inside a Linux virtual

machine, the instructor can use any existing tool running on Linux to write a task. The only flip
side of such flexibility is that creating a task can be very time-consuming and limited to only

some instructors that have high programming skills and that understand the internal working of

Pythia environments and tasks.

Figure 2. The execution of a unit testing-based task requires specific input information with the

pieces of submitted code and produces a specific output with “intelligent” feedback information.

2.2. Task Generator

The task generator is a component in charge of automating the creation of tasks based on

predefined templates. It can be used to ease the creation of exercises on the Pythia platform for
instructors. For that, task templates must be defined, that is, a highly configurable generic

program with placeholders must be designed as a task. Unit testing-based tasks [7] are structured

following four processes as shown on Figure 3. The execution goes as follows:

1. The input of the learner is pre-processed, and used to fill a template code to produce

the student code. This first step also initialises several files and directories. For

example, it saves the task ID (tid) in a text file so that it can be used at the end of the
task execution to generate the output of the task.

2. A test suite is then automatically generated based on the test configuration of the task
contained in the test.json file. This file contains a set of predefined tests and

96 Computer Science & Information Technology (CS & IT)

configuration information to generate random tests. The test suite is stored with the
CSV format in the data.csv file.

3. The student code is then executed for each test of the test suite and the results of each

execution are stored in the data.res text file. Each line of this file contains the verdict
of the execution (checked, exception, etc.) with an associated value (the produced

result, the description of the exception, etc.). Student code is executed in an

unprivileged mode inside the virtual machine, so that it cannot access the correct
solution or view some configuration files, for example.

4. Finally, the correct solution stored in the solution.json file is fed in the template code
to produce the teacher code, which is executed to produce the correct solutions for

the generated test suite. Solutions are stored in the solution.res text file, each line

containing the correct answer for each test. Then, the feedback is generated,

comparing the correct answers with the ones produced by the learner. The test.json
file is again used, to get information about the predefined tests and customised

feedback messages.

Figure 3. The structure of a unit testing-based task is composed of four main processes, namely the pre-

processing, the tests suite generation, the code execution and the feedback generation.

Computer Science & Information Technology (CS & IT) 97

Following this general structure for a unit testing-based task, it is possible to automatically
generated exercises just providing some configuration information, described in the following

section. Moreover, the only parts that are language-dependent are the execution of the student and

the teacher code, all the rest being language-agnostic. To ease the implementation of unit testing-

based tasks, the language-agnostic parts have been implemented as a independent tool written
with the Go programming language, so that to be efficient. The language-dependent parts are

implemented as libraries written in the target language for the exercise. For now, those libraries

have only been written for the Python and Java programming languages.

3. ASSESSMENT STRUCTURE

To create a new exercise following the unit testing-based task template, an instructor has just to
provide some basic configuration information structured as one JSON file, such as the one shown

on Figure 4. The configuration consists in three distinct parts: (a) the specification, (b) the tests

and (3) the solution. Except for the correct solution, all the other parts are language- agnostic and
analysed either by the Go tool or by the language-dependent library. This task example asks the

learner to write the body of a function sub that takes two parameters a and b, and that should

return their subtraction, that is, a - b.

Figure 4. A unit testing-based task can be generated from a configuration file containing information about

the specifications of the function to write, information about the predefined and random tests to be executed

and finally one correct solution for the task.

98 Computer Science & Information Technology (CS & IT)

The configuration file consists of three parts:

 The specification part (spec) is used to generate the code templates from which the
student and teacher codes will be generated thanks to the input submission from the

learner and the correct solution from the instructor. It contains all the information related

to the signature of the function that the learner has to implement for the task.

 The tests part (test) contains predefined tests that have to be run and information and

constraints used to generate random tests. It also contains information about customised
feedback message that can be produced to help the learner if he/she fails the test.

 Finally, the solution part (solution) contains one possible solution for the task. It consists

of chunks of code that are used to generate the teacher solution that is executed to get the

correct answers for the test suite.

The POST /api/tasks route of the API server takes several parameters among which the type of

the task to create can be specified (unit-testing for unit testing-based tasks) along with the

configuration (such as described by Figure 4) and the programming language. The task generator
then builds a Pythia task with all this information, using the language-agnostic code for the pre-

process, generate and feedback components and the language-specific code for the execute

component. Thanks to this feature, an instructor can generate a coding exercise without having to

write any line of code. A user interface can be designed to help instructor design such exercise
visually, wrapping the creation of the JSON configuration file and the call to the API server. An

experiment conducted by the EDITx private company is currently underway, asking higher

education professors in charge of introductory programming courses at the bachelor level to write
unit testing-based exercises thanks to the proposed platform.

4. CONCLUSIONS

The tool presented in this paper is the result of further development of the version of [7], which

now has the ability to automatically generate unit testing-based exercises that can be
automatically graded. An instructor willing to design an exercise does not have to write any lines

of code, except to provide one correct solution for the exercise. The presented tool combines

advantages from competition, TDD and education graders so that to be used for education and

learning purpose. It can also generate “intelligent” feedbacks to support learning, providing the
learner with hints about his/her faults. The automatic generation of exercises process has been

designed to be easy which should encourage instructors to create more exercises for their

learners. It should also encourage easier sharing between educators.

Of course, the main strength of the Pythia platform being its high flexibility, future developments

of the platform include the addition of new kinds of exercises, with the automatic grading and the

automatic generation parts. Writing a task for the platform is not easy, but thinking about a
generic kind of task, from which instances can be easily created, without having to write any line

of code is even less easy but way more interesting. Some insights about how to include input-

output tasks to the Pythia platform, with the automatic grading and generation parts have already
been found. The next feature will be the addition of those kind of exercises, where the instructor

only provide a statement along with a set of string inputs with the corresponding expected string

output. For such exercises, the instructor will no longer have to provide any line of codes to

design a new task, since he/she will not even have to provide any correct solution.

The platform is currently being used for several courses at the ECAM Brussels Engineering

School and on the IT challenges platform of the EDITx private company. Informal evaluations

from usage of previous versions of the platform already showed that the platform does bring

Computer Science & Information Technology (CS & IT) 99

useful help to learners. Future work includes a more rigorous evaluation of the platform and, in
particular, should analyse the experiments in progress. Also, research has to be conducted to

formally measure if the produced feedback information does indeed improve the learning

performance of learners. It should also evaluate if the exercise creation process is easy and

convenient enough for instructors.

REFERENCES

[1] Pieterse, Vreda (2013). “Automated Assessment of Programming Assignments”, in Proceedings of

the 3rd Computer Science Education Research Conference (CSERC 2013), pp45-56.

[2] Higgins, Colin A., Geoffrey Gray, Pavlos Symeonidis & Athanasios, Tsintsifas (2005). “Automated

Assessment and Experiences of Teaching Programming”, Journal on Educational Resources in
Computing (JERIC), Vol. 5, No. 3, Art. 5.

[3] Cheang, Brenda, Kurnia, Andy, Lim, Andrew, & Oon, Wee-Chong (2003). “On automated grading of

programming assignments in an academic institution”. Computers & Education, Vol. 41, No. 2,

pp.121-131.

[4] Combéfis, Sébastien, Bibal, Adrien & Van Roy, Peter (2014). “Recasting a Traditional Course into a

MOOC by Means of a SPOC”, in Proceedings of the European MOOCs Stakeholders Summit 2014

(EMOOCS 2014), pp.205-208.

[5] Staubitz, Thomas, Hauke, Klement, Jan Renz, Ralf Teusner & Christoph Meinel (2015). “Towards

Practical Programming Exercises and Automated Assessment in Massive Open Online Courses”, in
Proceedings of 2015 IEEE International Conference on Teaching, Assessment, and Learning for

Engineering (TALE 2015), pp.23-30.

[6] Combéfis, Sébastien & le Clément de Saint-Macq, Vianney (2012). “Teaching Programming and

Algorithm Design with Pythia, a Web-Based Learning Platform”, Olympiads in Informatics, Vol. 6,

pp31-43.

[7] Combéfis, Sébastien & Paques, Alexis (2015). “Pythia Reloaded: An Intelligent Unit Testing- Based

Code Grader for Education”, in Proceedings of the 1st Int’l Code Hunt Workshop on Educational

Software Engineering (CHESE 2015), pp5-8.

[8] Tochev, Tocho, & Bogdanov, Tsvetan. (2010). “Validating the Security and Stability of the Grader

for a Programming Contest System”. Olympiads in Informatics, Vol. 4, pp113-119.

[9] Burket, Jonathan, Chapman, Peter, Becker, Tim, Ganas, Christopher, & Brumley, David (2015).

“Automatic Problem Generation for Capture-the-Flag Competitions”. In Proceedings of the 2015

USENIX Summit on Gaming, Games, and Gamification in Security Education (3GSE 2015).

[10] Ihantola, Petri, Tuukka Ahoniemi, Ville Karavirta & Otto Seppälä (2010). “Review of Recent

Systems for Automatic Assessment of Programming Assessments”, in Proceedings of the 10th Koli

calling Conference on Computing Education Research, pp.86-93.

[11] Caiza, Julio C. & del Álamo Ramiro, José Maria (2013). “Programming Assignments Automatic
Grading: Review of Tools and Implementations”, pp5691-5700.

[12] Draylson M., Souza, Felizardo, Katia R. & Barbosa, Ellen F. (2016). “A Systematic Literature

Review of Assessment Tools for Programming Assignments”, in Proceedings of the 2016 IEEE 29th

International Conference on Software Engineering Education and Training (CSEET 2016), pp. 147-

156.

100 Computer Science & Information Technology (CS & IT)

[13] Douce, Christopher, Livingstone, David & Orwell James (2005). “Automatic Test-Based Assessment

of Programming: A Review”, Journal on Educational Resources in Computing (JERIC), Vol. 5, No.

3, Art. 4.

[14] Keuning, Hieke, Jeuring, Johan & Heeren, Bastiaan. “Towards a systematic review of automated
feedback generation for programming exercises”, in Proceedings of the 2016 ACM Conference on

Innovation and Technology in Computer Science Education, pp. 41-46.

[15] Falkner, Nickolas, Vivian, Rebecca, Piper, David & Falkner, Katrina (2014). “Increasing the

effectiveness of automated assessment by increasing marking granularity and feedback units”, in

Proceedings of the 45th ACM Technical Symposium on Computer Science Education, pp. 9-14.

[16] Radošević, Danijel, Orehovački, Tihomir & Stapić Zlatko (2012). “Automatic on-line generation of

student's exercises in teaching programming”, in Proceedings of Central European Conference on

Information and Intelligent Systems (CECIIS 2010).

[17] Prados, Ferran, Boada, Imma, Soler, Josep & Poch, Jordi. “Automatic generation and correction of
technical exercises”, in International Conference on Engineering and Computer Education (ICECE),

Vol. 5.

AUTHORS

Dr Sébastien Combéfis obtained his PhD in engineering in November 2013 from the
Université catholique de Louvain (UCLouvain). He is currently working as a lecturer at

the ECAM Brussels Engineering School, where his courses focus on computer science.

He also obtained an advanced master in pedagogy in higher education in June 2014.

Co-founder of the Belgian Olympiad in Informatics (be-OI) in 2010, he later introduced

the Bebras contest in Belgium in 2012 and at the same time founded CSITEd. This non-

profit organisation aims at promoting computer science in secondary schools.

Guillaume de Moffarts is a master student in computer science at Université

catholique de Louvain (UCLouvain). He is interested in computer science and

electronics, and very curious about engineering and new technologies, such as 3D

printing, artificial intelligence and the internet of things. He is also involved in the

CSITEd non-profit organisation, taking part on several projects it organises. He was
also recently the deputy leader of a Belgian delegation to the IBU Olympiad in

Informatics 2019 that was held in Skopje, North Macedonia.

