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ABSTRACT 

 

Dependability of Scheduling between latency-sensitive small data flows (a.k.a. mice) and throughput-

oriented large ones (a.k.a. elephants) has become ever challenging with the proliferation of cloud 

based applications. In light of this mounting problem, this work proposes a novel flow control 

scheme, HOLMES (HOListic Mice-Elephants Stochastic), which offers a holistic view of global 

congestion awareness as well as a stochastic scheduler of mixed mice-elephants data flows in Data 

Center Networks (DCNs). Firstly, we theoretically prove the necessity for partitioning DCN paths 

into sub-networks using a stochastic model. Secondly, the HOLMES architecture is proposed, which 

adaptively partitions the available DCN paths into low-latency and high-throughput sub-networks 

via a global congestion-aware scheduling mechanism. Based on the stochastic power-of-two-choices 

policy, the HOLMES scheduling mechanism acquires only a subset of the global congestion 

information, while achieves close to optimal load balance on each end-to-end DCN path. We also 

formally prove the stability of HOLMES flow scheduling algorithm. Thirdly, extensive simulation 

validates the effectiveness and dependability of HOLMES with select DCN topologies. The proposal 

has been in test in an industry production environment. 

 

 

1. INTRODUCTION 

 
The wide adoption of diverse cloud-based applications and services exacerbates the challenges in 

design and operation of Data Center Networks (DCNs). Consider a typical mix of traffic patterns in 

cloud applications: mouse vs. elephant data flows. Mouse data flows (mice) are emails, web pages, 

data requests or any other short-lived data flows. Elephant data flows (elephants), on the other hand, 

are persistent data flows such as VM migrations, data migrations, MapReduce and other application 

flows that impact network bandwidth for minutes or hours if not longer. In multi-tenant mode, long-

lasting elephant and short-lived mouse flows share on DCN paths [15]. According to the results shown 

in [7], the sizes of the numerous short-lived flows are usually less than 10KB, the majority of which 

tend to require very low latency. On the other hand, the long-lasting heavy DC flows are typically 

much larger than 100KB; although the number of these large flows is extremely small compared to 

that of the small flows. These elephant flows account for more than 80% of bandwidth in DCNs. The 

competing performance requirements of the two types of flows make it challenging to schedule them 

on shared paths. That is, the throughput-oriented large flows demand for high bandwidth, while the 

latency-sensitive small flows prefer minimal queuing delay. Note that, in hyper-scale data centers 

there are also many flows that are both high bandwidth and require low per packet latency. Such flows 

can be handled as an extension to the strategy of scheduling mice-elephants flows. 
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Table 1 : Summary of Key Notations and Definitions 

 

 
 
To provide high bisection bandwidth, DCN topologies are often multi-rooted topologies, e.g. Fat-Tree, 

Leaf-Spine, characterized by a large degree of multipath. There are multiple routes between any two 

DCN endpoints [1, 2]. However, a critical issue in such network topologies is to design an efficient 

scheduling mechanism to balance the load among multiple available paths, while satisfying different 

application requirements defined in the Service Level Agreements (SLAs). 

 

The de facto DCN flow scheduling scheme Equal Cost Multi Path (ECMP [3]) cannot meet such 

dynamic performance requirements in data centers. Hash collisions in ECMP can cause congestions, 

degrading throughput [4-6] as well as tail latency [7-9] of DCN flows. To balance the load between 

DCN switches and paths, stateful schedulers have been proposed, e.g. Conga [10], Hedera [4], etc. 

They monitor the congestion state of each path and direct flows to less congested paths, hence more 

robust to asymmetry network without control plane reconfigurations [11, 12]. Since maintaining 

global congestion information at scale is challenging, local congestion-aware or stochastic scheduling 

schemes are proposed, e.g. Expeditus [12], Drill [13], Hula [14], etc. Using simple or local 

information collection, these mechanisms are more efficient and applicable for complex DCN 

architectures, e.g. 3-tier Clos topologies. However, the majority of these scheduling mechanisms focus 

on balancing the loads of DCN according to the congestion information, without any consideration of 

cloud applications or data center traffic patterns. 

 

Existing solutions to scheduling the mice-elephants hybrid DCN traffic fall into two categories. The 

first category deploys unified schedulers for both mice and elephants on shared paths, in spite of the 

competing performance requirements of the two. Based on the analysis of DC traffic patterns, these 

studies design novel scheduling algorithms or congestion signals [16, 17] and strike at the right 

balance between throughput and latency on shared DCN paths. The main challenge though is the 

interference between the elephant and mouse flows. The second category deploys network partition 

schemes that transfer the two types of flows over separate paths. [18] By isolating elephant and mouse 

flows, network partition solutions avoid the aforementioned interference. This is particular attractive 
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as hardware and system cost continues to drop. Nonetheless, new policies are required to adaptively 

partition the DCN paths, given dynamic DC traffic patterns and varied DC architectures. 

 

This paper focuses on the second category, the network partition solutions. Using a stochastic 

performance model, we first theoretically prove that the interference between mice and elephants are 

inevitable under the unified scheduler, indicating that network partition is a more appropriate solution 

for handling such hybrid DC traffic. We then propose a novel scheduling scheme, HOLMES, for such 

hybrid traffic in datacenters. HOLMES architecture partitions a DCN into high-throughput and low-

latency sub-networks, decouples the two competing scenarios and eliminates the interference in the 

hybrid traffic. HOLMES further deploys a stochastic and global congestion-aware load balancing 

algorithm that optimizes the performance of each sub-network. The stability of the HOLMES flow 

scheduling algorithm is also proved and validated in this paper. 

 

The main contributions of this work are: 

 

• We prove with a closed form the necessity of applying network partition solutions to mice-

elephants DC traffic, showing that unified flow scheduling schemes or congestion control 

mechanisms are not optimal. 

• We design HOLMES, an architecture that partitions all the DCN paths into sub-networks, 

isolating the paths of elephant and mouse flows. As a result, HOLMES eliminates the 

interference between the two. Moreover, an AI module of the HOLMES architecture enables 

machine learning techniques and offers a more comprehensive analysis of the DCN status for 

better scheduling. 

• We propose a novel stochastic load-balancing algorithm for HOLEMS that is global 

congestion aware. Using the end-to-end congestion signal, the algorithm is agile to link or 

node failures in DCN. Moreover, it uses only limited global congestion information to 

improve the scheduling efficiency and sustain stability in all possible scenarios. 

• We use an analytical model to evaluate the adaptability of HOLMES. We then confirm the 

finding with detailed simulations under varied DCN architectures and scheduling policies. 

These experimental results can further guide the hardware implementation of HOLMES. 

 

The rest of this paper is organized as follows. Section II presents an overview of HOLMES. Section 

III and IV discuss in detail the HOLMES architecture and its load balancing mechanisms, 

respectively. Section V evaluates HOLMES with extensive simulation experiments. Section VI 

concludes the paper. 

 

2. HOLMES OVERVIEW 
 

HOLMES aims to satisfy the competing performance requirements of elephants and mice by 

partitioning a DCN into high-throughput and low-latency sub-networks. HOLMES proposes a 

stochastic and global congestion-aware mechanism to schedule the elephant and mouse flows in these 

separate sub-networks. This section presents an overview HOLMES. 

 

A. Necessity of Network Partition 

 
In order to lay out a solid foundation of HOLMES, we first theoretically prove the limitations of the 

unified scheduling schemes when handling hybrid DC traffic. The analytical model in turn promotes 

the need for deploying network partition solutions in the architecture design of flow scheduling and 

congestion control schemes. 
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The main challenge that any unified scheme needs to address is the interference between the elephant 

and mouse flows. A typical scenario that mouse flows affect elephant flows is that a burst of mouse 

flows triggers a congestion signal, e.g. Quantized Congestion Notification (QCN), which in turn 

reduces the transmission rates of elephant flows in the next long period of time. Measurement results 

show that the short-lived flows in large-scale clusters exhibit significant traffic bursts. Theophilus 

Benson et al further explain that the traffic bursts in DCNs are caused by the huge amount of 

aggregated edge links as well as the concurrency of parallelized computing schemes, e.g. shuffle 

period in a MapReduce process. Experimental results also show that a momentary traffic burst can 

lead to short-lived congestion in a DCN. On the other hand, the effect of elephant flows on mouse 

flows is that elephant flows occupy the vast majority of the network buffers; hence the mouse flows 

will result in long queuing delay and flow completion time (FCT), a.k.a. the bufferbloat problem. 

 

We calculate the probability that the above two scenarios would occur with the unified flow 

scheduling solutions and how they would affect network performance. Some key notations and 

definitions are illustrated in Table I. We then prove that fundamental limitations exist in the unified 

scheduling schemes when handling hybrid DC traffic. (Details of the proof is omitted in this paper due 

to page limit, however, we will post it after publication.) Therefore, network partition is a better 

solution that eliminates the interference by separating the mouse and elephant flows. 

 

B. HOLMES Architecture with Network Partition 
 
W. Wang et al [18] and W. Cheng have applied the network partition solutions to separate the large 

and small flows in DCN paths, and to avoid the interference between the two. 

 

Similarly, HOLMES deploys the network partition solution, which partitions all the end-to-end DCN 

paths into two logical sub-networks to isolate the transmission of elephant and mouse flows. A 

centralized controller is deployed to map each link to the high throughput or the low latency sub-

network. The traffic transmitted between each pair of edge switches may contain both elephant and 

mouse flows. Therefore, HOLMES architecture needs to ensure that at least one of the multiple paths 

between each two edge switches belongs to the high throughput sub-network, while at least another 

one belongs to the low latency sub-network too. The scales of the two subnetworks can be determined 

either statically or dynamically according to the architecture of the DC as well as the traffic patterns. 

 

In addition to network partition, network statistics and analysis functions are provided by the 

HOLMES AI module. We discuss the detailed architecture in Section III. 

 

C. Global Congestion-aware Load Balancing Algorithm based on Power of Two Choices 

Model 

 
Another important component in HOLMES is its load balancing algorithm. Since local congestion-

aware load balancing algorithms have been proved to react slowly to link failures [10, 14] and are 

prone to form congestion trees, we deploy global congestion-aware load balance in HOLMES. 

Inspired by the Power-of-Two-Choices model [43, 44], we further design a stochastic load-sensitive 

flow scheduling algorithm, which reduces the overhead of congestion information maintenance and 

improves the scheduling efficiency. 

 

M. Mitzenmacher and S. Ghorbani et al have shown that tagging a single unit of memory with random 

sampling and identify the shortest output queue from the previous time slots guarantees stability [13, 

43]. We extend a distributed implementation of this approach: When a packet arrives at an input port 

of an edge TOR switch, that TOR switch resolves the source and destination addresses of the packet. 
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It then assigns the packet to the least loaded of d randomly chosen end-to-end paths from all N (d << 

N) paths. The choice of the previous time slot is saved for the scheduling of the next time slot. 

 

Section IV will discuss the detailed process and analyze the stability of this load balancing algorithm. 

 

3. HOLMES ARCHITECTURE 
 
Fig. 1 shows the HOLEMS architecture in three layers: AI layer, control layer and infrastructure layer. 

The HOLMES AI layer contains a cognitive computing cluster to implement the software AI module. 

The AI module collects the DCN state information from the DCN monitors, and applies the machine 

learning algorithms to generate some analysis results, e.g. networking tendency predictions, network 

outlier locations, etc. These learning results generated by the AI module provide a more 

comprehensive view of DCN behaviors. They will be then used for network partition and flow 

scheduling operations. 

 

The HOLMES control layer is responsible for generating the network partition, congestion control and 

local balancing policies, based on the monitoring information as well as the learning results generated 

by the AI module. The policies generated in the SDN are decomposed into a series of finegrained 

partition and scheduling orders, which are transmitted to the DCN switches and end hosts for 

execution. Without deploying the HOLMES AI module, the functions provided by the control layer 

are the same as the traditional SDN controllers. 

 

The HOLMES infrastructure layer executes the specific network partition as well as the flow 

scheduling operations. It is responsible for storing, forwarding and processing data packets. The 

detailed operation orders are transmitted and configured on the DCN switches. The DCN switches 

first map each link to the high throughput network or the low latency subnetwork, according to the 

network partition policies. When the elephant and mouse flows arrive at a DCN switch, their packets 

are scheduled to the pre-partitioned paths separately. This process is managed by the HOLMES 

control layer. 

 
 

Fig. 1. HOLMES architecture: Based on the real-time monitor information, HOLMES AI module first 

analyzes the status or tendency of the DCN using machine learning models, and generates the learning 

results. Next, according to the analysis results, HOLMES control layer designs a network partition policy 

and a corresponding flow scheduling policy, and the policies are generated in the SDN controllers. Finally, 
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the network partition as well as the flow scheduling operations will be executed on the DCN switches or 

hosts, under the guidance of the SDN controllers. 

 

A. HOLMES Network Partition 
 
Both static and dynamic network partition mechanisms are enabled by HOLMES. When the scale of 

the DCN is small, HOLMES provides static network partition policies to DCN switches to avoid the 

frequent scale changes of the two subnetworks. It also makes the execution of the network partition 

policy more stable. On the other hand, when the scale of the DCN is large, HOLMES will deploy the 

dynamic network partition solution that dynamically adapts the scales of the two types of sub-

networks to the traffic load variants. Moreover, the dynamic network partition solution utilizes the 

network resources more efficiently, especially when the arriving rate of DC traffic is slow. 

 

Both static and dynamic network partition mechanisms have been studied [18]. One can either 

integrate these mechanisms in HOLMES or implement the appropriate network partition mechanism 

according to the scale of the DCN as well as the traffic patterns. 

 

Both static and dynamic network partition mechanisms are enabled by HOLMES. When the scale of 

the DCN is small, HOLMES provides static network partition policies to DCN switches to avoid the 

frequent scale changes of the two subnetworks. It also makes the execution of the network partition 

policy more stable. On the other hand, when the scale of the DCN is large, HOLMES will deploy the 

dynamic network partition solution that dynamically adapts the scales of the two types of sub-

networks to the traffic load variants. Moreover, the dynamic network partition solution utilizes the 

network resources more efficiently, especially when the arriving rate of DC traffic is slow. 

 

Both static and dynamic network partition mechanisms have been studied [18]. One can either 

integrate these mechanisms in HOLMES or implement the appropriate network partition mechanism 

according to the scale of the DCN as well as the traffic patterns. 

 

B. Application Scenarios for HOLMES Architecture 

 
Compared with the commonly used SDN architectures, a prominent feature of HOLMES is the 

implementation of the AI module and its machine learning algorithms. Machine learning methods 

have been widely used in network management and DC scheduling policy generation operations. 

Those continuing learning and analysis results provide a comprehensive understanding of network 

features and behaviors, which benefits the designing of the corresponding network partition and flow 

scheduling policies. Therefore, the deep analysis and accurate AI prediction provided by the AI 

module enable the HOLMES architecture to perform more complex and intelligent operations. 

 

One typical application scenario for HOLMES architecture is the deployment of application driven 

networks (ADN), where a physical network is sliced into logically isolated sub-networks to serve 

different types of applications. Each network slice in ADN can deploy its own architecture and 

corresponding protocols, to satisfy the requirements of the applications it serves. The key operations 

when implementing ADN are: (1) Constructing an application abstraction model to formulate the 

resource requirements of the applications; (2) mapping the distinct properties of applications to 

respective network resources. It is shown that the complexity and performance of these operations can 

be improved when some application features are pre-known [8]. Hence, the HOLMES AI module 

benefits the analysis of application features as well as the prediction of resource requirements, which 

further alleviate the complexity of application abstractions and mapping operations. Moreover, the 

design and implementation of network slicing mechanisms can also be realized by the cooperation of 

the control layer and the infrastructure layer. 
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Similarly, HOLMES architecture is also applicable for some other intelligent or complex application 

scenarios, which demand a deep understanding of network or application features such as Internet of 

Vehicles (IoV), coflow scheduling and some other network architecture based on network slicing or 

network partitions. With the immense proliferation of complex and diverse cloud-based applications, 

we expect such architecture to be the development trend in the future. 

 

C. Out-of-order vs. Efficiency 

 
While elephants contribute to the majority volume of DCN traffic, mice account for 80% of the 

number of instances. Outof-order scheduling done at host side may sacrifice efficiency. In addition, 

compatibility with legacy hardware has to be ensured. Therefore, one may still want to consider 

deploy conventional, sometimes oblivious, ECMP scheduling for inorder scheduling of mice. 

However, we expect such overhead to diminish, while hardware and system cost continues to drop. As 

a result, HOLMES is the way to go. 

 

4. HOLMES SCHEDULING ALGORITHMS 
 
Once the hybrid DC traffic is separated into different subnetworks, scheduling algorithms affect the 

performance of each sub-network. In this section, we discuss the aforementioned global congestion-

aware scheduling algorithm and prove the stability of its stochastic policy. 

 

A. Necessity of Deploying Stochastic Scheduling Algorithms  

 
Compared with the other state-aware flow scheduling algorithms, stochastic flow scheduling 

algorithms are more applicable for large-scale data centers according to the following reasons: 

 

1) Simplification of computing complexity 
 
One of the key factors that degrade the performance of the traditional ECMP mechanism is the lack of 

global congestion information. To overcome this limitation, a group of studies have designed new 

flow scheduling polices based on a global “macroscopic” view of the entire DCN, e.g. CONGA [10]. 

However, in large-scale and heavily loaded data centers, the global macroscopic load balancing 
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algorithms introduce unacceptable computing complexity to deal with the massive information, and 

the control loops in these scenarios are much slower than the duration of the majority of congestion 

incidents in data centers [13]. Therefore deploying the stochastic algorithms to achieve micro load 

balancing is a more viable solution. The micro load balancing solutions require only limited 

congestion information, which simplifies the computing complexity and enables instant reactions to 

load variations in large-scale data centers. 

 

2) Optimization of storage complexity 
 
In data centers, 8 and 16-way multipathing are common, while there is growing interest in 

multipathing as high as 32 or even 64. Specifically, with 40 servers in a rack, there will be 40 uplinks. 

Each flow can use a different subset of the 40 links, leading to 2
40

 possible subsets. Keeping the state 

of each path in this scenario requires unacceptable storage resources, which is difficult to be 

implemented. On the contrary, stochastic scheduling algorithms are effective to cope with the 

optimization of storage complexity, as well as the small number of register reads. Edsall et al [26] 

deploy the stochastic power of-two-choices hashing solution for balancing the loads of DC routers. 

The storage complexity of such a stochastic solution is logarithmically reduced. 

 

3) Better adaptability for heterogeneous DCNs 
 
A typical flow scheduling method in multi-rooted DCNs is equal traffic splitting based on hashing, as 

used in the traditional ECMP approach. However, the uniform hashing approach cannot achieve 

optimal load balance without the assumption of symmetric and fault-free topology [5, 10], which is 

not generally true in heterogeneous data centers. To provide better adaptability for heterogeneous 

DCNs, weighted traffic distribution methods have been widely adopted in the global macro load 

balancing solutions [11]. In order to correct the imbalance caused by the even distribution approach 

and enable fair resource allocation, the weighted approaches distribute the traffic among available 

paths in proportion to the available link capacity of each path. The global weighted traffic distribution 

solutions have shown good adaptability to dynamically changing network topologies. However, these 

solutions still need real-time state information collection of all the paths, which introduces additional 

computing and storage complexity. 

 

Stochastic flow scheduling algorithms can reduce the computing and storage overhead of weighted 

traffic distribution mechanisms, while maintaining the adaptability to heterogeneous DCN topologies. 

Consider the stochastic Power of-Two-Choices: The algorithm only needs to record the states of the 

two randomly chosen paths; therefore, the storage and computing complexity are dramatically 

reduced. Moreover, the algorithm compares the load conditions of these two chosen paths, select the 

better one, hence performs a weighted operation in another form. Stochastic load balancing solutions 

have also been proved to be applicable for heterogeneous DCNs [13, 26]. Based on these 

justifications, we extend stochastic flow scheduling algorithms to our HOLMES mechanism. 

 

B. Flow Scheduling Algorithm in HOLMES 

 
We consider a stochastic scheduling policy, (d, m) policy: The input port chooses d random end-to-

end paths out of all the possible paths. It finds the path with the minimum occupancy among all the d 

samples and m least loaded samples from the previous time slot. It then schedules the input packet to 

the selected end-to-end path. 

 

Increasing the value of d and m to >>2 and >>1 will degrade the performance, since the large number 

of random samples makes it more likely to cause the burst of packet arrivals on the same path [13]. As 
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a result, we set m=1 and d=2 in our scheduling model. The detailed flow scheduling procedure is 

shown in Alg. 1. 

 

Using global congestion information, the algorithm reacts rapidly to the link or node failures. 

Moreover, the limited information used in the algorithm improves the scheduling efficiency while 

avoids the traffic bursts on the same switch ports. 

 

C. Stability Analysis of HOLMES’s Scheduling Algorithm 
 
We prove the stability of this stochastic global congestion aware scheduling algorithm in a two-tier 

Clos DCN topology. We abstract an end-to-end path in a Clos network (Fig. 2A) as a serial queuing 

system consists of a series of queues (Fig. 2B). As a result, the whole Clos DCN topology is 

abstracted as a queuing network. We then evaluate the performance of a specific leaf-to-spine DCN 

path using a stochastic queuing network model. 

 

We focus on analyzing the stability of the scheduling process from when a packet arrives at a TOR 

switch to when the packet reaches the spine switch. The packet experiences two queuing processes, at 

the TOR and the aggregate switch port, respectively. The entire path from the TOR node to the spine 

node can also be modeled as a large queue. 

 

Based on the results of [56] and with a similar method shown in [57], we prove that HOLMES’s 

scheduling algorithm is stable for all uniform and nonuniform independent packet arrivals. Some key 

notations and definitions used in the scheduling model are illustrated in Table II. 

 

We prove that the global (1, 1) policy is stable for all admissible parallel arrival process. We construct 

a Lyapunov function L as follows: 

 
To prove the algorithm is stable, we show that there is a negative expected single-step drift in the 

Lyapnuov function, i.e., 

 
 

We divide the Lyapunov function into two sub functions as: 

 
Based on the above formulation, we prove that there exists a negative expected single-step drift in the 

Lyapnuov function in each possible case. Therefore, the global (1, 1) policy is stable. Based on the (d, 

m) policy, the HOLMES’s scheduling algorithm is also stable. (Details of the proof is omitted due to 

page limit; however, we will post it after publication.) 

 

5. HOLMES PERFORMANCE EVALUATION 
 
We evaluate HOLMES using simulation based on OMNET++. We construct a test-bed simulation 

platform to simulate the data transmission process in symmetric and asymmetric fat-tree DCNs. 

Similar to [10], a heavy-tailed distribution is used to generate DC flow of different sizes. The hosts of 

the DCN run TCP applications. The flow request rate of each TCP connection satisfies Poisson 

process. 
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By comparing the performance of the same DCN under different load balancing mechanisms, we 

validate HOLMES and analyze the influence of the network partition solution and end-to-end 

scheduling schemes on DCN performance. Moreover, we evaluate the adaptability of HOLMES’s 

load balancing algorithm for heterogeneous architectures and discuss some technical issues in the 

hardware implementation of HOLMES. 

 

A. Evaluation of HOLMES Network Partition 
 
We evaluate the network partition policy of HOLMES in a scenario that hybrid elephant and mouse 

flows are scheduled in a same DCN with different scheduling schemes. The DCN topology deployed 

in this experiment is a Clos network with 2 and 4 leaf and spine switches respectively. We generate 

elephant and mouse flows to leaf switches with average sizes of 100KB and 1KB, respectively. The 

queue lengths of the switch ports are used as performance indicators. 

 

Since the scale of the DCN in the simulation is not very large, HOLMES deploys the static policy that 

partitions the two sub-networks in advance. The buffer sizes of all the switch ports are set to be the 

same. When the buffer of a switch port is full, all the upcoming input packets to that port will be 

dropped. We compare HOLMES against two start-of-the-art unified load balancing schemes: CONGA 

[10] and queue length gradient based scheduling. Similar to the delay gradient based congestion 

control policy used in [16], we deploy the queue length gradient as the indicator and schedule the 

arrived packet to the port with the minimum length gradient. 

 

Figs. 3A-3C show the queue length variation of the four ports of a spine switch under the three 

scheduling schemes. The Xaxis indicates the time period and the Y-axis denotes the queue length. We 

can see from Fig. 3A that using CONGA, the buffers of all the four ports are full after a period of 

time, indicating the throughput of the switch has been maximized, which benefits the transmission of 

the elephant flows. However, when a mouse flow arrives, all the packets in that flow have to wait for a 

long queuing time since all the output port are of heavy loads. Consequently, the latency of the mouse 

flow will increase and degrade the overall performance of the hybrid DC flows. 

 
Similarly, as shown in Fig. 3B, the buffers of the four output ports are also almost full after a period of 

time using the length gradient based policy. The results indicate that the length gradient based load 

balancing policy still suffers from the interference between the elephant flows and the mouse flows. 

 

Comparing Fig. 3A and Fig. 3B, we find that the load balancing condition of the gradient based 

scheme is a little worse than CONGA. The reason is that the gradient based scheme schedules the DC 

flows according to the changing trend but not the current state of the DCN. Finally, Fig. 3C shows that 

HOLMES has successfully isolated the elephant and mouse flows. Two of the ports have been 

partitioned to the low latency sub-network and used for transmitting the mouse flows. Fig. 3C shows 

that the buffers of the two ports are almost empty during the entire transmission procedure. Thus, 

packets in the mouse flows do not need to wait for additional queuing delays, and the low latency of 

the mouse flow is ensured. Moreover, the buffers of the other high throughput ports are also full filled, 

which satisfies the throughput requirements of elephant flows. Hence, by isolating the mixed traffic, 

HOLMES network partition policy successfully eliminated the interference of the elephant flows to 

the mouse flows. 

 

The main shortcoming of the network partition solution is the inefficient use of network resources. 

Although the isolation of the hybrid traffic avoids the interactions of the elephant and mouse flows, 

the spared network resource in the low latency paths has not been fully used since the buffers of these 

paths are almost empty. An effective solution is to improve the buffer allocation by limiting the buffer 
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size of the low latency sub-network and assigning the spared buffers to the high throughput sub-

network. 

 
Fig. 2. Abstraction of a leaf-to-spine path in a Clos network (A) to a serial queuing system (B) 

 

Table 2. Summary of Key Notations and Definitions in Scheduling Model 

 

 
 

B. Stability Validation of HOLMES Scheduling Algorithm 

 
We evaluate the stability of HOLMES flow scheduling algorithm. We simulate the scenario that DC 

traffic are scheduled in a DC with asymmetric network topology. We combine two different sized 

Clos networks, and construct an asymmetric DCN architecture. One of the Clos network consists of 2 

leaf switches and 4 spine switches. The other is a Clos network with 5 and 4 leaf and spine switches, 
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respectively. 10 hosts are attached to each leaf switch. We concentrate on validating the stability of 

HOLMES flow scheduling algorithm, rather than the network partition mechanism in this scenario. 

Thus, we do not deploy the HOLMES network partition mechanism in the experiment and only 

execute the HOLMES flow scheduling algorithm. 

 

 
Fig. 3. Queue length changing trends of a DCN spine node’s ports under policies CONGA (A), length 

gradient based policy (B) and HOLMES (C) 

 

CONGA [10] and DRILL [13] are two load balancing solutions proven to be stable. Therefore, we 

compare them against HOLMES. All DC traffic is scheduled with the granularity of packet, and we 

focus on analyzing the stability of the three scheduling algorithms. When using the Power of Two 

Choices selections, we uniformly set d=2 and m=1. Similarly to the previous experiments, we deploy 

queue length as the load balance indicator to evaluate the overall load balancing condition of the 

DCN. 

 

Figs. 4A-4C show the queue length changing trend of a specific leaf switch’s ports, under load 

balancing policies CONGA, DRILL and HOLMES. We can see from Fig. 4A that the queue length 

changing trends of all the ports in a leaf switch are almost overlapped under CONGA, indicating that 

the queue lengths of all the switch ports are almost the same at each time unit. Therefore, the load 

balancing condition under CONGA is optimal among all the three mechanisms, since CONGA makes 

each scheduling decision based on the global congestion information. Without considering the time 

used for obtaining congestion information, CONGA obtains the global optimal load balancing result. 

 

 



Computer Science & Information Technology (CS & IT)                                     13 

 

 
 

Fig. 4. Queue length changing trends of a DCN leaf node’s ports under load balancing policies CONGA 

(A), DRILL (B) and HOLMES (C) 

 
Fig. 4B shows the queue length changing trends of the same leaf switch ports under DRILL. Different 

with the former results, we find fluctuations in the queue length changing curve. In other words, the 

length difference of the longest queue and the shortest queue is clear. The reason is that the use of (d, 

m) policy in DRILL reduces the scale of the solution space, and the local optimal solutions affect the 

load balancing condition of the DCN. 

 

Fig. 4C shows the queue length changing trends of the same leaf switch ports under HOLMES 

scheduling algorithm. The fluctuations also exist in the curve of Fig. 4C, where the amplitude of the 

fluctuation is more obvious. This phenomenon is also caused by the use of (d, m) policy. Compared 

with DRILL, the global (d, m) policy used in HOLMES further limits the solution space, and 

exacerbates the fluctuations. However, although the fluctuations are more obvious when executing 

HOLMES flow scheduling algorithm, we can also find an upper bound (about 10 packets) of the 

fluctuation amplitude, indicating that the length difference of the shortest and the longest queue is not 

infinite in HOLMES. Hence, our HOLMES flow scheduling algorithm is stable during the whole 

scheduling period. Moreover, limiting the solution exploration space reduces the time used to obtain 

the congestion information and make HOLMES more efficient and applicable for large-scale data 

centers. 

 

C. Adaptability for Heterogeneous 

 
As discussed earlier, both the stochastic flow scheduling algorithm and the weighted traffic splitting 

solutions show good adaptability of heterogeneous congestion states. We now evaluate the 

adaptability of the two solutions. 
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We first theoretically compare the approximate adaptability of the two solutions. Consider a simple 

leaf-spine DCN topology with N paths available between two racks. The loads of the N paths (number 

of packets accumulated in the buffers) are unevenly distributed. We compare the adaptability of the 

two mechanisms under the linear distribution of path loads. 

 

For analytical tractability, we assume that the amounts of packets accumulated in the buffer of each 

path are: 0, 1, 2…, N-1 and the buffer size of each path is also set to N. Next, we calculate the 

probabilities that one arrived packet is scheduled to the least loaded path under the (2, 1) policy as 

well as the weighted traffic splitting policy. 

 

The probability P1 that a packet is scheduled to the least loaded path under the (d, m) policy (d =2, m 

=1) can be calculated as: 

 
When deploying the weighted traffic splitting solution, the probability that one packet is assigned to a 

specific path is proportion to the available capacity of that path. Then, the probability that the packet 

chooses the least loaded path is: 

 
 
When the DCN scale is huge, the value of N is large enough, and then the value of P1 and P2 are 

almost equal. Thus, the adaptability of the (2, 1) policy and the weighted traffic splitting policy for 

heterogeneous are almost the same when the path loads satisfy linear distributions. However, 

compared with the weighted solution that maintains the load status of all the N paths, the storage 

complexity is dramatically reduced when using the stochastic flow scheduling mechanisms. 

 

Next, we consider another scenario that the load distribution of the DCN paths shows stronger 

heterogeneity. Suppose the path loads satisfy exponential distribution and the amounts of spared 

buffers in N paths are: 

 
 

Using the weighted traffic splitting policy, the probability that a packet chooses the least loaded path 

is: 

 
 
On the other hand, when deploying the (d, m) policy, the probability becomes: 

 

 
 
Therefore, when the load conditions of the DC paths are heavily heterogeneous, the (d, m) policy also 

needs to maintain plenty of load status information to keep its adaptability as good as the weighted 
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traffic splitting solutions. The stochastic scheduling mechanism does not show obvious advantages in 

this scenario. 

 

The evaluations of the two approaches have also been made by some other researchers. Key et al [96] 

propose a coordinated solution that periodically samples again for new paths via random selection of 

stepping stone routers at the higher level, shifts the traffic load to the paths with the lowest loss rates 

(or lowest ECN rates, largest delays), then equates the marginal utility of its aggregate data rate to the 

loss rate on these “best” paths at the lower level. This approach can be considered as an improvement 

of the traditional weighted traffic splitting solutions, since it considers the real-time changes of the 

load states. Moreover, Key et al show that the approach outperforms the Power of Two Choices 

policy, and does almost as well as if each user saw the global list of the resources. 

 

We simulate the execution process of the coordinate approach as well as the Power-of-Two-Choices 

algorithm on a same switch. Fig. 5 shows the changing trend of the overall switch load as the 

modeling factor (d) increases. 

 

The load distribution of the switch ports is initialized exponentially in this experiment. We see from 

Fig. 6 that, as the value of d increases, the load condition of the switch is improved under the power of 

two choices policy ((d, m) policy); since a larger value of d increases the probability of choosing the 

lightest loaded output port. As we increase the value of d from 2 to 5, the power of two choices policy 

performs almost as well as the theoretical load optimal policy (d = 10), which validates our previous 

modeling results. On the contrary, when using the coordinated approach, the switch attains optimal 

performance when the value of d is small (d = 2) and the load state of the switch is almost as good as 

the theoretical load optimal policy. This simulation result is in accordance with the analysis in the 

literature. However, as the value of d increases, the load state of the switch becomes worse: when 

assigning d = 10, the load balancing condition of the switch under the coordinated policy is even 

worse than the (2, 1) policy. 

 

Although the stochastic flow scheduling outperforms the weighted traffic splitting solution in most 

cases, it still has some limitations. The weighted traffic splitting solution maintains the load status of 

all the paths. It dynamically adjusts the value of each weight according to the current load status of 

each path (the static weight configuration has proven to be not applicable in [10]). However, when 

deploying the (d, m) policy, the value of d and m are constant after the initializations. Thus, when the 

values are not appropriately assigned, (d, m) policy will not perform as well as the weighted traffic 

splitting solutions. Hence, the HOLMES AI module is responsible for analyzing the overall 

heterogeneity degree of a DCN, and guiding the flow scheduling algorithm to set appropriate values of 

the algorithm factors (d and m). The detailed design and implementation of the HOLMES AI module 

is our future work. 

 
Fig. 5. Changing trend of a switch’s overall traffic load under different policies 
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D. Technical Challenges in Hardware Implementations 
 
Some technical challenges need to be considered to implement HOLMES in real-world data centers. 

We now summarize these challenges in hardware implementations. 

 

1) Handling the packet reordering 
 
The flow scheduling algorithm in HOLMES can be implemented with different data granularities: per 

packet scheduling, per flow scheduling or some intermediate data sizes, e.g. flowcell [24], flowlet 

[10], etc. When using the TCP transmission protocol and implementing the per packet (or flowcell) 

scheduling, some studies have shown that this finegrained traffic splitting techniques cause packet 

reordering and lead to severe TCP throughput degradations [23]. Therefore, the packet reordering 

problem needs to be considered when implementing the fine-grained HOLMES traffic scheduling 

algorithm. A viable solution is to deploy the JUGGLER network stack in data center traffic 

transmissions. JUGGLER exploits the small packet delays in datacenter networks and the inherent 

traffic bursts to eliminate the negative effects of packet reordering while keeping state for only a small 

number of flows at any given time. This practical reordering network stack is lightweight and can 

handle the packet reordering efficiently. 

 
 

Fig. 6. Overview of HOLMES forwarding and state tables: A new flow table entry is set up by applying the 

(2, 1) policy in the state table. The period timer of each table is triggered every time period T1 and T2 to 

age out inactive flows and update the load status of each candidate end-to-end path. 

 

2) Design of DCN forwarding and state tables 
 
The design of the forwarding and state tables is also a noteworthy challenge. An appropriate approach 

should cope with the small time budget as well as the small register usage. We now propose a viable 

design to implement the per-flow scheduling algorithms of HOLMES 

 

As shown in Fig. 6, a TOR switch maintains a flow table anda state table. The two tables work 

together to execute the load  mbalancing policy attained from the SDN controller. Specifically,when a 

packet arrives, its flowID is hashed to map the packet to a flow table entry. If the table entry is valid, 

the packet is dispatched to the path indicated by the stored hash applied to the packet’s flow ID. On 
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the contrary, if the packet’s flowID is not maintained in the flow table, the TOR switch will look up 

the destination TOR ID in the state table. After that, the (d, m) policy is applied to compare the load 

states of the three candidate end-to-end paths to the destination TOR (r1_metric, r2 metric and 

r3_metric), and assign the packet to the optimal path. Two of the three end-to-end paths are randomly 

selected. The third one is the optimal path from the last selection. Finally, the flow ID and the hash of 

the chosen path will be inserted into the flow table. 

 

The information of each table needs to be updated periodically to keep the real-time status of the 

traffic and paths. Thus, we associate an aging bit with each table entry. The aging bit of the flow table 

is responsible for marking inactive or idle flows: when a packet’s flow ID maps the information in the 

forwarding table, the aging bit is cleared to indicate that the flow entry is active. A timer process visits 

every table entry every aging timeout T1. When the timer process visits a table entry, it either turns on 

the aging bit or invalidates the entry if the aging bit is already on. In other words, T1 is the timeout 

threshold to age out inactive flows, which is proportional to the size of the scheduling unit e.g. per-

flow, per-flowcell, etc. If the packet’s flow ID is not maintained in the flow table, the TOR switch will 

execute the (d, m) policy on the state table. Thus, T1 can also be considered as the time period to 

trigger the execution of the HOLMES scheduling algorithm. On the other hand, another timer process 

runs together with the aging bit of the state table to update the load status of each candidate end-to-end 

path. The timeout threshold to age out the old status information in the state table is set to T2. To 

ensure that the latest load state information is used when executing the (d, m) policy, the value of T1 

and T2 should satisfy: T1 ≥ T2. Moreover, in most cases, the global congestion control signals 

deployed in the flow scheduling algorithms are the feedback signals from the receivers of the end-to-

end paths. Thus, we further get: T1 ≥ T2 ≥ RTT. Key et al have suggested that the policy that 

periodically sampling a random path and retaining the best paths may perform well.  

 

The periodically sampling of path congestion states in the state table makes the real-time collection of 

status information becomes a technical challenge. The state collection operations should not introduce 

obvious transmission overheads and performance penalties. Especially in the TCP incast scenarios 

where multiple source nodes transmit traffic at the same time to a common destination node, the state 

collection operations introduce additional traffic and are prone to cause DCN throughput collapse. A 

viable solution for collecting the real-time congestion status is deploying RepSYN as the signal to 

detect the load conditions of the multiple paths, as shown in [33]: before transmitting data among 

multi-rooted paths, multiple TCP connections are established; however, traffic is only transmitted 

using the first established connection and the other connections are ended immediately. The delay 

experienced by an SYN reflects the latest congestion condition of the corresponding path, and thus the 

congestion states can be collected. Moreover, this solution only replicates SYN packets to probe the 

network, which does not aggravate the TCP incast in a DCN. 

 

The state table only needs to periodically maintain the congestion states of two randomly chosen paths 

and the congestion-optimal path in the latest time unit. Compared with some other congestion-aware 

solutions e.g., CONGA [10], RepFlow [32], the storage complexity has been dramatically optimized. 

In order to make the scheduling results of the (d, m) policy more effective, we choose the disjoint end-

to-end paths (paths with different intermediate aggregate or spine switches) to avoid the scenario that 

the same local congestions is shared by multiple end-to-end paths. This implementation is applicable 

for more complex multi-tier Leaf-Spine topologies or asymmetric DCN topologies. 

 

3) Dealing with the stale information 
 
When implementing HOLMES scheduling algorithm with packet granularity, the transmission latency 

of a packet is so small that the information refresh rate in the state table cannot catch up with. 

Correspondingly, the load balancing algorithm has to use the stale information to make the scheduling 
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decisions. Mitzenmacher et al have pointed out that the delayed information leads to a herd behavior 

of the scheduling results: data will herd toward a previously light loaded path for much longer time 

than it takes to fulfill the path. Thus, another technical challenge is to deal with the stale information 

used in the load balancing algorithms. 

 

To further discuss the effects of the stale information on the execution results of different scheduling 

policies, we design another experiment that evaluates the load balancing status of a same TOR switch 

under different state table timers. We simulate a scenario that traffic arrives at a TOR switch with a 

fixed rate (1 packet/time unit). The TOR switch contains 10 output ports with fixed data transmission 

rate (1 packet/ 8 time units). Two different timers are deployed to periodically update the information 

of the TOR state table (state information is updated every 5 or 20 time units respectively). We focus 

on evaluating the load balancing status of the same TOR switch under three different flow scheduling 

approaches in this experiment: (2, 1) policy, (5, 1) policy, as well as the deterministic policy (d =N=10 

in the definition of the (d, m) policy). 

 

Figs. 7A, 7C and 7E show the changing trend of the TOR load balancing states under the deterministic 

policy, (2, 1) policy and (5, 1) policy respectively, when the state table is updated every 5 time units. 

As comparisons, Fig. 7B, 7D and 7F show the performance of the three policies with the state table 

updated every 20 time units. We analyze the effects of the stale information age to different 

scheduling policies. 

 

Figs. 7A and 7B show the execution results of the deterministic scheduling policy when the refresh 

period of the state table is set to 5 or 20 time units respectively. We find from the two figures that, 

although the deterministic policy provides optimal performance using the perfect run-time state 

information, it suffers from the effects of the stale information seriously. We see from Fig. 7A that 

even if the update period is set short (5 time units), the load states of the TOR ports show obvious herd 

phenomena: traffic will herd toward a previously light loaded port first; the next refresh of the state 

table will put the port high up the load list and the port will become light loaded again; then the path 

will be heavy loaded again after several time periods as the next herd sees that it is light loaded. From 

Fig. 7A we see that each TOR port’s load condition shows obvious periodically changing trend (heavy 

loaded, light loaded, heavy loaded, and so on), and this herd phenomenon is more obvious as the age 

of the stale state information increases. As shown in Fig. 7B, the amplitude of the fluctuation of each 

port’s load curve is impressively obvious compared with Fig. 7A: the maximum load of a port has 

increased from 5 packets to more than 15 packets. Compared with the other two approaches (shown in 

Fig. 7D and 7F), the load balancing condition under the deterministic policy becomes the worst as the 

age of the stale information increases. Thus, adaptability of the deterministic policy to the stale 

information is poor. 

 

Theoretically, the load balancing condition of the TOR switch under (5, 1) policy is in second place 

among all the three approaches, when deploying the perfect run-time state information. Clearly, 

deploying a larger value of d in the (d, m) policy increases the probability of choosing the light loaded 

output port. However, compare Fig. 7E with Fig. 7C, we find that the TOR’s load balancing condition 

under (5, 1) policy (shown in Fig. 7E) does not outperforms the (2, 1) policy (shown in Fig. 7C) when 

using the short aged stale information. Moreover, compared with Fig.7D and 7F, we find that as the 

age of the stale information increases, (2, 1) policy gradually outperforms (5, 1) policy. The 

experimental results reflect an issue that compared with the probability of choosing the optimal path, 

the adaptability for herd behavior becomes the dominant factor for performance optimization. 

 

Comparing Fig. 7C with 7D, we see that increasing the age of the stale information does not affect the 

execution results of (2, 1) policy: the maximum load of a TOR port is still maintained less than 5 

packets when the information update period increases from 5 time units to 20 time units. Comparing 
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Figs. 7B, 7D and 7F, we also find that (2, 1) policy performs best among all the three approaches 

when using the long aged stale information. The experimental results indicate that (2, 1) policy 

provides optimal adaptability for HOLMES with the stale information, especially when the age of the 

information is large. The main reason is that (2, 1) policy combines the advantages of both worlds: It 

deploys real load information to schedule traffic, yet rejects the herd behavior much more strongly 

than the other two approaches. 

 

Besides adjusting the value of modeling factors, e.g. d, m, another applicable solution is to deploy the 

machine learning methods to predict the current load state based on the historical stale information. 

Fox et al [95] deploy queue length as the metric for load balancing and notice rapid oscillations in 

queue lengths, caused by the stale information. To overcome this limitation, they further change the 

manager stub to keep a running estimate of the change in queue lengths between successive reports 

and show that these estimations are sufficient to eliminate the oscillations. Dahlin [98] also estimates 

the job arrival rates and the age of the stale information, and proposes corresponding algorithms to 

balance the traffic load in a distributed system. Similar approaches can also be deployed in HOLMES, 

which estimate the current load states of different paths by analyzing the successive historical state 

information. This function will be realized in the HOLMES AI module, and will be another one of our 

future works. 

 

Overall, the simulation experimental results validate the modeling results in Section IV. They show 

that HOLMES load balancing algorithm is stable and adaptable in heterogeneous DCNs. 

 

6. CONCLUSION 
 
This paper presents HOLMES, a novel DCN flow scheduling scheme, which tackles mixed (mice vs. 

elephants) data center traffic. Using a stochastic performance model, we first prove the necessity of 

isolating mice and elephants with a closed form. We then present the HOLMES architecture that 

partitions a DCN into high-throughput and low-latency sub-networks. We further design a stochastic 

and global congestion-aware load balancing algorithm that schedules the corresponding DC traffic to 

each sub-network. Simulation results show that HOLMES network partition policy can successfully 

eliminate the interference between the mouse and elephant data flows. Finally, we prove that 

HOLMES flow scheduling algorithm is stable and scalable for large-scale data centers. 
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Fig. 7. Load states changing trend of 10 TOR ports under deterministic policy (A, B), (2, 1) policy (C, D) 

and (5, 1) policy (E, F) with different state table timer (T2=5, T2=20) respectively. The 10 ports are located 

on the same TOR switch. 


