

Natarajan Meghanathan et al. (Eds) : SOFE, ADCOM, ITCSS - 2018

pp. 17–23, 2018. © CS & IT-CSCP 2018 DOI : 10.5121/csit.2018.81302

USING CONCEPT ALGEBRA FOR MAPPING

SOFTWARE PRACTICES TO ESSENCE

FRAMEWORK

Murat Pasa Uysal

Department of Management Information Systems,

Baskent University, Ankara, Turkey

ABSTRACT

As a relatively new framework suggested for core problems of software development, one

important issue for Essence Framework (EF) is mapping software development practices to the

EF’s conceptual domain. There are several works describing systematic procedures, however, a

review of literature cannot suggest a study using formal method(s). In this paper, a software

practice mapping method is proposed, which adopts and employs Concept Algebra principles in

a Scrum case. The results are promising, however, more empirical evidences are needed to

support the solution.

KEYWORDS

Software Engineering Practice, Essence Framework, Concept Algebra

1. INTRODUCTION

The Essence Framework (EF) is proposed for addressing the core problems of software

development (SD) and its application [1]. Existence of plenty of development methods, which

are: (a) hard to compare, (b) lacking of sound experimental method evaluations and/or

validations; and (c) the increase of gap between practical application and academic research

would be some of these problems. EF Kernel and Language Specification describes its key

features and how it supports practitioners and method engineers. A set of elements for forming a

common ground and describing a software engineering (SE) endeavour is defined as the kernel.

Therefore, EF allows “people to describe the essentials of their existing and future methods and

practices so that they can be compared, evaluated, tailored and re-used by practitioners as well as

academics and researchers [2]”.

By applying the principle of separation of concerns, and separating the "what" of SD from the

"how”, EF provides a common base and enables method building with the composition of various

practices. Thus, a practice is defined as “a repeatable approach to doing something with a specific

objective in mind [2]”. It includes the necessary elements that exist in every software endeavour,

such as, team work, requirements analysis/specification, development, test etc. Therefore, a

method is built by the composition of a set of practices and using Kernel specifications.

EF includes a layered architecture with three discrete areas of concern. Each focuses on core and

specific aspects of SE practices: (a) Customer, (b) Solution, and (c) Endeavour areas as depicted

by Figure 1. In fact, the much of focus is given on the SD and practice use for compositing SD

methods. The Alpha(s) of EF and the agile approach adopted enable capturing the key SE

18 Computer Science & Information Technology (CS & IT)

concepts. On this common ground, they allow monitoring the health and progress of SE

endeavours and their associated artefacts. One of the key features of EF is that it allows a project

team to assemble the methods according to their needs and experiences by the composition of

various practices. However, an important issue has been how to map a SE practice to EF

knowledge domain.

Figure 1. Essence Framework [1].

There are several works describing or proposing systematic translation of SE practices to EF-

based descriptions. Essence Specification Document [2] includes several practice definitions,

however, it has only a limited number and it is mainly for descriptive purposes. Park et al. base

their mapping procedures on activity spaces, and thus, they propose an activity-state mapping

algorithm, and present it in an Essence-powered Scrum practice [3]. Both Park [4] and Giray et al.

[5] proposes an ontology-based systematic method for mapping SD to the EF. It is also explained

how method engineering can help resolve some of the mapping issues [5]. In another study,

Genetic Algorithms are introduced to generate candidate Essence Kernel replacements based on

empirical data rather than human experience and judgement [6]. However, a review of literature

on EF cannot suggest a formal method that guides mapping a SE practice to Essence-based

definitions [7].

In this study, therefore, we propose a formal method for mapping SE practices to EF based on

Concept Algebra definitions [8]. The next parts include theoretical foundations, sample case and

conclusion sections of the paper respectively.

2. THEORETICAL FOUNDATIONS

2.1. Concept Algebra

Modelling is a kind of knowledge representation, and thus, conceptual mapping and semantic

evaluations usually require formal methods. Since mapping the SD concepts of any SE practices

to the EF concepts cannot be straightforward, thus, core concepts from Essence are initially

extracted, and then, the mapping is conducted based on the formal definitions of Concept Algebra

(CA) [8]. This algebra is “an abstract mathematical structure for the formal treatment of concepts

and their algebraic relations, operations, and associative rules for composing complex concepts

Computer Science & Information Technology (CS & IT) 19

[8]”. It mainly provides denotational mathematics principles for algebraic manipulations of

concepts.

A concept is defined as “a cognitive unit to identify and/or model a real-world concrete entity or a

perceived-world abstract subject [8]”. Accordingly, a concept connotes attributes or properties,

and it denotes members or instances. Compositional and relational operations are the two main

operations of CA. Thus, problems of various knowledge domains, such as, software and system

engineering, can be identified, manipulated and modelled by using CA operations. In this study,

the relational operations are used for comparing and mapping the corresponding abstract concepts

of a SE practice to the semantic context of EF (Θ).

Given that Θ is a semantic context, the main conceptual definitions are as follows:

Θ = (O, A, R) (1)

Where, the symbol O denotes a finite/infinite nonempty set of objects, A is a finite/infinite

nonempty set of attributes, and R is a set of relations between O and A. The general structured

model of an abstract concept is illustrated in Figure 2.

Figure 2. The structured model for an abstract concept [7]

An abstract Essence concept is regarded as the composition of different elements. Thus, an EF

concept, with its attributes and objects, internal and external relations, can be defined as follows:

CEF = (OEF, AEF, REF
c, REF

i, REF
o) (2)

Where,

• CEF is a concept in Essence,

• OEF is a non-empty set of objects extended from this Essence concept,

OEF = {o1, o2, …, om},

• AEF is a non-empty set of attributes of EF objects, AEF = {a1, a2, …, an},

• REF
c
= OEF × AEF is a set of internal relations of the Essence concept,

• REF
i
 ⊆ C′ × CEF is a set of input relations of the Essence concept and where C′ is a set of

external concepts,

• REF
o
⊆ CEF × C′ is a set of output relations.

A corresponding abstract SE Practice (SEP) concept, CSEP, can be defined by adopting the same

approach:

CSEP = (OSEP, ASEP, RSEP
c
, RSEP

i
, RSEP

o
) (3)

20 Computer Science & Information Technology (CS & IT)

The relational operations in CA are defined as “related”, “independent”, “sub-concept”, “super-

concept”, “equivalent”, “consistent”, “comparison”, and “definition”; and they are represented by

the symbols respectively. Thus, the relationships between two concepts in

the knowledge domains of EF and SEP are determined by the relations of their set of attributes A

and the set of objects O. As being a dynamic mathematical structure, it is important to note that

an abstract concept can adapt and interrelate itself to other concepts via input relations R
i
 and

output relations Ro. In this study, these are RSEP
i-RSEP

o and REF
i-REF

o respectively.

2.2. Definitions

Take the concept c1 from EF Θ and the concept c2 from a SEP Θ. Suppose that they have the sets

of attributes (A1, A2) and the sets of objects (O1, O2). The following definitions are used when

finding the similarity of two concepts in SEP and EF:

Definition 1: See whether the related concepts c1 and c2 share some common attributes in A1 and

A2, which are denoted by:

c1 c2 ⇒ A1, ∩ A2 ≠ ∅ (4)

Definition 2: Compare c1 and c2 and determine their equivalency or similarity levels as below:

Where # means the cardinal operator giving the number of elements in a given set, and thus, 0%

means no similarity whereas 100% means a full similarity.

Definition 3: Assume the equivalent concepts as follows:

c1 = c2 ⇒ (A1 = A2) ∧ (O1 = O2) (6)

Which means that these two concepts have similar attributes (A1 = A2) and their instances are

identical (O1 = O2).

3. SAMPLE CASE

One of the well-known practices is the illustration of how Scrum [10, 11] can be modelled in the

Essence Kernel and Language Specification [2]. In this document, “Product Backlog” concept of

Scrum is associated with the “Requirements” alpha concept of EF without specifying conceptual

details. Note that a comprehensive comparison of concepts exists in Scrum, and mapping them to

EF is beyond the scope of this paper. However, it is thought that even in a simple and clear case,

such as “Requirements” and “Product Backlog”, it is possible to miss or neglect some important

conceptual details. Therefore, the below section shows how the formal mapping is applied:

• The theoretical background of mapping is based on Concept Algebra principles and

definitions.

• A content analysis for the EF specification document and resources related to Scrum

Practice [2, 7, 8, 9] is conducted.

• An attribute comparison list is created, which includes two sets of core attributes for the

“Requirements” concept and “Product Backlog” concept (Table 1).

Computer Science & Information Technology (CS & IT) 21

• Note that a concept in linguistics is assumed as a noun or noun-phrase, which serves as

the subject of a to-be statement [8]. By using a Linguistic Typological Analysis (LTA)

(assuming that a simple sentence is made of “subject”, “predicate” and “object” parts), an

initial similarity level is determined on a scale ranging from 0 to 3.

• “0” level indicates no-typological similarity where none of the parts of two attributes is

similar. “1” indicates that one similar part exists. “2” means that two of linguistic parts

are similar. Finally, 3 points out a full linguistic similarity where both of the sentences

have similar “subject”, “predicate” and “object” parts. Note that the level 2 or 3 is

regarded as satisfactory for EF mapping procedures in this study.

• By using the definition (4), AEF, ∩ ASEP ≠ ∅, we find that two concepts share some

common attributes (a3-b3; a4-b4; a6-b6). LTA also shows that these three attributes have a

linguistic similarity level at 2 (Table 1)

Table 1. Requirements and Product Backlog Attribute Sets

Set of attributes for

“Requirements” concept of EF

Set of attributes for “Product

Backlog” concept of Scrum
Linguistic

similarity level

(0 to 3) AEF = {a1, a2, …, an} ASEP = {b1, b2, …, bn}

a1 = are the definition of what needs

to be achieved

b1 = is a prioritized list of desired

product functionality
1

a2= must address opportunity and

satisfy stakeholders

b2 = is required to meet the product

owner’s vision
1

a3 = mechanisms for managing

/accepting requirements need to be

established

b3 = product owner is responsible for

determining and managing requirements 2

a4 = progress through six states:

conceived, bounded, coherent,

acceptable, addressed, fulfilled

b4 = the definition of ready and the

definition of done are two major states of

product backlog items (PBIs)

2

a5 = must be bounded as a whole and

stay within the bounds of original

concept

b5 = provides shared understanding of (a)

what to build and (b) the order of what to

build.

1

a6 = continue to evolve as more is

learned.

b6 = Grooming is important and it refers

to creating, refining, estimating and

prioritizing PBIs continually.

2

• By using the definition (5):

The conceptual similarity level is consequently found as

This finding indicates a result, which may be regarded as different from the specifications or

Essence-based Scrum practice definitions mentioned in the Essence Literature. Such that the

“Requirements” and “Product Backlog” concepts are not conceptually equal as it is claimed or

specified.

22 Computer Science & Information Technology (CS & IT)

At first glance, the most of experts on both Scrum and EF may not object to association of

“Requirements” and “Product Backlog”. However, the result is substantially different in our

sample case. It is thought that the primary reason would be the human experience and informal

judgement, which is usually adopted in mapping procedures in the literature. For example, in [4]

and [5], an ontology of terms, commitments and metamodeling techniques guide the mapping

processes. However, their classifications of SE practice terms into a list of corresponding EF

concepts, such as, work products, activities, roles, which again employ subjective expert

judgements. In another study proposing an algorithm [4], the assignment of SE practice activities

to EF activity spaces, specifying their alpha states and checklists are also dependent on personal

experience and subjective expert evaluations.

Concepts are important for carrying certain meanings in thinking, reasoning and system

modelling [8]. By using CA, SE practices and EF can be modelled as dynamic and abstract

mathematical structures that encapsulate objects as well as their attributes and relations. This

study shows that CA can provide the formal and generic knowledge manipulation means required

for complex software and knowledge structures.

4. CONCLUSIONS

As a relatively new framework proposed for the core problems of SE methods, one important

issue for EF has been the mapping a SE practice to the EF’s conceptual domain. Thus, the main

argument of this paper is that formal methods can provide more accurate transformations as well

as they can enable application of more systematic mapping procedures. In this study, therefore, a

formal method based on CA definitions is proposed as a solution. This is applied in a simple

Scrum case and the results interestingly differ from the ones exist in the EF literature. However,

the research limitations confine us within presenting only theoretical foundations, a generic case

and initial observations. More empirical evidences are also needed to support the proposed

method. Therefore, the paper concludes with an invitation to future studies aiming to address

these research limitations.

REFERENCES

[1] Park S., Jacobson I., Myburgh B., Johnson P. and McMahon P.E. 2014. SEMAT yesterday, today and

tomorrow, SEMAT, retrieved from http://semat.org.

[2] OMG 2016. SMSC/15-12-02 Essence–Kernel and Language for Software Engineering Methods,

Specification v.1.1.

[3] Park J.S., McMahon P.E. and Myburgh B. 2016. Scrum powered by Essence. ACM SIGSOFT

Software Engineering Notes. 1-8, 41(1).

[4] Park J.S. 2015. Essence- Powered Scrum: A generic approach to describing practices using essence

kernel and language, retrieved from http://old.semat.org/wp-content/uploads/ 2015/03/ 1-Essence-

Powered-Scrum-June.pdf,

[5] Giray G., Tüzün E., Tekinerdoğan B. and Macit Y. 2016. Systematic approach for mapping software

development methods to the Essence Framework. In Proceedings of 5th International Workshop on

Theory-Oriented Software Engineering (Austin, TX, USA, May 16 2016).

[6] Sedano T., P´eraire C. and Lohn J. 2015. Towards generating Essence Kernels using Genetic

Algorithms. In Proceedings of International Conference on Soft Computing and Software Engineering

(Berkeley, California, USA, March 5-6, 2015).

Computer Science & Information Technology (CS & IT) 23

[7] Uysal M.P. and Giray G 2017. An Essence Framework approach to software engineering research. In

Proceedings of 11th. National Software Engineering Symposium. (Alanya, Antalya, Turkey,

September 18-20, 2017).

[8] Wang Y. 2008. On Concept Algebra: A denotational mathematical structure for knowledge and

software modeling. Int. Journal of Cognitive Informatics and Natural Intelligence, 2(2), 1-19.

[9] Rubin K.S. 2013. Essential Scrum: A practical guide to the most popular agile process. Addison

Wesley, NY, USA.

[10] Schwaber K. and Sutherland J. 2017. The Scrum Guide: The definitive guide to Scrum: The rules of

the game. Creative Commons, USA.

[11] Sutherland J. 2014. The art of doing twice the work in half the time. Crown Business, NY, USA.

AUTHORS

Assoc. Prof. Dr. Murat Pasa Uysal is at the Department of Management

Information Systems in Baskent University. He holds a B.S degree in electrical &

electronic engineering, a M.S degree in computer engineering, and a Ph.D. degree

in educational technology. He earned the Assoc. Prof. Dr. degree on Computer

Education and Instructional Technologies taking the Turkish Inter-University

Council two-phased qualification exams. He completed his post-doctoral studies

at Rochester Institute of Technology in New York, which was on software re-

engineering, e-learning and Information Technologies (IT) Governance. He

served as an advisor and engineer for different types of IT projects in Turkish

Army (TA) for many years, and conducted studies addressing the problems of TA

in the research areas of IT. He has been teaching IT, information systems and software engineering related

courses. His research interest is also in the areas of software engineering, information systems (IS),

instructional methods and tools for computer programming and IS.

