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ABSTRACT 
 

Video processing applications are becoming more complex and greedy in terms of computing 

resources. Thus, the designers of video surveillance systems are moving more and more towards 

distributed systems, comprising several video sensors collaboratively working to carry out 

tracking tasks in particular. However, there is a plethora of collaborative tracking algorithms, 

in the literature, each with its own advantages and disadvantages. 
 

The purpose of this paper is to present the most common collaborative tracking algorithms and 

discuss the strengths and weaknesses of each. 
 

KEYWORDS 
 

Video surveillance – Tracking – Camera – Multi-sensor – performances 

 

 

1. INTRODUCTION 
 
Nowadays, video surveillance becomes an absolute imperative for the security of goods and 

people. Thus, such systems are increasingly found in all kinds of companies and administrations, 

to more or less automatically perform video surveillance tasks in general and target tracking in 

particular. 

 
The common feature of most detection and tracking algorithms is their high computational 

complexity due to amount of data that needs to be processed. This is especially important for live 

applications, such as video surveillance systems for threats detection or traffic monitoring, thus 

using one single camera in a complete and efficient video-surveillance system become almost 

impossible. 

 
Recent trends in surveillance systems and the appearance of high speed wireless network 

protocols make possible today the use of hundreds of smart cameras in the form of a multiple 

sensors distributed system that perform video analysis on site on a collaborative way.  

 
The purpose of a tracker is to associate target objects in consecutive video frames to determine 

their identities and locations. Multi-object tracking is one of the most fundamental tasks of high-

level automated video content analysis due to its extensive application: human-machine 

interaction, security and monitoring, video communication and compression, traffic control and 

video montage. 
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Multi-view trackers combine data from different camera views to estimate the temporal evolution 

of objects in a monitored area. The data to be combined can be represented by the characteristics 

of the object (such as position, color and silhouette) or by the object's trajectories in each view. 

 
In this context, we start with a single-target tracking review using EKCF and then briefly describe 

several approaches such as ECKF, JPDA-EKCF, GKCF, Extended Information Consensus Filter 

(EICF) and The EIWCF. In summary, we describe in detail the problems of multi-target tracking 

in a camera network scenario [1] with a detailed comparison between different algorithms. 
 

The rest of this paper is organized as follow. Section 2 introduces the distributed processing in 

camera networks. A survey of Consensus algorithms for distributed tracking is presented in 

section 3. Section 4 discusses and analysis different tracking algorithms. Section 5 concludes this 

paper. 

 

2. DISTRIBUTED PROCESSING IN CAMERA NETWORKS 

 

2.1. Kalman Filter 
 
A partially distributed target tracking approach using a cluster-based Kalman filter was proposed 

in [2]. Here, a camera is selected as a cluster head which aggregates all the measurements of a 

target to estimate its position using a Kalman filter and sends that estimate to a central camera. 

 

Figure 1: Multiple clusters tracking the same object in a wireless camera network.  

 

2.2. Distributed tracking 
 
In a distributed tracking, each camera node exchanges its estimates with its neighbors until a 

desired accuracy is achieved. [2] 

 
A Distributed Kalman Consensus filter and subsequent variants have been proposed in [3], [4], 

[5]. It was a completely distributed solution for estimating the dynamic state of a moving target. 

However, there are major considerations in applying the method to camera networks due to the 

nature of video sensors as well as non-linearity, naivety and redundancy. Cameras are directional 

sensors, each with a limited view of the entire theater of action, with data having high bandwidth 

and complexity. We will now show how the consensus-based approaches to distributed estimation 

in multi-agent system literature can be applied to design a consensus-based tracking algorithm in 

camera networks. 
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3. CONSENSUS ALGORITHMS FOR DISTRIBUTED TRACKING 

3.1. Mathematical framework 

Let C  be the set of all cameras in the network. We can then define the subset of all cameras 

viewing target T j  as C j
v

⊂

⊂⊂

⊂ C  and the rest of the cameras as C j
v− ¿¿

⊂

⊂⊂

⊂ C . Each camera 

Ci will also have its set of neighboring cameras Ci
n

⊂

⊂⊂

⊂ C . Based on the communication 

constraints due to bandwidth limitations and network connections, we define the set Ci
n

 as all 

the cameras with which Ci  is able to communicate directly. In other words, Ci  can assume that 

no cameras other than its neighbors,Ci
n

, exist as no information flows directly from non-

neighboring cameras to Ci . Note that the set of neighbors need not be geographical neighbors. 

We also define the set of overlapping cameras of Ci as Ci
o

 ⊂
⊂⊂

⊂ C ; since all the cameras can 

change their PTZ parameters and have therefore several possible fields of view, we define the set 

Ci
o

as all the cameras with which Ci  can potentially have an overlapping field of view. By 

definition, it becomes clear then that for each Ci
∈

∈∈

∈ C j
v

, it is true that C j
v

⊂

⊂⊂

⊂ {Ci
o

∪

∪∪

∪ Ci }. We 

define Ci
c

⊂

⊂⊂

⊂ C  as the connected component that Ci is in.We assume Ci
o

⊂

⊂⊂

⊂ Ci
c

, that is to 

say, Ci is able to exchange information with its overlapping cameras directly or via other 

cameras. A diagrammatic explanation of the notation is given in Fig.2. [6] We consider the 

situation where targets are moving on a ground plane and a homography between each camera’s 

image plane and the ground plane is known. We will show how the state estimation for each 

target by each camera (i.e., each camera’s estimates based on its individual measurements) can 

be combined together through the consensus scheme. This method is independent of the tracking 

scheme employed in each camera. If the network of cameras is connected, then consensus is 

achieved across the entire network. 

 
Figure 2: Conceptual illustration of camera network topologies 

. 

3.2. Algorithm of Extended Kalman-Consensus Filter for a single target 
 

The Extended Kalman-Consensus Filter algorithm is developed to solve the problem of 

nonlinearity in the case of the Kalman-Consensus filter. This filter is a technique for estimating 

the state of a noise-disordered nonlinear process using multiple observations from a distributed 

set of detection nodes. All detection nodes attempt to estimate the same state by determining how 

their observations affect that state and communicating with neighboring nodes. The algorithm is 

designed to be more accurate due to measurement diversity, expandable to a large number of 

nodes, and robust against node loss during operation. 
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The Extended Kalman-Consensus Filter allows us to track targets on the ground plane using 

multiple measurements in the image plane taken from various cameras. This allows each camera 

Ci to have at any time step k, a consensus state estimate x́i
j

 and estimate error covariance Pi
j

 

for each target T j . To model the motion of a target T j  on the ground plane, we consider a 

linear discrete time dynamical system 

 

 
 

And nonlinear observation model for each camera Ci , 

 

     
 
Where: 

 

 
 

Due to the nonlinear nature of the observation model, the linear Kalman-Consensus Filter 

proposed in [5] cannot be applied as is. An extension to deal with the non-linearity of the 

observation model is required. Taking into account the nonlinear nature of our dynamical model, 

we propose an Extended Kalman-Consensus distributed tracking algorithm on the basis of the 

Kalman-Consensus Filter detailed in [5]. The following are our basic Kalman Filter iterations, as 

implemented in each camera. 

 

� Prediction: 
 

 
 

� Correction: 
 

 
 

Here, P and M are the a priori and a posteriori estimate error covariance matrix, respectively, and 

H is the Jacobian matrix of partial derivatives of h with respect to x, i.e. 
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This algorithm is performed at each camera node Ci . At each time step k and for each target 

T j , we assume that we are given the estimated prior target state  and the error covariance 

matrix  At time step k= 0, the Extended Kalman-Consensus filter is initialized with 

 and  The consensus algorithm is shown in Algorithm1. 

 

The consensus process (Algorithm1) is performed at each Ci for each T j that is in the scene 

viewed by the camera network. Ci
n

 is the neighboring camera set of Ci and defined as all 

cameras with which Ci can directly communicate. If Ci  is viewing a target T j , it obtains T j  

’s position on its image plane , and calculates the Jacobian matrix  of its observation 

model and consensus state estimate x́i
j

 . After that, the corresponding information vector ui
j

and 

matrix U i
j

are computed with the given measurement covariance matrix and . Next, the 

predicted measurement and corresponding residue  are calculated.Ci then sends a 

message  to its neighbors which includes the computed information matrix, residue and its 

estimated target state  at previous time step (k−1). Similar to [5], we define the information 

matrix and vector of as U i
j
= 0and ui

j
= 0by assuming that their output matrices 

are zero, i.e., H i
j
= 0  for all Ci

∈

∈∈

∈ C j
v− ¿¿

 to avoid any ambiguity arising from the lack of 

measurements in these cameras. Ci then receives similar messages ml from the cameras in its 

neighborhood. The information matrices and residues received from these messages are then 

fused by Ci with its own information matrix and residue and the Extended Kalman-Consensus 

state estimate is computed. Finally, the ground plane state and error covariance matrix  

are updated according to the assumed linear dynamical system. 

 

3.3. Algorithm of JPDA-EKCF for tracking multiple targets 

This algorithm is designed to solve the problem of data association by local measurements 

especially in the case of intra-camera data association i.e., to associate measurements observed by 

a camera with the targets as well as allows to track joint targets and track maintenance under a 

probability of detection and an unknown clutter rate. The Joint Probability Data Association 

(JPDA) is coupled to the Extended Kalman Consensus Filter (EKCF), which manages 

nonlinearity. 

 

Figure 3: Tracking multiple targets with camera network. 
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3.3.1. Intra-Camera Association 

Due to the weakness of low level video processing methods. Some targets may not be detected 

because of an occlusion or similar appearance in the background. A direct assignment of the 

measurement target can lead to poor performance (problem of naive nodes). The possibility of 

false assignment and missed target detection should be considered. 

 
Joint Probability Data Association (JPDA) [7] computes an estimate over the various possibilities 

of measurement-to-track associations. Assume that at time step k, there are NT targets in the scene 

and camera Ci obtains  measurements, .The history of 

measurements at camera Ci is denoted as  Let x
j

 denote the state 

of target T j . Its a posteriori state estimate and a prior state estimate by camera Ci  are denoted 

as   and   , respectively. The state estimate of target T j  at camera Ci is: 

  
 

Where  denotes the event that measurement  associates to target T j  at camera Ci .  

As an extension to standard Joint Probability Data Association Filter (JPDAF) [8], the Extended 

Kalman Filter can be used to estimate ¿ . Let us denote  and 

 to represent the probability that target T j  has no measurement associated 

with it. Then the state estimate can be written as 

 

 

 

 
 

Where 

 

 
and  
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is the Jacobian matrix of partial derivatives of hi  with respect to xi
j

. The error covariance 

of the estimate is given by 

 

 
 

Where 

 
 

While tracking target in clutter, validation gates are usually used to filter out measurements from 

clutter within the environment. A validation gate is a metric of “acceptability”, i.e., within the 

gate, it is treated as a valid measurement, otherwise it is rejected. Let PD  be the probability that 

the correct measurement is detected, and PG  be the probability that the correct measurement, if 

detected, lies within the gate. As shown in [9], by assuming a Poisson distribution for false 

measurements lying in the gate and a Gaussian distribution for associating a measurement with a 

target, using Bayes rule, the ’s can be calculated as: 

 

 
 

where  is the covariance of the distribution of v, d is the dimension of 

measurement vector and  is the expected number of occurrences of the Poisson distribution. 
 

3.3.2. Inter-Camera Association 

 
In distributed tracking of multiple targets, each camera has its own set of estimated tracks and 

also receives track estimates from its neighbors. Therefore, it is necessary to establish an 

association between these tracks. This can be formulated as a maximum matching problem in a 

weighted bipartite graph [10] which minimizes the matching cost. The Hungarian algorithm [11] 

can be used to find the maximum matching. Different distance metrics can be used to find the 

matching cost between two track estimates from different cameras. 
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3.3.3. JPDA-EKCF algorithm 

 
We now show that distributed multiple target tracking can be achieved by integrating data 

association with a distributed single target tracker. In [12], Joint Probability Data Association 

(JPDA) is coupled with Kalman-Consensus Filter (KCF) estimator, where JPDA is used to 

perform local measurement to track associations. This algorithm is referred as JPDAKCF. Due to 

the nonlinear nature of the observation model in the camera network, an extension to deal with 

the non-linearity is required. Here, we describe an Extended Kalman-Consensus Filter coupled 

with Joint Probability Data Association along the lines of the JPDA-KCF detailed in [12]. The 

entire process is shown in Algorithm2. 

 

The JPDA-EKCF algorithm is performed at each Ci for each T j that is in the scene under 

surveillance, where  is the neighboring camera set of Ci  and defined as all cameras with 

which Ci can directly communicate. Camera Ci computes the assignment of the measurements 

to targets using JPDA. Then Ci calculates the Jacobian matrix  of its observation model 

with respect to the consensus state estimate  of last time step. After that, the corresponding 

information vector  and matrix  are computed with the given measurement covariance 

matrix  and . Next, predicted measurements and its corresponding residues are 

calculated. Ci  then sends a message Mi to its neighbors which includes the computed 

information matrices, residues and its estimated target state  and error covariance  at 

previous time step (k−1). Ci  then receives similar messages Ml only from the cameras in its 

neighborhood. Based on the received information, Ci finds the inter-camera track-to-track 

matching’s. The information matrices and residues received from these messages are then fused 

by Ci with its own information matrices and residues according to the cross camera track 

matching results and the Extended Kalman-Consensus state estimate is computed. Finally, the 

ground plane state  and error covariance matrix  are updated according to the assumed 

linear dynamical system. 

 

3.4. Generalized Kalman Consensus Filter Algorithm 
 

This approach solves the problem of naive nodes. A naive node can associate an observation with 

a bad target. This can affect the tracking performance of the nodes that actually observe the target 

by causing them to move away from their estimates. The proposed GKCF is presented in 

Algorithm 3. Here we first introduce the weighted mean consensus. Then we show how to 

integrate this consensus pattern into our framework. We then implement the Distributed Kalman 

Filter (DKF
1
) with the weighted mean consensus results and show how to propagate our 

covariance and state estimates. For the purpose of easy representation, we use  to denote the 

information matrix, or inverse covariance matrix, i.e., . In this section, we will use 

 to replace  as in sections III.2 and III.3. 

 
3.4.1. Weighted Average Consensus 

Let the initial state estimate of all  agents be  with information matrix . As we 

use this information matrix term as weights in the weighted average consensus algorithm, the 

terms weight and information matrix will be used interchangeably. Also,  

                                                
1
�

 DKF: (Distributed Kalman Filter): Helps to reduce the disagreement of estimates by different nodes. 
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let  

 

So, the global weighted average of the initial states is 

 

 
 
Define the weighted initial state of each agent as 

 

 
 
Weighted average consensus [3] states that if the iterative update in Equations (eq.12) and (eq.13) 

is performed for all i= 1,…, Nc , then each of the terms  tends to the global 

weighted average  as . As a by-product, the weights also converge to the average of 

the initial weights. Both these properties of the weighted average consensus will be utilized in our 

approach.  

We assume that the initial information matrix , is provided at the initial time step by the 

target detection mechanism. It would ideally be zero for nodes that are not detecting the target. 

For nodes that are detecting the target, the initial value would be  
 

At the  iteration, the agents communicate with each other with the  and 

 information. Then, using the previously discussed average consensus scheme, they 

get an updated prior state estimate and weight estimate  (see eqns. (eq.12), 

(eq.13) and (eq.14)). This prior estimate tends towards the global normalized weighted average as 

stated before.  

 
This approach solves the problem of naive nodes. A naive node can associate an observation with 

a bad target. This can affect the tracking performance of the nodes that actually observe the target 

by causing them to move away from their estimates. The proposed GKCF is presented in 

Algorithm 3. Here we first introduce the weighted mean consensus. Then we show how to 

integrate this consensus pattern into our framework. We then implement the Distributed Kalman 

Filter with the weighted mean consensus results and show how to propagate our covariance and 

state estimates. For the purpose of easy representation, we use  to denote the information 

matrix, or inverse covariance matrix, i.e.,  In this section, we will use  to 

replace  as in sections III.2 and III.3. 
 
3.4.2. Weighted Average Consensus 
 

Let the initial state estimate of all  agents be with information matrix . 

As we use this information matrix term as weights in the weighted average consensus 
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algorithm, the terms weight and information matrix will be used interchangeably. Also, 

let . So, the global weighted average of the initial states is 

 

 
 

Define the weighted initial state of each agent as 

 

 
 
Weighted average consensus [3] states that if the iterative update in Equations (eq.12) and (eq.13) 

is performed for all i= 1,…, Nc , then each of the terms  tends to the global 

weighted average  as . As a by-product, the weights also converge to the average of 

the initial weights. Both these properties of the weighted average consensus will be utilized in our 

approach.  

We assume that the initial information matrix , is provided at the initial time step by the 

target detection mechanism. It would ideally be zero for nodes that are not detecting the target. 

For nodes that are detecting the target, the initial value would be  

At the  iteration, the agents communicate with each other with the and 

 information. Then, using the previously discussed average consensus scheme, they 

get an updated prior state estimate and weight estimate  (see eqns. (eq.12), 

(eq.13) and (eq.14)). This prior estimate tends towards the global normalized weighted average as 

stated before. 

 

3.5. Extended Information Consensus Filter (EICF) 
 
This approach allows the effect of naivety and nonlinearity to be managed without requiring 

knowledge of other nodes in the network. 

 
We propose two distributed filters for tracking targets in wireless camera networks, ECF1 and 

EIF2, which compute the local information,  and  differently. EICF1 runs at 

each node ci and computes the local information values, and  based on their own 

respective measurement information,  and  

 

 
 

and then exchange the values and with neighbours to achieve average consensus. 

EICF2 computes local information values,  and  based on its own measurement 

information and also that of neighbouring nodes: 
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EICF2 reaches convergence faster than EICF1, at the cost of additional communication to send 

the measurement information terms. Hence, EICF2 is recommended when sufficient 

communication resources are available.  

 
The iterative information exchange between neighbours results in redundancy which causes 

correlation among the nodes’ estimates. Hence, the EICF results are sub-optimal because of such 

correlation among the individual node estimates. In the update step (see Eq. 10) of a filter, the 

two terms involved are the priors, and  and the measurement information 

about the target,   and . The prior information is the result of the prediction on previous 

estimates,  and , which are computed after consensus. Hence, the redundancy 

always lies in the prior information terms,  and . 
 

3.6. Extended Information Weighted Consensus Filter (EIWCF) 

This algorithm uses the EIWCF to handle the three main problems (naivety, redundancy and non-

linearity). However requires knowledge of the number of cameras Nc , the basic principle of 

these algorithms is to weight the estimates of the nodes according to their covariance information. 

When Nc is not available, EICF can be used at the cost of not managing the redundancy 

problem. 

 
Via proper weighting of prior and measurement information, IWCF mitigates the problem of 

redundancy [13]. By applying the concept of IWCF to EIF, we propose a non-linear distributed 

filter called the Extended Information Weighted Consensus Filter (EIWCF). Here the prior 

information is weighted by 1/ Nc  and the consensus proposals are prepared as: 

 

 
 

After achieving consensus on the  and  terms, the results are multiplied by : 

 

 
 

These estimates are not affected by non-linearity, naivety and redundancy. However, EIWCF 

requires the knowledge of the number of nodes in the network (see Eqs. 12 and 13). Thus, 

EIWCF cannot be applied when such knowledge is not available whereas EICF1 or EICF2 can be 
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used. If sufficient communication resources to receive neighbours’ measurement information,  

and , is available, EICF2 achieves faster convergence than EICF1. Hence the choice depends 

on the available communication resources. 

 

4. ANALYSIS AND COMPARISON 
 
Based on our proposed approaches, there have been three major issues in consensual distributed 

tracking for camera networks that are as follows: 

 
� Non-linearity. 

 
� Naivety. 

 
� Redundancy. 

  

The Kalman Extended Consensus Filter (EKCF) algorithm is extensible to a large number of 

nodes, robust against the loss of nodes during operation, and has measurement diversity. The 

JPDA-EKCF makes local measurements to track associations, track joint targets, and track 

maintenance under unknown probability of detection and clutter. However, these filters do not 

deal with naivety and redundancy in a camera network, but the GKCF handles naivety and 

corrects the previous estimate according to the weighted average but it does not deal with 

nonlinearity and redundancy. 

 
Afterwards, we proposed an Extended Information Consensus Filter (EICF). This filter performs 

a weighted averaging while addressing the problem of naive nodes and nonlinearity. To 

overcome the redundancy problem, we have also proposed a weighted consensus extended 

information filter (EIWCF). The EIWCF handles naivety, redundancy and non-linearity, and 

achieves faster convergence by correctly weighting past and measurement information. However, 

it requires knowledge of the number of nodes in the network. 

 
The table below (see Fig 4), summarizes a detailed comparison between the different algorithms 

based on references. 
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Figure 4 :Algorithms for distributed tracking in camera network. 
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5. CONCLUSION 
 

Video tracking can be defined as a problem of locating a moving object (or multiple 
objects) over time based on the observations of the object in the images. In other words, the 

purpose of a tracker is to associate target objects in consecutive video frames to determine their 

identities and locations. Multi-object tracking is one of the most fundamental tasks of high-level 

automated video content analysis through its extensive applications. Maintaining the stability of 

tracks on multiple video targets over extended periods and extended areas remains a difficult 

problem. Among the most basic monitoring methods are the Kalman filter and the JPPAF filters, 

we presented a distributed state estimation method based on the Generalized Kalman Consensus 

Filter (GKCF), which has exceeded the KCF approach under such conditions. However, in 

themselves, these methods are generally not able to follow extended spatial horizons. Since the 

measurement model of a camera is non-linear, algorithms based on the Kalman filter can not be 

used. Nonlinear filters such as the Kalman Extended Consensus Filter (EKCF) do not deal with 

naivety and redundancy. To overcome the redundancy problem, we have also proposed the 

Extended Information Weighted Consensus (EIWCF) filter by combining the Extended 

Information Filter (EIF) and the Information-weighted Consensus Filter (IWCF). The EIWCF 

handles naïveté, redundancy and non-linearity, and achieves faster convergence by correctly 

weighting past and measurement information. However, it requires knowledge of the number of 

nodes in the network. 

 
As future work, we will explore the reduction of communication and computational overhead 

required by average consensus. The management of dynamic link structure and asynchronous 

networks are other possible future works. 
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