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ABSTRACT 

In many imaging applications, including sensor arrays, MRI and CT,data is often sampled on 

non-rectangular point sets with non-uniform density. Moreover, in image and video processing, 

a mix of non-rectangular sampling structures naturally arise. Multirate processing typically 

utilizes a normalized integer indexing scheme, which masks the true physical dimensions of the 

points. However, the spatial correlation of such signals often contains important 

information.This paper presents a theory of signals defined on regular discrete sets called 

lattices, and presents an associated form of a finite Fourier transform denoted here as 

multiresolution lattice discrete Fourier transform (MRL-DFT). Multirate processing techniques 

such as decimation, interpolation and polyphase representations are presented in a context 

which preserves the true spatial dimensions of the sampling structure.Moreover, the polyphase 

formulation enables systematic representation and processing for sampling patterns with 

variable spatial density, and provides a framework for developing generalized FFT and 

regridding algorithms. 
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1. INTRODUCTION 

A number of imaging applications involve data located on non-rectangular grids. Examples 

include tomographic schemes such as medical computerized tomography (CT) and certain 

synthetic aperture radar (SAR) systems, in which data is often acquired on a polar grid [1,2]. In 

magnetic resonance imaging (MRI), data is acquired in the two- or three-dimensional spatial 

frequency domain on sometimes quite complex patterns, such as the spiral shown in Figure 1. 

Different types of video signals have spatio-temporal data on different sampling structures, such 

as interlaced versus progressive. As illustrated with the spiral pattern, these irregular sampling 

patterns often have variable spatial density. Many common signal processing applications such as 

filtering and spectral analysis are difficult to accomplish, and conversion among sampling 

structures without introducing artifacts can be challenging [1,3].Data is often converted to a 

uniform rectangular grid, through an interpolation process called regridding, to facilitate 

processing, as in [4], but there may be significant artifacts caused by density mismatch. 

Some methods have been developed for certain irregular structures as special cases, as in [5,6,7], 

as well as for uniform but non-rectangular sampling patterns, called lattices, as in [3,8]. A 

normalized integer indexing scheme is typically used, which does not reflect true underlying 

geometric factors such as distance and direction. However, for many multidimensional signals, 

significant information is contained in the spatial correlation properties. For example, in [9], 

wireless network nodes are located on scattered points in a lattice and information regarding 

geometric location is vital for proper signal processing.  In [10], a lattice based approach is used  
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to analyse interference signals. In certain digital communication applications, as in [11,12,13], 

signal sets are defined on lattices, and the geometric properties of the lattices are central to the 

development of receiver algorithms and performance analysis. 

 

Figure 1: Sample points along a spiral. 

Although conversion between different sampling structures is common, usually a single pattern 

containing various spatial sampling densities is not employed. This paper presents a systematic 

approach for dealing with multidimensional sampling patterns, including possibly with variable 

density. The results are formulated using physical coordinate systems for the spatial and 

frequency domains to facilitate development of algorithms such as filtering and interpolation 

(regridding) for sampling structure conversion. In particular, we study a finite Fourier transform 

suitable for this context, denoted here as the multiresolution lattice discrete Fourier transform 

(MRL-DFT). The MRL-DFT is used to guide the design of filters, sampling structure 

conversions, and polyphase structures, as well as the study of lattices to facilitate manipulating 

sampling patterns with variable densities. 

We first describe lattices as sampling structures, viewed both in the standard normalized 

coordinates [3] and in physical coordinate systems, and develop an associated Fourier theory. We 

then discuss various signal processing operations and properties of lattice structures based on the 

MRL-DFT, and then provide a detailed example of how the methods developed here can facilitate 

various signal processing applications. 

2. LATTICES 

In this section, we introduce some notation and summarize basic definitions and results regarding 

lattices, and describe the topic under study in this paper. 

2.1. Notation and Definitions 

We consider complex valued signals whose domains are certain subsets of D-dimensional real 

space,ℛ�. If � ⊂ ℛD
, �� ∈ ℛ�and A is a D×D matrix, then �� + �� = {��� + ��:	�� ∈ �}.If � is a 

finite set, |�|denotes the number of elements in �. 

We can associate vectors with column vectors, and in this form, the dot product (or inner product) 

of vectors ℛ� can be expressed as< ��, ��� >	= �� ⋅ ��� = ���. In this paper, we will work with a 

non-radian frequency domain; for example, if the spatial vector �� has units of meters, the 

frequency vector �� has units of (meter)
-1

. This suggests the following notation: 

���� = exp	�!2#�� 
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Note that ����=1 iff � ∈ $. Then the Fourier transform of a signal %����can be thought of as a 

representation of the signal as a superposition of sinewaves of the form �&< ��, �� >' for a suitable 

collection of frequency vectors ��. 
Definition 1: A D-dimensional latticeℒ ⊂ ℛ�is	a	set	of	the	form:	

ℒ = 2$� = {�� = 23	����:		3�� ∈ $�}	
for	some	D×D	nonsingular	matrix	V.	
In this paper, all matrices we consider (e.g., lattice generators) are invertible D× D real. Given	a	lattice	ℒ,	the	associated	matrix	V,	called	a	generator	of	the	lattice,	is	not	unique.	We	denote	a	lattice	generated	by	V	as	ℒV.  A signal %���� is said to have support on a latticeℒif it is defined 

(specified) for all �� ∈ ℒand is either undefined or has value 0 for any point �� ∉ ℒ. A signal is 

periodic with respect to a lattice ℒ if %���� = %&�� + E�' for all E� ∈ ℒ, and if V is a generator ofℒ  

then we say x is periodic with respect to V. 

An integer matrix M is called unimodular if |F�GH| = 1and this occurs iffHJKis also an integer 

matrix. The following lemmas summarize basic results regarding lattices [3]. 

Lemma 1:ℒLis a sublattice of ℒM, that is, ℒL ⊂ ℒMiffU=VM for some integer matrix M, and ℒL = ℒM iff U=VE for some unimodular matrix E. 

Lemma 2: Points in a lattice form an abelian group under vector addition, and a sublattice is a 

subgroup. The translated sets of a sublattice, ℒL + �� for �� ∈ ℒM, called cosets, form a group under 

set addition, called the quotient group and denoted ℒM/ℒL, and then |ℒM/ℒL| = |F�GH|. As a 

consequence, the value of |F�GH| does not depend on the choice of generators for the lattices. 

The density of a lattice, denoted by O�ℒ�, is the number of lattice points per unit volume, and is 

given by O�ℒ� = K
|PQRM| . Thus, a sublattice is sparser (less dense) than the parent lattice. 

Sampling patterns with variable spatial density arise by combining points from different 

sublatticesor their cosetsin different regions. In Figure 2, the central region contains points from a 

dense lattice, and the outer region contains only points in a sublattice. We refer to this as a 

multiresolution sampling pattern. 

For a lattice ℒM, a corresponding unit cell SM ⊂ ℛ� is a set of points such that, for all �� ∈ℛ�,there is a unique vector ��T ∈ ℒM such that �� − ��T ∈ SM.Two examples of unit cells are the sets 2[0,1��, called the fundamental parallelepiped (FPD) of V, and 2[−X
Y, XY��. Regarding the cosets 

(distinct translations) of ℒMin ℛ�, a unit cell constitutes a minimal complete collection of coset 

representatives. Addition of points in the unit cell modulo the lattice corresponds to the quotient 

group ℛ�/ℒM. The volume of a unit cell is |F�G2|, the reciprocal of the density of the lattice. 

If ℒL ⊂ ℒM, we denote by ℐ�[, 2� a complete set of coset representatives. That is, for every coset 

of ℒL in ℒM, there is a unique element�� ∈ ℐ (U,V) such that the coset can be expressed  as   ℒL + ��. We call such ℐ (U,V) an index set. 

Lemma 3: If ℒL ⊂ ℒM with U=VM, thenℐ�[, 2�is a valid index set iff it has the form: ℐ�[, 2� = SL ∩ ℒM 

for some unit cell SL of U. Moreover, every index set contains exactly |F�GH| points. 
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Figure 2: A multiresolution sampling pattern. 

The quotient group ℒM/ℒL can be interpreted as addition of points in an index set ℐ (U,V) modulo 

the lattice ℒL. Figure 3 shows a sublattice (with points marked with ′o′) and a coset (with points 

marked with ′ × ′) that together comprise a denser lattice. In this case, the quotient group contains 

two elements. 

 
Figure 3: A sublattice ('o') and its coset (‘x’) together forming a denser lattice. 

For a matrix A, let �̂ = �J�. Given a lattice ℒM, we call ℒM_ the reciprocal lattice, and SM_ the 

reciprocal unit cell. The density of the reciprocal lattice is the reciprocal of the density of the 

original lattice. A dense lattice will correspond to small unit cells, a sparse reciprocal lattice and 

large reciprocal unit cells.Note that if [ = 2H then 2̀ = [_H� . Hence, whereas ℒL ⊂ ℒM, we get ℒM_ ⊂ ℒL_ .  Also, |ℒM/ℒL| = |ℒL_/ℒM_| = |F�GH|. 
2.2. Signals on Lattices with Finite Extent 

Consider a signal on a lattice ℒM with a finite number of nonzero values, at points that are 

confined to within a unit cell SLof a sublattice. In this case, the signal has support within an 

index set ℐ�[, 2�, and by extending these values periodically with respect to ℒL, we can now 

interpret this as a signal over the quotient group  ℒM/ℒL. There exists a finite Fourier transform 

that can be defined for such signals, and the focus of this paper is its study. We call this Fourier 

transform the multiresolution lattice discrete Fourier transform (MRL-DFT). 

The MRL-DFT results in a frequency domain signal that has support in ℒL_ and is ℒM_-periodic, 

i.e., a signal over ℒL_/ℒM_. The spectrum is thus identified by its values over an index set ℐ�V_, U_�, 
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the complete set of points in the reciprocal lattice for U that lie within a reciprocal unit cell for V. 

This corresponds to a generalized result of sampling theory: the density of samples in the original 

(here, spatial) domain determines the extent (bandwidth) in the frequency domain, and the extent 

in the original domain (spatial size) determines the density of points in the frequency domain. 

Associated with this, we develop several multirate signal processing techniques, such as  

decimation and interpolation, polyphase components, filtering (i.e., convolution) and associated 

frequency domain concepts. The multiresolution approach is to consider not only a single sparse 

(low resolution) sublattice of a dense (high resolution) lattice, but also chains of intervening 

lattices with intermediate densities, that is: 

ℒL ⊂ ℒLX ⊂ ℒLY ⊂ ⋯ ⊂ ℒLc ⊂ ℒM 

This study facilitates development of applications such as representing signals with varying 

sampling densities in different regions of space, formulating fast algorithms for computing 

convolution and Fourier transforms, and obtaining techniques for regridding, i.e., interpolating 

data measured at possible irregularly sampled points to multiresolution lattices. 

A theory of multidimensional multirateprocessing has been developed, for example in [3]. 

However, in that context, it is traditional to represent the signals as having support in $�. 

Consider a lattice ℒM ⊂ ℛ� with an identified generator V. As ℒM = 2$�, if x is a signal over ℒM 

then the value %���� at a point �� ∈ ℒM can be associated with the unique integer index vector 3�� 
such that  �� = 23��. Let us introduce the following notation: 

%M[3��d = %�23��� 
We call this form lexicographic indexing. An integer vector 3�� is associatedwith a point in 

physical space through the matrix V. The problem isphysical dimension, distance and direction 

are lost. Consider a discrete signal on a rectangulargrid, with a rectangular pixel (or voxel) having 

respective dimensions Δ%f	, 1 ≤ h ≤ i. Then wecan take 2 = Fh�j{Δ%f}. But these dimensions 

are hidden in the lexicographic indexing form.As another example, consider changing the lattice 

generator, say 2k = 2l where E is unimodular. Then: 

%Mk[3��d = %M[l3��d 
Since l$� = $�, this change of generator matrix corresponds to a permutation, or 

rearrangement of lexicographic indices. But the underlying signal, and the features and 

information contained in the signal, has not actually changed. This artificial indexing can mask 

spatial correlations which often important to consider. 

The act of decimation corresponds to keeping only points within a sublattice, say generated by 

U=VM. Decimation is typically expressed in lexicographic form as: 

%L[3��d = %M[H3��d 
This operation is called decimation with respect to the integer matrix M. This suggests a 

significant change in signal, and certainly the notion of spatial proximity is lost. In a physical 

sense, though, the only true change in the signal is that some values are discarded (effectively, set 

to 0), but the physical positions of the retained points do not change at all. The geometric 

structures of the underlying lattices are lost as well, because the change from say ℒM to ℒL as the 

underlying lattice of support is masked by forcing indexing via points in $�. Consider the case of 

rectangular sampling mentioned above. Decimating in the 1-direction by a factor of 2, basically 

changing Δ%K to 2Δ%K but no change in the other directions, is a nonuniform change of the shape 
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of a pixel (voxel) that is not evident in lexicographic form. Procedures to design filtering 

structures, as in [14], and fast algorithms for spectral analysis, as in [15], are usually cast in 

lexicographic form, and thus are often not tied to the actual geometric structure of the underlying 

signals that need to be processed in a number of applications. 

Here we develop a multirate signal processing approach retaining the physical indices, while 

relating results back to the traditional lexicographic index form. Using lexicographic notation can 

help determine techniques for data storage and retrieval of the signals of interest, but the 

exploration and development of signal processing techniques is facilitated by working with the 

physical coordinates. 

3. FOURIER TRANSFORMS 

There are generally four forms of the Fourier transform, corresponding to signals that are either 

continuous or discrete, and aperiodic (infinite in extent) or periodic (finite in support and 

extended periodically). If the starting point is the continuous aperiodic form, the others can be 

obtained by sampling in the spatial or frequency domains, or both. Here we obtain formulas for 

all, preserving the physical nature of the spatial or frequency domain coordinates, with 

connections to the normalized (lexicographic) forms. 

3.1. Multidimensional forms of CTFT, DTFT and Fourier Series 

We start with the continuous aperiodic form of the Fourier transform, where the spatial and 

frequency domains are both ℛ�. This is a multidimensional form of the continuous-time Fourier 

transform (CTFT). For a signal j:	ℛ� → n  the Fourier transform is a signal o:	ℛ� → n  where: 

o&��' = p j�����&−< ��, �� >'F��
ℛq.

 

j���� = p o&��'�&< ��, �� >'F��
ℛq.

 

Our approach to obtaining the other forms of the Fourier transform is to represent a discrete signal 

as a superposition of impulses, and pass it through the continuous form of the Fourier transform. 

Note that r��� − �T����� → �&−< ��, �T���� >' and �&< �T����, �� >' → r&��− �T����'. 

Take a signal over a lattice, j:	ℒM → n, with generator matrix V.The corresponding frequency 

domain will be continuous, but periodic with respect to the reciprocal lattice, that is, the spectrum 

is a signal o:	ℛ�/ℒM_ → n. To see this, start with the impulsive signal: 

jT���� = s j&E�'
t��∈ℒu

	r&�� − E�' 
 

Substitution into the Fourier transform yields a spectrum that is a superposition of spectral 

functions of the form 

vt��&��' = �&−< ��, E� >' 

where E� ∈ ℒM.	 NoteE� = 23��	 for	 some	 3�� ∈ $�and	 < ��, 23�� >=< 2���, 3�� >.	 Therefore,	
vt��&��+ 2J�y���' = vt��&��'	for	y��� ∈ $�	and	hence	vt��	is	periodic	with	respect	to	the	reciprocal	lattice	ℒM_ ,	and	the	spectrum	is	completely	determined	by	 its	values	 in	one	reciprocal	unit	
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cell	 SM_ .	 We	 thus	 obtain	 the multidimensional form of the so-called discrete-time Fourier 

transform (DTFT) for signals over a lattice: 

o&��' = s j����
{�∈ℒu

	�&−< ��, �� >' 

j���� = |F�G2|p o&��'�&< ��, �� >'F��
Su_

 

Substituting E� = 23��,	3�� ∈ $�,	and	�� = 2̀|��,	|�� ∈ [−X
Y, XY��,	yields	the	more	standard,	normalized	�lexicographic�	form	of	the	multidimensional	DTFT:	

o[|��d = s j
���∈$q

[3��d	��−< |��, 3�� >�	

j[3��d = p o[|��d��< |��, 3�� >�F|��
����∈[JXY,XY�q

 

A similar approach can be used to obtain the multidimensional form of the Fourier series. We 

start with a signal whose spectrum has support on the reciprocal lattice ofV in the frequency 

domain. By representing the spectrum as a sum of impulses located at the reciprocal lattice points, 

we find the signal in the spatial domain is continuous but periodic with respect to the original 

lattice. Thus, continuous lattice-periodic signals j:	ℛ�/ℒM → n have discrete spectra with 

support on the reciprocal lattice, o: ℒM_ → n, with Fourier transform given by: 

o&��' = 1
|F�G2|p j�����&−< ��, �� >'F��

Su
 

 

j���� = s o&��'
��∈ℒu_

	�&< ��, �� >' 

Expressing both the spatial and frequency domains in normalized (lexicographic) form results in 

the more conventional multidimensional Fourier series formulas: 

o����� = p j�����&−< ���, �� >'F�����∈[JXY,XY�q
 

j���� = s o�����
���∈$q

	�&< ���, �� >' 

In normalized form, the spatial signal is viewed in ℛ�/$� and the spectrum is a signal over $�. 

3.2. MRL-DFT 

We now present the multiresolution-lattice discrete Fourier transform (MRL-DFT), which is a 

multidimensional form of the DFT that retains the geometric structure of space and frequency. 

The MRL-DFT applies to signals with support on one lattice, periodic with respect to a sublattice. 

To justify the formulation, we start with a special case, which is signals over $� that are periodic 
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with respect to an integer matrix, N. This yields the conventional form of the multidimensional 

DFT, which is in lexicographic form. 

In one dimension, the DFT applies to a time-domain signal where the time is integer valued and 

periodic with period N. To apply Fourier analysis, the time domain must be a group, and in fact 

the group is the cyclic group $� = {0,1,⋯ ,� − 1} (i.e., modulo-N addition), which is  

isomorphic to the quotient group $/�$, which we recognize as a simple lattice quotient group. 

The frequency domain is also $�. The parameter N is called the radix of the DFT. The simplest 

multidimensional form assumes a signal over an �K × �� ×⋯× �� grid, and the DFT can be 

applied separately in each dimension, resulting in the formulas: 

 

o����� = s j[3��d
T������JK

	� �−s3f�f�f � 

 

j[3��d = 1
�K��⋯�� s o�����

T������JK
� �s3f�f�f � 

Define the matrix � = Fh�j{�K, ��, ⋯ , ��}. The scaling factor �K��⋯�� = |F�G�|, and also: 

< ���, �JK3�� >	= ���JK3 =s3f�f�f  

 

Let us define ℐ� = {3��: 0 ≤ 3f ≤ �f − 1}.	This set is a minimal set of coset representatives of ℒ�in $�. The sums are both taken over this set. In generalizing this to non-diagonal integer 

matrices, care must be taken because, in this case,� = ��. In order to arrive at the correct form 

for a general integer matrix, we need a mathematical result.In what follows, for an integer matrix 

M, let ℐ� be an index set for M in the integer lattice, that is, ℐ� = S� ∩ $� for any unit cell 

S�.For 3��, ��� ∈ $�, and i × i invertible integer matrix N, define: 

 

v�&3��, ���' = �&< ���,�JK3�� >' = �&< �_���, 3�� >' 

 

Lemma 4: For ��� ∈ $� 	, 	v�&⋅, ���' isℒ�-periodic, and for 3�� ∈ $� 	, 	v��3��,⋅� isℒ��-periodic. 

Moreover, the following orthogonality conditions hold[1]: 

1
|F�G�| s v�&3��, ���' = �1, ��� ∈ 	ℒ��

0, ��� ∉ ℒ��
�

���∈ℐ�
 

1
|F�G�| s v�&3��, ���' = �1, 3�� ∈ 	ℒ�0, 3�� ∉ ℒ� ����∈	ℐ��

 

Using this Lemma, we can obtain the DFT formulation simply as a standard (finite-dimensional) 

orthogonal expansion: 

Definition 2: The discrete Fourier transform (DFT) with respect to an integer matrix N maps 

spatial domain signals over $�/�$� to frequency domain signals over $�/��$� as follows: 
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o����� = s j[3��d
���∈ℐ�

	�&−< ���, �JK3�� >' 

j[3��d = 1
|F�G�| s o�����

���∈	ℐ��
	�&< ���, �JK3�� >' 

Even if we started with a signal truly on an integer lattice, this formulation gives a normalized 

(lexicographic) frequency domain. We would expect the spectrum to lie at points on a lattice 

generated by �_. But for a general integer matrix N, �_ is not an integer matrix, and instead this 

form of the DFT indexes the frequency domain at integer vectors in the set ℐ��. 

We propose the MRL-DFT as a formulation that preserves the geometric features of the spatial 

and frequency domains. The proper form of the equations is provided by the following theorem. 

Theorem 5: LetℒL ⊂ ℒM be lattices in ℛ�. Then the Fourier transform of a spatial signal over ℒM/ℒL is a frequency domain signal over ℒL_/ℒM_, and the transform and inverse transform 

formulas are given by: 

o&��' = s j����
{�∈ℐ�ℒ�,ℒu�

	�&−< ��, �� >' 

j���� = 1
|ℐ| s o&��'

��∈ℐ&ℒu_ ,ℒ�_ '
	�&< ��, �� >' 

We call this the multiresolution lattice discrete Fourier transform (MRL-DFT). 

Proof:  Since j����is ℒL-periodic, the previous discussion yields that its Fourier transform o&��' 
has support in ℒL_. Then the Fourier series formulation yields: 

o&��' = 1
|F�G[|p jT�����&−< ��, �� >'F��

S�
 

where jTis a signal over continuous-space, but is actually concentrated only at points in the lattice ℒM. In fact, jT is an impulsive function, with impulses located at the lattice points. The integral 

becomes a sum at points SL ∩ ℒM, which is ℐ�ℒL , ℒM�, and we obtain the MRL-DFT in the 

theorem, up to the scaling factor |F�G[|. Now examine the reverse situation: start with j���� 
having support on the lattice ℒM with a spectrum o&��' that is ℒM_-periodic. The generalized 

inverse DTFT yields an integral over the continuous frequency domain region SM_, but the 

integrand is impulsive since it lies at discrete lattice points only, and the integral becomes the 

inverse MRL-DFT formula, except that the scaling factor 1/|ℐ| is replaced with |F�G2|. To 

account for the scaling factors, we recognize that in Fourier transform and inverse transform 

formulas, what is significant is not the individual scaling factors, but their product. We can 

rescale the defined spectrum, for example, and since |F�Gℐ| = |PQRL|
|PQRM| the proposed MRL-DFT and 

inverse MRL-DFT formulas are confirmed. 

We note that if both the spatial and frequency domains in the MRL-DFT are expressed in 

lexicographic form, with U=VN for an integer matrixN, the MRL-DFT reduces to the standard 

DFT described previously. 
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3.3. Properties of the MRL-DFT 

As with any Fourier transform, we expect certain properties to hold, such as convolution in one 

domain corresponds to multiplication in the other domain. All properties listed here are special 

cases of properties of abstract Fourier transforms, and can be derived in that context, for example 

through group theory. Therefore we do not provide complete proofs for all properties listed here, 

but highlight some examples to illustrate the application of lattice theory. Here, ℱ{%} denotes the 

MRL-DFT of x, and ℱJK{�} denotes the inverse MRL-DFT of X. 

Definition 3: Let h,gbe signals over ℒM/ℒL. Then the convolution � = ℎ ∗ j is a signal over ℒM/ℒL and is given by: 

����� = s ℎ����j��� − ���
��∈ℐ�ℒ�,ℒu�

 

 

and the correlation v�� is a signal over ℒM/ℒL given by: 

v������ = s ℎ��� + ���j∗����
��∈ℐ�ℒ�,ℒu�

 

In each case, the terms in the sum are ℒL-periodic. Convolution and correlation in the frequency 

domain are defined similarly, i.e., without any scaling factors in the sums. 

Lemma 6: If %���� = j∗�−��� then v�� = ℎ ∗ %. 

Lemma 7: ℱ{%∗����} = �∗&−��' and ℱ{%∗�−���} = �∗&��'. 

Theorem 8: Convolution in the spatial domain corresponds to multiplication in the frequency 

domain, and conversely, specifically: 

ℱ{ℎ ∗ j} = � ⋅ o 

ℱ{ℎ ⋅ j} = |ℐ|� ∗ o 

Corollary 9: The MRL-DFT of the correlation function v�� is � ⋅ o∗. 

Now matching v��&0��' to the inverse MRL-DFT of � ⋅ o∗ evaluated at 0�� results in the following: 

Corollary 10: Parseval’s theorem for the MRL-DFT: 

s ℎ����j∗���� =
{�∈ℐ�ℒ�,ℒu�

1
|ℐ| s �&��'o∗&��'

��∈ℐ&ℒu_ ,ℒ�_ '
 

We omit the algebraic details of these results, except to point out two fundamental concepts that 

underlie the proof of the convolution theorem. The first is the factorization of the exponential 

function: 

	�&< ��, �� >' = 	�&< ��, �� − �� >' ⋅ 	�&< ��, �� >' 

The second deals with summing over the index set. The difficulty is that if ��, �� ∈ 	ℐ�ℒL , ℒM�, in 

general,�� − �� is not in the index set. However, the signals and the exponential functions appearing 
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in the sums are ℒL-periodic. If E� ∈ ℒM, let &E�'L ∈ 	ℐ�ℒL , ℒM� be the unique point in the index set 

such that E� − &E�'L ∈ ℒL. We can think of &E�'L as the value of E� modulo the sublattice ℒL. Then 

for each ��, the mapping �� → ��� − ���L is a one-to-one mapping of ℐ�ℒL , ℒM� onto itself. 

4. MULTIRESOLUTION LATTICES 

This section lays the groundwork for signal processing on multiresolution lattices. Specifically, 

we consider chains of lattices of varying densities, say ℒL ⊂ ℒ� ⊂ ℒM. Let W=VN, U=WQ, so 

that U=VM with M=NQ. To avoid the trivial case, where ℒ� equals eitherℒL or ℒM, we require 

that neither N nor Qbe unimodular. Therefore, we can generate intervening sublattices if we can 

obtain non-trivial factorization of integer matrices. Such factorizations, in fact, will allow us to 

describe the structure of ℒM/ℒL. 

Another issue we must address is that, in order to actually perform computations such as 

convolution, correlation or MRL-DFT, we need to be able to obtain valid index sets for specific 

lattices. It is not obvious how to find a specific set of points that is a valid choice for ℐ�ℒL , ℒM�. 
The next section describes an important mathematical result we will rely on. 

4.1. Smith form for integer matrices 

Proposition 11: Anyi × inonsingularinteger matrix M can be factored as H = l ¡ withE,F 

unimodular, and   = Fh�j{�K, ��, ⋯ , ��} witheach �f  a positive integer. This form is not unique, 

but the �f’s are unique up to a permutation. This is called the Smith form of an integer matrix. 

[16] 

Note that |F�GH| = ∏�f. This allows us to identify all possible combinations of �f’s. For 

example, ifM is 3 × 3 and|F�GH| = 12, the Smith form of M will result in one of the following 

(up to a permutation): (12,1,1), (6,2,1), (4,3,1), or (3,2,2). 

We now seek a factorization M=NQwhere neither N nor Q is unimodular. This hinges on the 

factorization of K. Let K=AB where A,B are diagonal matrices with positive integers on the 

diagonals. At the i
th
 position, we must have �f = �f�f . To avoid a trivial factorization, we require 

at least one �f > 1 and at least one �f > 1. For example if   = Fh�j{4,3,1} we could take � = Fh�j{4,1,1}, ¥ = Fh�j{1,3,1} or � = Fh�j{2,3,1}, ¥ = Fh�j{2,1,1}, or � = Fh�j{2,1,1}, ¥ = Fh�j{2,3,1}, or � = Fh�j{1,3,1}, ¥ = Fh�j{4,1,1}. There are no other 

possibilities! Then with N=EA and Q=BF, we have a nontrivial factorization M=NQ. 

Given the Smith form M=EKF, and U=VM, we can write U’=V’K where [k = [¡JK, 2k = 2l. 

Since F is unimodular, so is ¡JK. Therefore, U’,V’ generate the same lattices as U,V, and we have 

found a representation of the lattices such that the generators are related by a diagonal integer 

matrix. But finding an index set then is straightforward. For example, if   = Fh�j{4,3,1}, then 

the entries in the index set are vectors of the form2′3�� = 2l3�� where 3�� = �3K, 3�, 0� with 0 ≤3K ≤ 3, 0 ≤ 3� ≤ 2. This yields the precise mathematical structure of the quotient group. 

Theorem 12: If U=VM and the Smith form of M is EKF with   = Fh�j{�K, ��, ⋯ , ��}, then the 

quotient group ℒM/ℒL is isomorphic to the direct product of cyclic groups as follows: $�X × $�Y ×⋯×$�q  

It is well known that every finite abelian group is the direct product of cyclic groups. The 

significance of this theorem is that we can use the Smith form to find the particular 

decomposition for a lattice quotient group. The Smith form allows us to generate proper index 
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sets, and to obtain integer matrix factorizations to identify and generate all intervening lattices 

between ℒLand ℒM. 

4.2. The MRL-DFT viewed on lattice chains 

In this section, we consider U=VM, and lattices that lie between those generated by U and V, i.e., 

we study lattice chains such as ℒL ⊂ ℒ� ⊂ ℒM.Let ��[, 2� denote the space of complex valued 

signals with support on ℒM that are periodic with respect to ℒL. The MRL-DFT for such signals 

will be in ��2,_ [_�. We will also use the notation ��2� to denote signals with support on ℒM that 

are not periodic. If we start with a signal with finite number of nonzero values, but the points of 

support lie completely within some unit cell SL of U, then we will consider it extended 

periodically with respect to ℒL to apply the techniques developed here. We apply the same 

principle similarly in the frequency domain. 

The first result is a common property of Fourier transforms: translation in either the spatial or 

frequency domain corresponds to a linear phase shift in the other domain. 

Lemma 13: Let % ∈ 	��[, 2�, ��T ∈ ℒM , ��T ∈ ℒL_. Also let X be the ℒM/ℒL MRL-DFT of x. Then 

the MRL-DFT of %��� + ��T� is �&< ��, ��T >'�&��' and the MRL-DFT of �&−< ��T, �� >'	%���� is 

�&��+ ��T'. 

Proof: The results follow from a straightforward application of factorizations of the exponential 

function such as: 

�&< ��, �� + ��T >' = 	�&< ��, �� >' ⋅ 	�&< ��, ��T >'	
 

Take ℒL ⊂ ℒ� ⊂ ℒM. Consider a signal % ∈ 	��[,¦� ⊂ ��[, 2�, specifically x is 0 for points in ℒM that are not in ℒ�. We can compute the MRL-DFT with respect to either ℒ� or ℒM  as the 

lattice of support. However, since the signal itself is essentially the same, we hope the resulting 

spectra will match. That is in fact what happens. This confirms our formulation truly preserves 

the physical nature of the signals under study. To prove it, we need the following. 

Lemma 14: If ℒL ⊂ ℒ� ⊂ ℒM, and we have valid index sets ℐ�[,¦�, ℐ�W, 2�, then ℐ�[, 2� =
ℐ�[,¦� + ℐ�W, 2� is a valid index set. Moreover, if 0�� ∈ ℐ�¦, 2�then the result of this 

construction is that ℐ�[,¦� ⊂ ℐ�[, 2�. 
Theorem 15: Let ℒL ⊂ ℒ� ⊂ ℒM, and % ∈ 	��[,¦� ⊂ ��[, 2�. Let ���� denote its ℒ�/ℒL 

MRL-DFT, and ��M� its ℒM/ℒL MRL-DFT. Both have support on ℒL_, and for all �� ∈ ℒL_: 

��M�&��' = ����&��' 
 

This relation has the same form in lexicographic notation, that is  

��M������ = ���������			∀��� ∈ $� 

 

Proof: ��M�&��' is computed as a sum over ℐ�[, 2� for some index set. By Lemma 14, we can 

chose ℐ�[,¦�, ℐ�W, 2�, with 0�� ∈ ℐ�¦, 2�, so that ℐ�[, 2� = ℐ�[,¦� + ℐ�W, 2�. With this 

construction, the only point in ℐ�¦, 2� that is also in ℒ� is 0��, and every point in ℐ�[,¦� is in ℒ�. Therefore, ℐ�[, 2� ∩ ℒ� = 	ℐ�[,¦�. Therefore, the signal x is zero at all other points in ℐ�[, 2�, so the sum over ℐ�[, 2� reduces to a sum over ℐ�[,¦� and the MRL-DFTs match. 
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Since both spectra have support on the same lattice, their lexicographic forms are both related 

through the same matrix, [_, so the lexicographic forms match as well. 

The next result is that restriction to a sublattice in space or frequency corresponds to periodicity in 

the other domain. 

Theorem 16: Let ℒL ⊂ ℒ� ⊂ ℒM and % ∈ 	��[, 2�. Then x has support on the sublatticeℒ� iff 

its ℒM/ℒL MRL-DFT is ℒ�_ -periodic, and x is ℒ�-periodic iff its ℒM/ℒL MRL-DFT has support 

on ℒ�_ . 

Proof: We prove the first statement. The second follows from the symmetry between the MRL-

DFT and its inverse. First assume x is zero outside ℒ�. Then by Theorem 15, ��M�&��' =
����&��', but ���� must be ℒ�_ -periodic. So this part of the theorem is trivial. Now assume, 

conversely, that ��M�&��' is ℒ�_ -periodic. That means ��M� ∈ 	��¦,̈ [_�. Perform an inverse ℒ�/ℒL MRL-DFT to obtain a spatial domain signal %© ∈ ��[,¦�. Initially,  %© is only defined on 

points in the lattice ℒ�. Now let us extend its domain of definition to ℒMwith the rule that 

%©���� = 0 for �� ∉ ℒ�. Then �̀�M� = �̀���, and ��M� = �̀���. Therefore, ��M� = �̀�M�. Since the 

MRL-DFT is invertible, % = %©. 
We can now generalize the prior theorem to describe signals who support is restricted to a coset 

of a sublattice in the spatial domain, or a coset of a reciprocal sublattice in the frequency domain. 

Corollary 17: Let ℒL ⊂ ℒ� ⊂ ℒM, and % ∈ ��[, 2�. Then x has support only on a coset ℒ� + ��T 

for some ��T ∈ ℒM iff its MRL-DFT satisfies: 

�&�� + ��' = 	�&−< ��, ��T >'	�&��' 

Similarly, the MRL-DFT has support only on a cosetℒ�_ + ��T for some ��T ∈ ℒL_ iff it satisfies: 

%&�� + E�' = 	�&< ��T, E� >'	%���� 
Proof: For the first part, the frequency domain property can be shown to be  equivalent to the 

condition that ª&��' = 	�&< ��, ��T >'	�&��' is ℒ�_ -periodic, and the previous theorem can be 

applied. Similarly for the second statement. 

4.3. Regridding: upsampling, downsampling and general lattice conversion 

Here we discuss changing the sampling structure in the spatial or frequency domain. In classical 

sampling theory, decimation in time causes aliasing in frequency, and upsampling in time causes 

imaging distortion in frequency. These results can be mitigated by filtering, which can be 

implemented via convolution in time or windowing in frequency. Similar results occur if the 

situations are reversed, which does arise in applications that involve spectral analysis. For 

example, in MRI, spectral measurements are regridded to convenient point sets via interpolation. 

Results are given in the physical domains, in terms of MRL-DFT, and then are reduced to the 

lexicographic forms.We start with a lattice chain ℒL ⊂ ℒ� ⊂ ℒM and assume a fixed choice of 

index sets, each of which are assumed to contain 0�� where: 

ℐ�[, 2� = ℐ�[,¦� + ℐ�W, 2� 
By default, we use generator matrices U,W,V where U=WN, W=VQ, and hence U=VM with 

M=NQ. Also, we start with a signal % ∈ 	��[, 2� (periodic case) or % ∈ 	��2� (aperiodic case). 
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Definition 4: If x has support on ℒM, decimation (downsampling) of x to ℒ�, denoted � =�ℒM ↘ ℒ��%, is the restriction of x to the lattice ℒ�. That is � = %at points in ℒ�, but we set � = 0 at points in ℒM not in ℒ�. 

Definition 5: If x has support on ℒ�, upsampling of x to ℒM, denoted � = �ℒ� ↗ ℒM�%, expands 

the domain of x to ℒM by specifying � = % at points in ℒ� and � = 0 at points in ℒM not in ℒ�. 

Note that decimation does significantly change a signal, in that it discards a set of values. 

Upsampling does not truly change a signal. It is more a technical change that allows us to 

consider a denser lattice of support, but the additional values are all 0. Based on the previous 

discussion, this does not actually change the MRL-DFT, and yet we expect an imaging 

phenomenon. In fact, a signal in ��[, 2� normally has a spectrum that is completely specified by 

its support in a reciprocal unit cell SM_. However, because its MRL-DFT matches that for a signal 

in ��[,¦�, this spectrum appears in the smaller region S�_ , periodically extended via the dense 

reciprocal lattice ℒL_. With W=VQ, it turns out there are |detQ| copies of the spectrum that appear 

in SM_, and these copies are seen because changing to a denser lattice in the spatial domain 

corresponds to a wider range of support in the frequency domain. 

We expect the decimation process to introduce aliasing, which actually changes the spectral 

values. To obtain this result, note that decimation can be achieved by multiplying the original 

signal by a 1-0 function. Specifically, for a set ­, let ®­ be a signal that is 1 in ­ and 0 outside 

of ­; this is called the indicator function. Then direct computation of the ℒM/ℒL MRL-DFT 

yields that the spectrum of ®ℒ¯ is |F�G�|®ℒ¯̈ where U=WN. Decimation corresponds to 

multiplying in the spatial domain by the indicator function of the sparser lattice, and thus the 

frequency domain equivalent is governed by a convolution with an indicator function. This results 

in the following formula, which is the aliasing phenomenon: 

Theorem 18: If � = �ℒM ↘ ℒ��%, then the MRL-DFT of y is related to the MRL-DFT of x via: 

ª&��' = 1
|ℐ�W, 2�| s �

���∈ℐ�M_,�_ �
&��+ ��' 

The lexicographic definitions of decimation and upsampling, and the corresponding frequency 

domain formulas, are obtained by recognizing the matrices that relate the various lattices. For 

example, U=VM and 2̀ = [_H�.  With W=VQ and � = �ℒM ↘ ℒ��%: 

��[3��d = ��¦3��� = ��2°3��� = %�2°3��� = %M[°3��d 
Here we have been careful to define the physical matrix associated with the lexicographic 

notation. The more traditional form is to omit this, and we obtain the standard formula[3] for 

decimation of signals on $� with respect to an integer matrix Q, denoted as � = �↓ °�%, via 

�[3��d = %[°3��d 
 

Upsampling to a denser lattice, as defined here, becomes, in lexicographic form, equivalent to 

upsamplinga signal on $�with respect to an integer matrix Q, denoted � = �↑ °�%: 

 

�[3��d = �%[°JK3��d		h�	3�� ∈ °$�
0															h�		3�� ∉ °$� � 
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The following gives the lexicographic forms for aliasing and imaging in the frequency domain. 

Note that ¦_ = [_�� , 2̀ = ¦_°�. 

Corollary 19: Let ������ = �&[_���'	, ª����� = ª&[_���'.	If � = �ℒM ↘ ℒ��%then: 

ª����� = 1
|ℐ�W, 2�| s ����� + ��y����

³����∈ℐ�´��
 

and if � = �ℒ� ↗ ℒM�% then: 

	ª����� = 	�������� 
In order to avoid aliasing when decimating, we can first apply a filter H to bandlimit the signal x 

to a reciprocal unit cell S�_ . This gives rise to a decimation filter operation: 

� = �ℒM ↘ ℒ���% 
 

where the ideal filter has a spectrum �&��' = ®ℒ¯̈&��'. This can be implemented by windowing 

(multiplying pointwise) in the frequency domain, or by convolution with the inverse transform h, 

which can be computed directly via the inverse MRL-DFT. The same ideal anti-aliasing filter also 

removes imaging distortion, i.e., retains only one copy of the spectrum when upsampling. Thus, 

the ideal interpolation filter is given by: 

� = ��ℒ� ↗ ℒM�% 

We can also specify ideal filtering operations for general sampling lattice conversion. Suppose ℒL ⊂ ℒ� ⊂ ℒM and ℒL ⊂ ℒµ ⊂ ℒM but the intervening lattices ℒ� , ℒµ are not, in general a 

sublattice of the other. We want to convert a signal with support in ℒ� to one with support in ℒµ, 

with ideal filtering to suppress both aliasing and imaging. In general, this may require some 

information loss (i.e., part of the original signal band may have to be suppressed). The ideal 

sampling rate conversion process is: 

� = �ℒM ↘ ℒµ�	��ℒ� ↗ ℒM�% 

where the spectrum of H is the indicator function for S�_ ∩ Sµ̀ (actually, points in ℒL_ that lie in 

this region). 

Depending on the application, multirate filtering is not always designed to suppress aliasing or 

imaging, and in each of these configurations, the selected H may be chosen based on different 

criteria. Additionally, it is recognized that the proposed schemes are not computationally 

efficient, though they are presented in forms that are directly related to the target application. In 

an interpolation filter, for example, a signal with many 0 values is fed to the filter, and thus many 

multiply operations are multiply by 0, which is wasteful. Similarly, with a decimation filter, the 

filter is applied first, and then many computed values are discarded. The polyphase concept is 

useful in designing computationally efficient interpolation and decimation filtering algorithms, as 

well as in developing FFT algorithms.We will define polyphase components in our context 

below, both in the physical domain and in lexicographic form, and present one fundamental result 

that allows for efficient polyphase decomposition of filtering operations. 

Let ℒL ⊂ ℒ� ⊂ ℒM, and % ∈ 	��[, 2�. Then each polyphase component of x with respect to ℒ� 

is comprised of the values of x on a single coset of ℒ� inside ℒM. With W=VQ, note that there are 
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|detQ| distinct polyphase components. To be specific, each polyphase component is a signal in 

��[,¦�, indexed by points in ℒM. If ��� ∈ ℒM, then the corresponding polyphase component of x is 

defined as: 

%������� = %&�� + ���'			�¶�		�� ∈ 	ℒ� 

Selecting the vectors ��� from any valid index setℐ�¦, 2� generates all the distinct polyphase 

components. 

Theorem 20: If x,h have support in ℒM (periodic or aperiodic), and ℒ� ⊂ ℒM, then � = ℎ ∗ % 

(i.e., either circular or linear convolution) can be computed in polyphase form as: 

�³���� = s ℎ��� ∗
���∈ℐ��,M�

%³����J���  

Corollary 21: A decimation filter can be implemented efficiently via polyphase form as: 

�ℒM ↘ ℒ���ℎ ∗ %� = s ℎ��� ∗
���∈ℐ��,M�

%J���  
 

and an interpolation filter can be implemented efficiently via polyphase realization as follows: 

·ℎ ∗ &�ℒ� ↗ ℒM�%'¸��� = ℎ��� ∗ % 

We note some final remarks on polyphase representation. The roles of space and frequency can be 

reversed, and we can define polyphase components by considering cosets of sublattices in the 

frequency domain. This is useful, for example, for regridding in the frequency domain from 

limited spectral measurements, or for implementing windowing operations (pointwise 

multiplication) in the spatial domain. Combining polyphase decomposition with prior results 

regarding the Fourier transform of signals with support on a coset of a lattice (Corollary 17) also 

leads to the development of FFT algorithms (i.e., generalizations of the standard decimation-in-

time and decimation-in-frequency formulations). 

5. RESULTS 

Here we discussan example to illustrate some important concepts that were developed in this 

paper. Start with the matrix V given by: 

2 = ¹√3 √3−1 1 » 
Then ℒM is generated by two vectors of equal length at an angle of 120°	, and is called 

ahexagonal lattice [5]. We want to form multiresolution lattice chains ℒL ⊂ ℒ� ⊂ ℒM and ℒL ⊂ ℒµ ⊂ ℒM such that neither ℒ� nor ℒµ is a sublattice of the other.Then our goal is to 

describe the process of regridding, that is, for converting a signal sampled on ℒ� to one with 

support on ℒµ. In particular, we want to determine the ideal interpolation filter. 

Let us take [ = 2H where H = Fh�j{8,8}. At first, chosing diagonal M may seem simplistic, 

but recall that the Smith form of an integer matrix led to the result that we can always chose the 

generators of a lattice and sublattice so the matrices are related by a diagonal integer matrix. Now 

we can generate intervening lattices by (nontrivial) factorizations of M. Here, we will take W=VN 
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where � = Fh�j{2,1}, and P=VQ where ° = Fh�j{1,2}. We can confirm that neither ℒ� nor ℒµ 

is a sublattice of the other by checking that neither ¦JK¾ nor ¾JK¦ is an integer matrix. 

Figure 4 shows points in ℒ�, marked ‘x’, points in ℒµ, marked ‘+’, and points lying in both 

lattices marked ‘*’. Note that these common points themselves form a latticeℒ′ which is a 

sublattice of ℒ� and ℒµ, and which contains ℒL as a sublattice. The process for regridding has 

the form�ℒM ↘ ℒµ�	��ℒ� ↗ ℒM�, which means first upsample to a dense lattice, apply an 

interpolation filter H which in this case combats aliasing and imaging distortion, and downsample 

to the target lattice. In the frequency domain H has support on the reciprocal lattice  ℒL_ and is in 

fact 1 at points inside S�_ ∩ Sµ̀, and 0 outside, for some choice of unit cells. Here, we take the 

unit cell for a lattice generated by A to be �[− K
� , K���. We can check if a point �� is inside such a 

set by computing �JK��. For this example, Figure 5 shows the frequency points �� ∈ ℒL_ and 

highlights the points where ideal �&��' = 1 with filled circles. 

We can perform regridding of a signal x from ℒ� to ℒµby working in the frequency domain: 

1. Compute the ℒ�/ℒL MRL-DFT of x. 

2. Multiply pointwise by �&��', which in this case just means retain the spectral coefficients that 

lie within S�_ ∩ Sµ̀, and discard (i.e., set to 0) the rest. 

3. Compute the ℒµ/ℒL inverse MRL-DFT. 

 

Figure 4: Two lattices, marked 'x' and '+' respectively, with common points marked '*'. We wish to convert 

a signal sampled on the 'x' lattice to one with support on the '+' lattice. 

 
Figure 5: The passband of an ideal interpolation filter, as seen on the reciprocal lattice. 
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The operation can also be performed in the spatial domain. For this, we need to convolve with the 

impulse response ℎ���� of H, which has support on ℒM. The coefficients h (which are complex 

valued, in general) can be found by computing the ℒM/ℒL inverse MRL-DFT of H. The result for 

this case is shown in Figure 6. In order to illustrate the filter coefficients, we show a contour plot 

of |ℎ����| if it were computed on the continuum �� ∈ ℛ� and then mark with ‘×’ the points on ℒM 

where it should be sampled. The filter coefficients satisfy symmetry conditionsℎ�%, �� =ℎ�%,−�� = ℎ∗�−%,−�� and the values at points in the first quadrant are given in Table 1. 

Table 1: Computed ideal regridding coefficients. 

�� ¿��� À�Á��� 
�0,4� �−2,2� 2 + !0 

�√3, 5� �−2,3� 1 + !&−√2 + 1' 
�0,2� �−1,1� &√2 + 2' + !0 

�√3, 3� �−1,2� &√2 + 1' − !1 

�2√3, 4� �−1,3� 1 − !1 

�0,0� �0,0� 2 + !0 

�√3, 1� �0,1� &√2 + 2' − !√2 

�2√3, 2� �0,2� 2 − !2 

�3√3, 3� �0,3� &2 − √2' − !√2 

�2√3, 0� �1,1� &√2 + 1' − !&√2 + 1' 
�3√3, 1� �1,2� 1 − !&√2 + 1' 

�4√3, 2� �1,3� 0 − !√2 

�4√3, 0� �2,2� 0 − !2 

�5√3, 1� �2,3� &−√2 + 1' − !1 

�6√3, 0� �3,3� &−√2 + 1' + !&−√2 + 1' 

 

Then, conceptually, the spatial domain regridding algorithm is: 

1. Upsamplex from ℒ� to ℒM by inserting 0’s. 

2. Interpolate the values by convolving with h. 

3. Decimate down to ℒµ. 

This process, in reality, would be realized in polyphase form to achieve computational efficiency, 

as described in this paper. 

 
Figure 6: Ideal regridding filter coefficients, located at the lattice points marked 'x', with an indicated 

contour plot of their amplitude. 

 



Computer Science & Information Technology (CS & IT)                                   89 

 

Observe that the process of identifying sublattices, and developing multirate algorithms, such as 

regridding, is relatively straightforward because the physical nature of the spatial and frequency 

domain coordinates is retained. Directly finding the lexicographic indices of the support of the 

interpolation filter, for example, would be much more challenging than the approach taken here. 

6. FUTURE WORK 

The MRL-DFT and related results presented in this paper form the foundation for the derivation 

of a number of important signal processing algorithms. One area to be studied is the formulation 

of FFT algorithms for multiresolution lattices. The results presented here on spectral properties of 

signals with support on cosets of sublattices could potentially be used to generate general tree-

structured FFT algorithms for multiresolution lattices, in which spectral information of 

multiresolution signals can be studied directly, without conversion to a universal (high density) 

resolution. Another topic for further inquiry is formulating fast algorithms for regridding 

(interpolation), based on generalization of fast convolution operations known for 1-D (and 

separable multidimensional) cases. 

7. CONCLUSIONS 

We have presented a framework for processing signals on general, variable density sampling 

grids in the spatial and frequency domains. We formulated the signal processing operations in 

terms of physically meaningful spatial and frequency coordinates, which retains the significance 

of spatial correlations in the signal. The underlying mathematical approach was to consider lattice 

chains, and develop the MRL-DFT as the finite Fourier transform over associated quotient 

groups, This led to formulation of important relationships, such as the convolution theorem, 

aliasing and imaging associated with multirate operations, and development of interpolation 

(regridding) algorithms. We also presented techniques for analysing the lattice structures, for 

example construction of multiresolution sublattices. Special properties, such as the spectrum 

associated with signals restricted to sublatticecosets, and the polyphase form, can lead to the 

further development of special algorithms such as generalized FFT. We related our results to the 

standard lexicographic form that uses normalized integer indices. In the end, data is stored and 

processed in rectangular arrays, as computer memory has that structure, but algorithms are 

developed and understood better in a physical coordinate system. The techniques presented here 

are useful in a myriad of imaging applications where data is obtained in either the spatial or 

frequency domains on a non-rectangular grid or possibly an irregular point set with potentially 

variable density. For example, rather than being forced to artificially regrid data collected at 

variable densities to a grid with uniform density, the interpolation can be targeted for a 

multiresolution lattice structure, which can be processed directly. This can help avoid artifacts 

caused by regridding to densities that are locally too high or too low compared to that of the 

original data. 
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