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ABSTRACT 

 
A recurrent neural network with a self-organizing structure based on the dynamic analysis of a 

task is presented in this paper. The stability of the recurrent neural network is guaranteed by 

design. A dynamic analysis method to sequence the subsystems of the recurrent neural network 

according to the fitness between the subsystems and the target system is developed. The network 

is trained with the network's structure self-organized by dynamically activating subsystems of 

the network according to tasks. The experiments showed the proposed network is capable of 

activating appropriate subsystems to approximate different nonlinear dynamic systems 

regardless of the inputs. When the network was applied to the problem of simultaneously soft 

measuring the chemical oxygen demand (COD) and NH3-N in wastewater treatment process, it 

showed its ability of avoiding the coupling influence of the two parameters and thus achieved a 

more desirable outcome. 
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1. INTRODUCTION 

 
Recurrent neural networks (RNNs) have a wide range of applications in approximating complex 
dynamic systems[1-5]. Different discrete time recurrent neural networks have been appeared in 
the literature. The classical fully recurrent network[6,7] is composed of a single layer of fully 
interconnected neurons. several such recurrent layers are combined to obtain a richer 
architecture[8]. Other cases of recurrent networks are the external feedback representations [9], 
the higher-order recurrent neural networks[10], and the block-structured recurrent neural 
networks[11].  
 
To reduce the complexity of fully connected recurrent networks, a simplified network structure 
was proposed in [12], in which the feedback connections are grouped into pairs. In addition to 
many exceptional properties, this type of network architecture reduces the computational and 
storage burden of the more complex recurrent networks significantly.  The stability problem was 
subsquencially considered in [13] for the special case where the 2x2 matrix of each mutrally 
connected pair of variables is scaled orthogonal. For a network to be stable, eigenvalues of the 
corresponding matrix must be inside the unit circle on the complex plane. The approaches used in 
both [12] and [13] take advantage of the 2x2 block diagonal form of the matrix and derive the 
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conditions which ensure the eigenvalues lay within the unit circle. When each of the 2x2 diagonal 
blocks of the block diagonal matrix is scaled orthogonal, the condition is immediately clear, 
which allows the possibility for a more efficient algorithm in [13]. 
 
Our goal in this paper is to design a recurrent neural network with a self-organizing structure 
based on dynamic analysis. The key problems we need to address properly are the stability of the 
recurrent network and the self-organizing structure. 
 
In contrary to recurrent neural networks, there exist many self-organizing algorithms for feed 
forward neural networks. Most of these algorithms work by adding new neurons or deleting 
existing neurons based on sensitivity analysis (SA) for the purpose of optimizing the network 
structures [14-18]. However they cannot be adapted easily to the RNN case, since growing or 
pruning neurons will change the dynamics of an RNN. RNNs require that both the structure 
stability and the dynamic stability be guaranteed. So the RNNs have their own special self-
organizing ways.  
 
In general, we can separate the existing self-organizing RNNs into two types. One consists of 
networks with self-organized structures by changing the behaviours of individual neurons. These 
methods use the unsupervised algorithms. The echo state network (ESN) is a typical example of 
this type of networks. It has a big reservoir of neurons. Researches have proposed some self-
organizing way of this reservoir.  A biologically motivated learning rule based on neural intrinsic 
plasticity was used to optimize reservoirs of analog neurons in [19-22]. The self-organizing 
RNNs introduced in [23] combines three distinct forms of local plasticity for the learning of 
spatio-temporal patterns in the inputs while maintains the networks dynamics in a healthy regime. 
The above self-organizing RNNs are based on the idea of maximizing available information at 
each internal neuron in a self-organized way by changing the behaviours of individual neurons.  
 
Others consists of local recurrent global feed forward neural networks with growing and pruning 
algorithms which require supervised algorithms. The local recurrent global feedforward models 
proposed in [3,24-26] can easily be equipped with self-organizing structures.  A self-structuring 
neural network control method was proposed in [24] which keeps the dynamics of the network 
when the structure changed. A way to combine training and pruning for the construction of a 
recurrent radial basis function network (RRBFN) based on recursive least square (RLS) learning 
was discussed in [27]. All above methods focus on the structure stability. A growing and pruning 
method, which adjusts the structures of RNNs by modifying the subsystems, was introduced in 
[28]. This method, to the authors' knowledge, is the first time to consider the dynamic stability 
during the self-organizing process.  However, the proposed approach in [28] considers only one 
error performance index, and thus limits its ability of finding the best structure to approximate the 
target systems.  
 
The local recurrent global feedforward neural network we propose here contains two hidden 
layers. The first hidden layer, which is a feedback layer, carries the structure of the network 
introduced in [12]. The second hidden layer, for the purpose of increasing the dynamic 
characteristic of the network, ramifies some of the restrictions occur if only one hidden layer is 
used in the network, and thus makes the network closer to a fully connected network. To equip 
the network with a self-organizing structure, we developed an algorithm based on dynamic 
analysis of the task and the network. Experiments showed that our proposed network has many 
advantages over the existing RNNs. With the stability guaranteed, the two layer structure adds 
versatility to the network with minimum complexity added to the network in comparison with the 
fully connected ones, and one neural network can be used for approximating different nonlinear 
dynamic systems. 
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The organization of this paper is as follows. In Section 2, we describe the RNN structure 
proposed in this paper.  In Section 3-5, we introduce a self-organizing method to design the 
structure of proposed recurrent neural network and analysis the state stability of the network. In 
Section 6, we provide the computer simulations to validate the effectiveness of the proposed 
network, and we apply the network to an identification problem in an industrial process. Finally, 
we provide a brief conclusion in Section 7. 
 

2. STRUCTURE OF THE PROPOSED NEURAL NETWORK 

 
The network considered in this paper is a discrete-time dynamic neural network with m inputs and 
n outputs. It has two hidden layers which are the feedback hidden layer and the self-organizing 
hidden layer. A separate read-out layer maps different parts of the state space to the desired 
outputs. Though the structure of the network is similar to a multilayer perceptron, it is dynamic in 
contrary to a multilayer perceptron, since the existence of the feedback neurons. The network 

structure is shown in Figure 1. 
 

 

Figure 1. The structure of RNN  

Layer 1: Input layer. The main function of the neurons in this layer is to transmit the input data to 

the neurons in layer 2 by a weight matrix Wi. The input signal is U(k)=[u1(k), u2(k),……, um(k)]T, 

k=1,2,……, N. The weight matrix Wi performs a similar role as in static feedforward networks: Wi 

and the activation functions are responsible for the approximation properties of the model. 
 
Layer 2: Self-feedback hidden layer. The self-feedback matrix is expressed by a block diagonal 

matrix Wh=diag(W1
h,W2

h,…… , WL/2
h), where the feedback connections for each pair of mutually 

connected neurons are given by blocks of the form: 

 

The state vector of Layer 2 is X(k) = [X1(k),X2(k),……, XL(k)]T, k=1,2,……, N. The weights given 

by Wh are responsible for the model's dynamics and memory function. 
 
Layer 3: Self-organizing hidden layer. Where W34 is the connecting weight matrix between Layer 

2 and Layer 3, and x(k) = [x1(k),x2(k),……, xL(k)]T is the state vector of Layer 3. The weight 

matrix W
34, together with the activation function, are responsible for approximation properties. 

The matrix W34 performs a dynamic transferring role and enriches the dynamic characteristics of 
the network.   In this layer, the self-organizing process realized by activating the subsystems of 
the network. The ith subsystem in the network is described by the following: 
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vi(k+1) = f(xi(k+1)) = f (Wi
34 (Wh

X(k)+W
i
U(k))) 

 
where Wi

34 is the ith row vector of W34, and the vi(k) is the output. The activation function fi (•) of 
the ith subsystem is defined as: 
 

. 

Layer 4: Output layer. The output signal is y(k)=[y1(k), y2(k),……, yn(k)]T, k=1,2,……, N. And the  

W
o is the connecting weight matrix between Layer 3 and Layer 4. The activation function is a 

linear activation function.    

So the proposed RNN model can be described as: 
 

 
 
where the notation are: L represents the number of total subsystems, X∈R

L is the neural network 
state vector, U∈R

m and y∈R
n are the input and output vectors, respectively, W

i ∈R
mL × , W

h 
∈R

LL × , W34 ∈R
LL × , and Wo ∈R

Ln × . 
 
From the structure, we have that x= W34

X, so the neural network functions are described by: 
 

 

 
 
Let P = W

34
 W

h (W34)-1, we see that this network is equivalent to a fully connected recurrent neural 
network with 3 layers such that the state equations can be represented by: 
 

 

. 
From this presentation of the proposed neural network, one can see that the neurons in the hidden 
layer could be fully connected. So though our network here is a special case of the full feedback 
Wiener-type recurrent neural network (WRNN)[25], it offers a number of significant features. 
One of which is the stability of the network can easily be analysed, and this will be discussed in 
Section 3. 
 

3. SELF-ORGANIZING RECURRENT NEURAL NETWORK 

 
The self-organizing algorithm presented in this paper is based on a dynamic analysis scheme. 
Two key problems, how to organize the dynamical subsystems to work and which dynamical 
subsystems are selected to work, need to be resolved. Our approach is the following. Firstly, the 
dynamics of the system and all the subsystems are analysed and the subsystems fitness are 
computed outline. Then, depending on the task, the network self-organizes its structure online by 
activating the best-fit subsystems one by one and the weights of the output layer are trained for 
the purpose of approximating the target system. 
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3.1. Initialize the network 

 
Assume that L is sufficiently large for tasks.  Set f (•) = 0 in layer 3 and set Wo to be the zero 
vector, i.e. no subsystems are activated at the beginning and thus the outputs of neural network 
are also zeros. The rests of the weights W

i, Wh, W34 are randomly initialized.  
 
To ensure the stability of the network, a synaptic normalization (SN)[23] was used to update Wh. 
This SN proportionally adjusts the feedback connections to a neuron. Specifically, feedbacks 
weights are normalized according to: 
 

 
 

Where  is the randomly initialized value for the weight wi
h. 

3.2. Dynamic analysis 

 
Let the input be zero and let the initial network state X(0) be given by an arbitrary L dimensional 
vector.  Different subsystems have different dynamics. Some outputs of subsystems of network 
are shown in Figure 2. We can see that the outputs of the subsystems behave as many dynamical 
subsystems with different time-scale dynamics. Supporting multiple time-scales is equivalent to a 
transmission hidden layer having individual neurons with different contractive dynamics. The 
contractive dynamic is governed by the contraction coefficients of the state transition function. 
 

 

Figure 2. The outputs of the subsystems 

Among all dynamic subsystems of network, some subsystems are more fit for approximating the 
given goal system. The following is a competitive learning algorithm for the selection of 
subsystems. 
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Step 1: Giving the goal system a single pulse input signal to produce an output response 

O(k)=[O1(k), O2(k), ……, On(k)]T, k=1, 2, ……, N, which can be regarded as representatives for 

the dynamic characteristics of the system. For a chaotic time sequence system or an autonomous 

system, the outputs of the system O(k)=[O1(k), O2(k), ……, On(k)]T, k=1, 2, ……, N are the first N 

steps of the state of the system. If the magnitude of O(k) is large, the outputs need to be 
transformed into the interval (-1,1) by a Min-Max normalization method. The transformed 

outputs are marked as d(k)=[d1(k), d2(k), ……, dn(k)]T, k=1, 2, ……, N.  

 
Step 2: Giving the neural network a single pulse input signals to produce output responses of the 

network's subsystems v(k)=[v1(k), v2(k), ……, vL(k)]T, k=1, 2, ……, N. The subsystems must have 

converged in N steps. 
 
Step 3: Compute the fitness matrix F∈R

Ln × . The fitness value F(i, j) is the inverse of  

. 

If F(i, j) is the max value of the i row of F matrix, the subsystems vj can be the best fit subsystem 
for approximating the output di. 

4. SELF-ORGANIZING ALGORITHM 

 
The proposed self-organizing RNN organizes its structure online by activating the subsystems 
one by one.  Different dynamic systems are approximated by different linear combinations of the 
subsystems. The network can also improve its approximation ability by training the weights. Note 
that this is an online algorithm. Only the weights of the connections to the output readout neurons 
are modified by training.  
 
The following self-organizing algorithm is used to organize the structure of the network for 
approximating target systems. For the multiple outputs systems, we separate the outputs to  di(k), 

k=1, 2, ……, N and then approximate each of the systems di(k), k=1, 2, ……, n separately by 

following steps. 
 
Step 1: Initialize the network and create a diagonal auxiliary matrix Ψ-1(0) of size L by L, where 
L is the number of total subsystems. Define a forgetting rate ζ and activate the best fit subsystem 
vj (change the activation function fj (•) of the subsystem and set the weight Wji

o between neural 
network's output yi(k) and the best fit subsystem output vj(k)). The vector Wi

o ( ith row of output 
connection weights matrix Wo) only has one nonzero element Wji

o at the beginning. 
 
Step 2: If there are new samples, then give a new sample [u(k), di(k)], and train the vector Wi

o, 
else stop. 
 
Step 3: Compute the error ei(k), where ei(k) is defined as 
 

. 
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Step 4: If the error ei(k) < ε, go to step 2, else to step 5 , where ε is a given small value or is equal 
to a*l(k), where a is the coefficient of l(k) and l(k) is the number of  activated subsystems in the 
hidden layer at time k. 
 
Step 5: If the number of inactivated subsystems is zero, go to step 2, else to step 6. 
 
Step 6: Activate the best fit subsystem among the inactive subsystems. 
 
Step 7: Train the vector Wi

o. Then go to step 2. 
 
In this paper, the following algorithm [29] was used to train Wi

o in step 2 and step 7. 
 

(i) u(k)= Ψ-1(k-1)v(k)  [ this u is not related to the input u(k) and v(k) = [v1(k), ……, vL(k)] is 

the outputs of total subsystems. The outputs of inactivated subsystems are all zero.] 

(ii) )u(
)u()v(ζ

1
)q(

T
k

kk

k

+

= [comment: T indicates transpose] 

(iii) yi(k)=wi
o(k+1)T

v(k) 

(iv) ei(k)=di
+(k)-yi(k) [comment: one-dimensional teacher output di(k-1) =: di

+(k)] 

(v) Wi
o(k)= Wi

o(k-1)+q(k) ei(k) 

(vi) Ψ
-1(k)=ζ-1(Ψ-1(k-1)- q(k)[ v(k)T

Ψ
-1(k-1]). 

 

5. NETWORK STATE STABILITY ANALYSIS 

 
As dynamic systems, RNNs require stability analysis frequently. Global recurrent systems lead to 
difficulties in state monitoring as well as large computation task.  
 
The proposed RNN in this paper is composed of many subsystems. This built-in structure enables 
us to work with each local subsystem, and thus greatly reduce the computational complexity.  
 
Every subsystem vi(k) is a nonlinear mapping of the linear dynamic system xi(k+1), where xi(k+1) 
is the linear combination of L subsystems like this: 
 

 

Theorem 1: If the weights wi(m,n)
h;  m=1, 2; n=1, 2; i=1, 2, ……, L are normalized by the SN 

mechanism given in section 3.1, then the neural network will be stable. 
 
Proof: By Gershgorin Circle Theorem, if λ is an eigenvalue of the aforementioned 2x2 matrix, 
then λ satisfies 
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or 

 

If λ satisfies the first inequality, then  

 

Similarly, the second inequality also leads to λ < 1. It is known that if the eigenvalues of a linear 
dynamic system laying inside the unit circle on the complex plane, then the system is stable. So, 
under the assumption of the theorem, all systems ∑i are stable and thus the network is stable. 
 

6. EXAMPLES 

 
The purpose of this section is to demonstrate the capability of the proposed network using 
simulations. 
 

6.1. Predicting the Mackey-Glass Sequence 

 
Mackey-Glass Sequence is a classical benchmark problem [29,30] defined by the following 
differential equation: 

 
 

This task consists of a next-step prediction of a discrete version. It was simulated using the dde23 
solver for delay differential equations from the commercial toolbox Matlab. This solver allows 
one to specify the absolute accuracy; it was set to 1e-16. A step size of 1.0 was used. The 
resulting time series were shifted by 1 and passed through a tanh function so that they fell into a 
range of (-0.5, 0.3). From all data series thus generated, the first 1000 steps were discarded to get 
rid of initial washouts. 
 
We carried out three series of experiments here. Firstly, we did a multiple 6-fold cross validation 
for deciding the number of the maximum subsystems. Secondly, we validated the self-organizing 
ability of the network. Finally, we validated the stability of proposed algorithm.  
 
Set the system parameter to be 17, we generated 4500 time steps of the series, of which the first 
4000 time steps were used for training and the last 500 time steps were used for testing [18]. An 
initial transient of 1000 time steps was discarded before training the readout. Every element of the 
Mackey-Glass sequence was shifted by -1 and fed through the $tanh$ function. Set the coefficient 
a of the ε to 0.02 and train the samples one by one. We ran the experiments with different 
maximum number of the subsystems L for L = 2, 5, 20, 30, 50, 100, and repeat each one100 
times. The averages of the results are shown in Table 1 (The number of activated subsystems in 
the second column is the average value of 100 times experiments). The table shows that on an 
average, 5 or 6 subsystems were activated for the Mackey-Glass time sequence predicting task. 
Longer training times will be needed if there are more subsystems in the hidden layer. However, 
20 subsystems are sufficient for this task.  We also performed similar experiments for a RNN 
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with a fixed structure. The relationships between RMSE and the number of the subsystems are 
shown in Figure 3. These results also show that the 5 ~7 subsystems are sufficient for this task. 
 

 

Figure 3.  The The red (respectively, blue) line is the average training RSME, (respectively, testing RMSE) 

for different number of hidden subsystems in fix-structuring neural networks.  

Therefore, we set L =20, kept the other parameters, repeated the experiments 100 times, and 
compared the results with the other online self-organizing time sequential algorithms. The results 
are given in Table 2 (In this table, the number of nodes (average) is the number of neurons in the 
network with the structure 1-20-7-1, where the number 20 indicates there were 20 total 
subsystems in the second layer and the number 7 indicates 7 activated subsystems). 

Table 1.  Experiments results of different maximum number of the subsystems. 

L # activated subsystems (l) 

(average value) 

Time Training 

RMSE 

Testing 

RMSE 

2 2 0.2936 0.0650 0.0340 

5 5 0.3017 0.0502  0.0294 

20 5.69 0.3106 0.0457 0.0270 

30 5.78 0.3125 0.0458 0.0272 

50 5.57 0.3349 0.0431 0.0287. 

100 5.56 0.5311 0.0433 0.0283 

 
Table 2.  Comparison with other online sequential algorithms 

Algorithms Time Training 

RMSE 

Testing 

RMSE 

# nodes 

Proposed method  
(Average) 
 (Min) 

 
0.2982 
0.2928 

 
0.0448 
0.0275 

 
0.0275 
0.0138 

 
29 
27 

OS-ELM(sigmoid)[18] 7.1148 0.0177 0.0183  120 

OS-ELM(RBF)[18] 10.0603 0.0184 0.0186 120 

GGAP-RBF[17] 24.326 0.0700 0.0368 13 

MRAN[17] 57.205 0.1101 0.0337 16 

RANEKF[17] 62.674 0.0726 0.0240 23 

RAN[17] 58.127 0.1006 0.0466 39 

 
The experiments show that the proposed algorithm is a super-fast online learning algorithm. The 
OS-ELM of [18] algorithm has the best training RMSE, but the structure of the network is 
complicated. 120 nodes are needed in the network. The GGAP-RBF [17] can generate a small 
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network, but the training RMSE and test RMSE are not good. It can be seen that our method 
provides an overall improvement over the compared methods. 

 
Figure 4.  The process of the adjusting 

 
Both the changes of RMSE and the changes of the number of activated subsystems changes 
during the training process were monitored in one of the experiments. The results are shown in 
Figure 4. The results show that the network structure's convergence was guaranteed by the 
proposed self-organizing algorithm. 
 
Note that the time cost of proposed online algorithm depends on the number of total subsystems 
and the dimension of outputs of system. The larger of the number of the subsystems and the 
larger of the size of the dimension of the output system, the larger of the time cost in the training 
process. 
 

6.2. Soft-sensing problem 
 
In recent decades, wastewater problem has become one of the major environmental concerns. 
Treating wastewater at source is critical. In order to minimize microbial risk and optimize the 
treatment operation, many variables must be controlled. Biochemical oxygen demand (BOD), 
chemical oxygen demand (COD), PH level and nutrient levels are the most important ones. 
Although wastewater quality parameters can be measured by laboratory analysis, a significant 
time delay, which may range from a matter of minutes to a few days, is usually unavoidable. This 
limits the effectiveness of operation of effluent quality. Thus, a water quality prediction model is 
highly desirable for wastewater treatment. 
 
Wastewater treatment process (WWTP) is a highly nonlinear dynamic process. Subject to large 
disturbances, where different physical (such as settling) and biological phenomena are taking 
place. It is especially difficult to measure many parameters of WWTP online. These effluent 
parameters are COD and NH3-N, which indirectly represent the water organic pollution degree by 
DO consumption through microorganism metabolism (DO is an important index accords with the 
practical self-purification situation and the routes of most waste water treatment processes). The 
measuring of COD is coupled to the NH3-N. The experiment used the proposed recurrent neural 
network to predict the COD and NH3-N simultaneously. 
 
The data was from the water quality testing daily sheet of a small-sized waste water treatment 
plant. The data includes information on influent COD, influent SS, influent NH3-N, influent TN, 
influent TP, PH, and other indices. Only the six mentioned here were used to predict the effluent 
COD and NH3-N. We used the proposed recurrent neural network to model waste water treatment 
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process with the inputs being the value of the above specified six variables, and the outputs being 
the effluent COD and NH3-N. 
 
Because of the instability of real system, instead of the real WWTP, the Benchmark Simulation 
Model 1(BSM1) was used to analyse the dynamic of the waste water treatment process. The 
initialized network structure contained 30 subsystems. The fitness of all subsystems for 
approximating COD and NH3-N in WWTP are shown in Figure 5. First the dependence of the 
subsystems sequencing on the analysis of the dynamics was obtained, and then the network was 
used to approximate the effluent COD and NH3-N. The training error for COD was 0.0136 and 
the training error for NH3-N was 0.0312.  
 
The number of activated subsystems for the approximation of the effluent COD is depicted on the 
left of the Figure 6 and the number of activated subsystems for the approximation of the effluent 
NH3-N is depicted on the right of the Figure 6. The number of activated subsystems N increased 
with time and reached a fit number. The final sequence numbers of subsystems for approximating 
COD were 1, 28, 9, 6, 18, 7, 21, 13, 23. The final sequence numbers of subsystems for 
approximating NH3-N were 13, 21, 18, 24, 5, 8. Different quality parameter are needed to active 
different subsystems. This avoids the interaction of dynamic between different quality 
parameters. 
 

 

Figure 5.  Fitness of all subsystems dynamics for COD(L),NH3-N(R) dynamics in WWTP 

 

Figure 6.  Subsystem changes of approximating COD(L) and NH3-N(R) 
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7. CONCLUSIONS 

 
A new approach is proposed for creating a self-organizing recurrent neural network. The structure 
of this neural network is automatically organizing based on dynamic analysis. Comparing with 
the existing self-organizing recurrent neural networks, the self-organizing recurrent neural 
network proposed here has the following advantages: 1) It can simplify and accelerate the 
structure optimization process. 2) It is capable of solving multiple coupling problems. Due to the 
fact that different water quality models had different dynamic characteristics, neural networks 
with fixed structures face difficulties in approximating them because of the coupling among 
different factors. The proposed neural network models the multiple parameter modeling needs 
separately by activating different subsystems simultaneously, and thus is able to avoid the 
coupling and obtains a better approximating accuracy. The effectiveness and performance of the 
proposed neural network were demonstrated by applying it to solving simple task and multi-task 
problems. The experimental results provided the supporting evidences for the above claims. 
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