

Natarajan Meghanathan et al. (Eds) : ICAIT, CRYPIS, NC, ITCSE-2016

pp. 13–23, 2016. © CS & IT-CSCP 2016 DOI : 10.5121/csit.2016.60702

AVOIDING DUPLICATED COMPUTATION TO

IMPROVE THE PERFORMANCE OF PFSP ON

CUDA GPUS

Chao-Chin Wu
1*

, Kai-Cheng Wei
1
, Wei-Shen Lai

2
, Yun-Ju Li

1

1
Department of Computer Science and Information Engineering, National Changhua

University of Education, Changhua 500, Taiwan
ccwu@cc.ncue.edu.tw, kcwei@cc.ncue.edu.tw, icecloud6666@gmail.com

2
Department of Information Management,

Chienkuo Technology University, Changhua 500, Taiwan
weishenlai@gmail.com

ABSTRACT

Graphics Processing Units (GPUs) have been emerged as powerful parallel compute platforms for various

application domains. A GPU consists of hundreds or even thousands processor cores and adopts Single

Instruction Multiple Threading (SIMT) architecture. Previously, we have proposed an approach that

optimizes the Tabu Search algorithm for solving the Permutation Flowshop Scheduling Problem (PFSP)

on a GPU by using a math function to generate all different permutations, avoiding the need of placing all

the permutations in the global memory. Based on the research result, this paper proposes another

approach that further improves the performance by avoiding duplicated computation among threads,

which is incurred when any two permutations have the same prefix. Experimental results show that the

GPU implementation of our proposed Tabu Search for PFSP runs up to 1.5 times faster than another GPU

implementation proposed by Czapiński and Barnes.

KEYWORDS

GPU, CUDA, Parallel algorithm, Tabu Search, Permutation Flowshop Scheduling Problem

1. INTRODUCTION

GPUs (Graphics Processing Units) have been emerged as powerful parallel compute platforms

for various application domains. A GPU consists of hundreds, even more than one thousand, of

processing elements, making it very suitable for executing applications with big data and data-

level parallelism [1, 2]. Compute Unified Device Architecture (CUDA) [3-5] is proposed by

nVIDIA for easier programming on nVIDIA GPUs. Due to the low cost and the popular GPU-

inside desktops and laptops, more and more researchers focus on how to parallelize various

algorithms on GPU architecture. On the other hand, computational intelligence has been

successfully applied to solve many kinds of applications [6-9]. Researchers have investigated

how to use GPU computing to accelerate computational intelligence. For example, Janiak et al.

[10] proposed the GPU implementations of the Tabu Search algorithm for the Travelling

Salesman Problem and the Permutation Flowshop Scheduling Problem. Lots of research has

14 Computer Science & Information Technology (CS & IT)

reported that the optimized GPU implementations can run tens of times, or even more than one

hundred times, faster than their sequential CPU counterparts.

The Tabu Search algorithm is a neighbourhood-based and deterministic metaheuristic, which is

proposed to solve many discrete optimisation problems by Glover [11, 12]. This algorithm is

similar to the function of human’s memory. If the solution has been chosen by the previous

generation, then it cannot be chosen again until a specified time interval has passed. This way can

avoid choosing the local optimal solution to the problems. While computing the flowtime of the

permutations, we use the Tabu list to record which permutations have been chosen to produce

local optimal solutions during the previous several generations. In addition, users can set an

initial value for the so called Tabu value, which determines how many generations the

corresponding permutation cannot be used again since the permutation is selected. Whenever a

permutation is selected, it is added into the Tabu list and its corresponding Tabu value is set to

the user specified input value. Each Tabu value in the Tabu list will be decreased by one

whenever proceeding to the next generation. The permutations in the Tabu list cannot be used

until its corresponding Tabu value becomes zero. How to optimizing Tabu search on GPUs has

been discussed on several projects [13-15].

The Permutation Flowshop Scheduling Problem (PFSP) has been first proposed by Johnson [16]

in 1954. The PFSP is to find the best way to schedule many jobs to be processed on several

ordered machines, which minimizes the flowtime that is equal to the total processing time of a

permutation of the jobs. PFSP can be applied to the manufacturing and resources management in

factories and companies. Due to the large number of jobs, the sequential program for PFSP is too

slow to be adopted. GPUs have been adopted to solving the PFSP by using the Tabu search [14,

17]. To compute the flowtime of all permutations on GPUs, the previous work proposed placing

all the permutations in the global memory initially to avoid branch divergence [14]. These

permutations are produced by CPU sequentially. In each generation, each thread will read a

permutation from the global memory. For efficient global memory access, the authors of

Reference [10] proposed a data placement method that enables coalesced global memory

accesses. They arrange all the permutations in an interleaving way. In other words, all the i-th

elements of C
N

2 permutations are stored in the global memory contiguously. Following the i-th

elements are the contiguous C
N

2 (i+1)-th elements. Nevertheless, it takes time to read the

permutations from the global memory in each generation. The latency of global memory access is

about 300 to 400 cycles. Previously, we have address this problem about how to create the

appropriate numbers of threads and blocks and efficiently manage the shared memory [17].

Moreover, we propose using a math function to generate all the permutations on the fly, without

the need of generating all the permutations by CPU and placing them on the global memory.

To solve the PFSP, in each generation of Tabu search, every thread will exchange two positions

of the parent permutation to generate its child permutation. In the previous work [14,17], every

thread has to compute the flowtime by constructing the whole completion time table. However,

we have observed the following feature. If two child the two corresponding permutations share

the same prefix, completion time tables contain several identical column data between them.

More precisely, the number of identical columns equals to the legth of the same prefix .Therefore

, there is much duplicated computation between threads in the previous work[14.17]. We will

address this issue in this paper. Compared with the sequential CPU version, our new approach

can run up to 1.5 times faster.

Computer Science & Information Technology (CS & IT) 15

This paper is organized as follows. Section 2 introduces the CUDA architecture, the Permutation

Flowshop Scheduling Problem, and related parallel methods. In Section 3, our proposed approach

for implementing the PFSP on a CUDA GPU is described in detail. Section 4 demonstrates the

experimental results and analyse the performance. Finally, conclusions are given in Section 5.

2. RELATED WORK

2.1. Compute unified device architecture

The CUDA (Compute Unified Device Architecture) development environment is mainly based

on a sequential programming language, such as C/C++, and extended with some special functions

that hide most issues of GPUs [3-5]. A GPU consists of several streaming multiprocessors (SMs)

and each SM has multiple streaming processor cores [1-2]. From the software perspective, a

CUDA’s device program is organized as a hierarchy of grids, blocks and threads. To design a

CUDA device program, programmers must define a C/C++ function, called kernel. While a CPU

invokes a kernel to execute the kernel on GPU, the programmer must specify the number of

blocks and the number of threads to be created. A block will be allocated to a SM and the threads

within a block are able to communicate each other through the shared memory in the SM. Each

thread is executed on a streaming processor. One or more blocks can be executed concurrently on

a streaming multiprocessor at a time. There are hundreds or even thousands of threads within a

block on CUDA. These threads can be organized as a 1-, 2- or 3-dimensional array, as shown in

Figure 1. However, blocks can be organized as only a 1-, or 2-dimensional array.

There are many types of memory on GPU. They have different size, access time, and whether

they can be written or read by blocks and threads. The description of each memory type is as

below. Global memory is the main memory on a GPU, it can be allocated and deallocated

explicitly through invoking the CUDA APIs in the kernel to communicate the CPU with the

GPU. It has the largest memory space on the GPU, but it requires 400-600 clock cycles to

complete a read or write operation. Blocks can communicate with each other via the global

memory.

Constant memory is accessible as global memory except it is cached. A read operation takes the

same time as that for the global memory in the case of a cache miss, otherwise it is much faster.

The CPU can write and read the constant memory. It is read-only for GPU threads. Shared

memory is a very fast memory on the GPU, it is used to communicate between threads in the

same block. Data in the shared memory of a block cannot be directly accessed by other blocks.

Accessing shared memory requires only 2-4 clock cycles. Unfortunately, the memory space of

shared memory is limited. The maximum space is 16384 bytes per block for Tesla C1060. When

a thread needs more space than the shared memory, the thread has to swap out and in the data in

shared memory explicitly. Registers are the fastest memory that can only be used in the thread

scope. They are for automatic variables. The number of 32-bit register is limited up to 16384 on

each streaming multiprocessor on Tesla C1060. Local memory is used for large automatic

variables per-thread, such as arrays. Both read and write operations take the same time as that for

the global memory.

16 Computer Science & Information Technology (CS

Figure 1.

2.2. Permutation Flowshop Scheduling Problem

In the PFSP, a set of N jobs is to be processed on a set of

into R parts and go through the R

is Job k. Let Pi,j denote the processing time of Job

denoted as Ci,k, for processing Jk

permutation has its own flowtime

where

C

C

C

C

To solve the PFSP is to find the minimum of all flowtimes from all permutations. Let

permutation, then Cm,n(ωi) denotes the flowtime of the permutation

permutations of length x.

,x Cω Ω∈∀

Because the PFSP is a NP problem, it has been parallelized to shorten its execution time. For

instance, Chakroun et al. [10] used the branch

method to improve the performance of the flowshop problem on GPUs.

each thread calculates the flowtime for a permutation. Each thread is responsible for sequentially

computing the flowtime for a permutation. The advantage is that the threads have no data

dependency between each other in the block

Computer Science & Information Technology (CS & IT)

 The relations between threads, blocks, and grids

Permutation Flowshop Scheduling Problem

jobs is to be processed on a set of R machines. Each job will be divided

R machines in a predefined order. Assume Mi is Machine

denote the processing time of Job k on Machine i. Compute the flow

k on machine Mi, which is defined as the following formula. Each

permutation has its own flowtime Cm,n.

},...,2,1{},,...,2,1{

},,max{

,

,

,

,11,,,

1,0,0,0

0,10,0,

0,00,0

nkandmiwhere

CCpC

CpC

CpC

pC

kikikiki

kkk

iii

∈∈

+=

+=

+=

=

−−

−

−

To solve the PFSP is to find the minimum of all flowtimes from all permutations. Let

denotes the flowtime of the permutation ωi. Ωx denotes the set of all

)}(),...,(),(max{ ,2,1,max xnmnmnm CCCC ωωω=

Because the PFSP is a NP problem, it has been parallelized to shorten its execution time. For

[10] used the branch-and-bound algorithm and the inter

method to improve the performance of the flowshop problem on GPUs. In the inter

each thread calculates the flowtime for a permutation. Each thread is responsible for sequentially

computing the flowtime for a permutation. The advantage is that the threads have no data

dependency between each other in the block, so they do not need to synchronize with each other

machines. Each job will be divided

is Machine i, and Jk

. Compute the flowtime,

, which is defined as the following formula. Each

To solve the PFSP is to find the minimum of all flowtimes from all permutations. Let ωi is a

denotes the set of all

Because the PFSP is a NP problem, it has been parallelized to shorten its execution time. For

bound algorithm and the inter-task parallel

In the inter-task method,

each thread calculates the flowtime for a permutation. Each thread is responsible for sequentially

computing the flowtime for a permutation. The advantage is that the threads have no data

, so they do not need to synchronize with each other

Computer Science & Information Technology (CS & IT) 17

or wait for another. The disadvantage is that each thread needs a large amount of the shared

memory space for processing a permutation. It has low performance when more jobs and

machines have to be processed because threads in the same block contend for the use of the

shared memory. Due to the limitation of available shared memory space, the maximum number

of threads per block cannot be very large.

On the other hand, the intra-task method let all the threads in a block process a permutation

together. Michael et al. [11] used the intra-task method by well utilizing the characteristic of the

GPU memory, such as memory coalescing for accessing the global memory, and avoiding bank

conflict on the shared memory. They let each block be responsible for computing the flowtime of

a permutation, where multiple threads in a block work together to compute the flowtime for a

permutation. The advantage of the method is that a larger number of threads can execute the

PFSP concurrently because of using less shared memory when the flowtime of a permutation is

processed by a block. In other words, it means the elements in an anti-diagonal have no data

dependency between each other. Unfortunately, this method has two drawbasks. First, the

number of threads in each phase is not equivalent. It causes the waste of thread resources, due to

the idle threads in some phases. Second, the elements in each anti-diagonal have to wait for the

results produced by the elements in the previous anti-diagonal. It needs synchronization between

threads and blocks, making it necessary to invoke one kernel for each phase.

3. AVOIDING DUPLICATED COMPUTATION

In this section, we describe the proposed approach of avoiding duplicated computation. Section

3.1 presents the relation between the completion tables of the parent permutation and the child

permutation. Section 3.2 explains how we can use the above important observation to design an

algorithm to accelerate the execution of the completion time tables for child permutations.

3.1. Observation

For the Tabu search for PFSP, in each generation, the permutations to be processed are generated

based on the best processing order of jobs produced in the previous generation. If there are N

jobs, there will be C
N

2 permutations at most to be processed in each generation, where any

permutation leading to a job processing order the same as one in the Tabu list will be prohibited

in the generation.

In each generation of the Tabu search, each thread will be assigned on permutation to calculate

the flow time of the permutation. To accelerate the computation of the flow time, each thread will

be allocated with M words on shared memory if there are M machines in the PFSP. Shared

memory is fast memory for the scope of a CUDA block. The number of threads is limited by the

available space of shared memory if each thread requires shared memory space. In other words, if

each thread uses less shared memory space to process and compute the flowtime of a

permutation, the block can have more threads. For PFSP, the number of machines is less than that

of jobs in general. To keep the required shared memory as much as possible, the number of

shared memory words per thread is equal to the number of machines. As shown in Figure 2, if

there are 3 machines and 4 jobs, we allocate 3 shared memory words for a thread. Then, it

computes sequentially according to the order of the permutation.

18 Computer Science & Information Technology (CS

Fig. 2. The space allocation of shared memory, the completion time table,

calculating completion time within the same column

For the thread to process the permutation, J

completion time for J0 on each machine, from M

continues the computations for the subsequent jobs, J

flow time for the permutation. If we exchange the positions of J

new permutation, J0, J1, J3, J2, is generated. To compute the flow time, a thread will be assigned to

perform the same procedures as that illustrated in Figure 2

two tables in Figure 3 to show the completion times for each job on different machines f

above two permutations. Note that each call of any table contains one completion time and all the

completion time in one table are calculated one by one from top to bottom and from left to night.

As a result, the first two columns in both tables hav

first two jobs in the two permutations are both J

tables are different because the third job in the original permutation is J

new permutation is J2. Since the calculation of i

column, the results in the two third columns are diffe

columns, the same columns on both tables have

In general, assume there are a parent permutation,

derived from the parent permutation by exchanging two positions,

≦ n , 0 ≦ j ≦ n , The first (i-1) columns in the two corresponding table

have the same contents. For the subsequent columns in the two tables any pair of two columns

with the same column number must have different completion times. As a result, if we have the

completion time table of the parent permuta

permutation from the i-th column after copying the

parent permutation. In fact the computation of the first

for the child permutation is redundant if we are given the completion time table for the parent

permutation.

To solve the PFSP, at most C
N

2

search based on the parent permutation, where each child permutation is obtained by exchanging

two positions in the parent permutation. In previous world [14, 17], at most

forked in each generation and each thread is assigned with one child permutation. All threads

compute the flowtimes in parallel for their permutations because each flowtime computation

depends on only the parent permutation. Since each thread constructs a

time for its assigned permutation from the scratch based on mainly the parent permutation, too

Computer Science & Information Technology (CS & IT)

The space allocation of shared memory, the completion time table, and the register reutilization for

calculating completion time within the same column

For the thread to process the permutation, J0, J1, J2, J3, as show in Figure 2, it will calculate the

on each machine, from M0 to M2 one by one, as show in Figure 2

continues the computations for the subsequent jobs, J1, J2, J3, one by one, and finally obtain the

flow time for the permutation. If we exchange the positions of J2 and J3 on the above permutation,

, is generated. To compute the flow time, a thread will be assigned to

as that illustrated in Figure 2, except the job ordering.

to show the completion times for each job on different machines f

above two permutations. Note that each call of any table contains one completion time and all the

completion time in one table are calculated one by one from top to bottom and from left to night.

As a result, the first two columns in both tables have the same contents, respectively because the

first two jobs in the two permutations are both J0 and J1. However, the two third columns in the

tables are different because the third job in the original permutation is J3 but the third Job in the

. Since the calculation of i-th column depends in the results in

column, the results in the two third columns are different. Furthermore, for the following

columns, the same columns on both tables have different values.

assume there are a parent permutation, π0, π1, π2, … …, πn and a child permutation is

the parent permutation by exchanging two positions, πi and πj , where i<j and 0

1) columns in the two corresponding tables of completion time will

have the same contents. For the subsequent columns in the two tables any pair of two columns

with the same column number must have different completion times. As a result, if we have the

completion time table of the parent permutation, we can calculate the flowtime of the child

column after copying the (i-1)-th column in the completion table for the

parent permutation. In fact the computation of the first (i-1) columns in the completion time table

child permutation is redundant if we are given the completion time table for the parent

 child permutations will be generated in each generation of Tabu

search based on the parent permutation, where each child permutation is obtained by exchanging

two positions in the parent permutation. In previous world [14, 17], at most C
N

2 threads will be

forked in each generation and each thread is assigned with one child permutation. All threads

compute the flowtimes in parallel for their permutations because each flowtime computation

depends on only the parent permutation. Since each thread constructs all the table of completion

time for its assigned permutation from the scratch based on mainly the parent permutation, too

and the register reutilization for

, it will calculate the

show in Figure 2. Next, it

, one by one, and finally obtain the

on the above permutation,

, is generated. To compute the flow time, a thread will be assigned to

, except the job ordering. We depict

to show the completion times for each job on different machines for the

above two permutations. Note that each call of any table contains one completion time and all the

completion time in one table are calculated one by one from top to bottom and from left to night.

e the same contents, respectively because the

. However, the two third columns in the

but the third Job in the

th column depends in the results in (i-1)-th

nt. Furthermore, for the following

ld permutation is

, where i<j and 0 ≦ i

s of completion time will

have the same contents. For the subsequent columns in the two tables any pair of two columns

with the same column number must have different completion times. As a result, if we have the

tion, we can calculate the flowtime of the child

column in the completion table for the

columns in the completion time table

child permutation is redundant if we are given the completion time table for the parent

child permutations will be generated in each generation of Tabu

search based on the parent permutation, where each child permutation is obtained by exchanging

threads will be

forked in each generation and each thread is assigned with one child permutation. All threads

compute the flowtimes in parallel for their permutations because each flowtime computation

ll the table of completion

time for its assigned permutation from the scratch based on mainly the parent permutation, too

Computer Science & Information Technology (CS & IT)

much redundant computation is performed, resulting in worse performance. Therefore, we

propose an approach in the following subsection

by using Tabu search on GPU.

Fig. 3. Comparison between completion time tables of two permutations, where two positions are different

3.2. Our Proposed Approach

Instead of computing the flowtime from the empty completion time table as that adopted in the

previous for each child permutation work [14, 17], we start the computation from the

after copying the (i-1)-th column from the parent’s completion ti

we have to store all the completion time table for the parent permutation in the global memory,

which is not necessary in the previous work [14, 17]. Figure 4

proposed approach. The completion t

calculated and stored in the global memory. Assume the thread T

the parent permutation to produce his child permutation, (1, 2, 6, 4, 5, 3). T

whole second column in the completion time table of the parent permutation in the global

memory and save the column data into shared memory. Following the similar computat

procedures shown in Figure 2, T

way, T1 can avoid the computation of the first two columns, resulting in a shorter execution time.

Similarly, if T2 will exchange Jobs 4 and 6 in the parent permutation, it has to fetch the third

column from the global memory, which is used to

following columns and derive the flowtime. Totally, the computation of three columns are

avoided for T2. After the flowtimes for all possible child permutation are produced, we will select

the permutation with the minimum flowtime to become the parent permutation for the next

generation. However, in fact, the completion time table of the newly selected parent permutation

does not exist because all column data are stored in the same shared memory of one

size, as shown in Figure 4. At the end, only the last column data are stored in shared memory.

Note that it is impossible to store all the information about the whole completion time table in

shared memory for every thread because of the limited shared memor

impossible to know which child permutation will become the parent permutation for the next

generation before the flowtimes of all possible child permutations are calculated. One possible

solution to address the above problem is that eve

memory. However, this solution will result in high overhead due to a large amount of long

latency global memory access.

Computer Science & Information Technology (CS & IT)

much redundant computation is performed, resulting in worse performance. Therefore, we

propose an approach in the following subsection to accelerate the execution of solving the PFSP

Comparison between completion time tables of two permutations, where two positions are different

in the permutations

Our Proposed Approach

Instead of computing the flowtime from the empty completion time table as that adopted in the

previous for each child permutation work [14, 17], we start the computation from the

column from the parent’s completion time table. To achieve the goal,

we have to store all the completion time table for the parent permutation in the global memory,

previous work [14, 17]. Figure 4 demonstrates an example of our

proposed approach. The completion time table for the parent permutation, (1, 2, 3, 4, 5, 6), is

calculated and stored in the global memory. Assume the thread T1, will exchange Jobs 3 and 6 in

the parent permutation to produce his child permutation, (1, 2, 6, 4, 5, 3). T1 has to fetch the

ole second column in the completion time table of the parent permutation in the global

memory and save the column data into shared memory. Following the similar computat

, T1 can calculate the flowtime for its child permutati

can avoid the computation of the first two columns, resulting in a shorter execution time.

will exchange Jobs 4 and 6 in the parent permutation, it has to fetch the third

column from the global memory, which is used to calculate the completion times for the

following columns and derive the flowtime. Totally, the computation of three columns are

. After the flowtimes for all possible child permutation are produced, we will select

imum flowtime to become the parent permutation for the next

generation. However, in fact, the completion time table of the newly selected parent permutation

does not exist because all column data are stored in the same shared memory of one-

e, as shown in Figure 4. At the end, only the last column data are stored in shared memory.

Note that it is impossible to store all the information about the whole completion time table in

shared memory for every thread because of the limited shared memory space. Also it is

impossible to know which child permutation will become the parent permutation for the next

generation before the flowtimes of all possible child permutations are calculated. One possible

solution to address the above problem is that every thread writes all its column data to the global

memory. However, this solution will result in high overhead due to a large amount of long

 19

much redundant computation is performed, resulting in worse performance. Therefore, we

to accelerate the execution of solving the PFSP

Comparison between completion time tables of two permutations, where two positions are different

Instead of computing the flowtime from the empty completion time table as that adopted in the

previous for each child permutation work [14, 17], we start the computation from the i-th column

me table. To achieve the goal,

we have to store all the completion time table for the parent permutation in the global memory,

demonstrates an example of our

ime table for the parent permutation, (1, 2, 3, 4, 5, 6), is

, will exchange Jobs 3 and 6 in

has to fetch the

ole second column in the completion time table of the parent permutation in the global

memory and save the column data into shared memory. Following the similar computation

can calculate the flowtime for its child permutation. In this

can avoid the computation of the first two columns, resulting in a shorter execution time.

will exchange Jobs 4 and 6 in the parent permutation, it has to fetch the third

calculate the completion times for the

following columns and derive the flowtime. Totally, the computation of three columns are

. After the flowtimes for all possible child permutation are produced, we will select

imum flowtime to become the parent permutation for the next

generation. However, in fact, the completion time table of the newly selected parent permutation

-table-column

e, as shown in Figure 4. At the end, only the last column data are stored in shared memory.

Note that it is impossible to store all the information about the whole completion time table in

y space. Also it is

impossible to know which child permutation will become the parent permutation for the next

generation before the flowtimes of all possible child permutations are calculated. One possible

ry thread writes all its column data to the global

memory. However, this solution will result in high overhead due to a large amount of long-

20 Computer Science & Information Technology (CS

Fig. 4 Avoiding duplicated computation when calculating the completion time table of child permutations

We adopt another solution to address the above problem. After the new parent permutation is

selected, we use one thread block to calculate the completion time table of the new parent

permutation and store the table in global memory.

construct the completion time table for the next parent permutation, which is the unique overhead

for our approach comparing the previous work [14, 17]. Therefore, minimizing the execution

time of constructing the table is the key issue of the success of our proposed approach. We

parallelize the above table construction with a single thread block

Because of the data dependency, the completion time table construction, is parallelized

diagonally. In the example shown in Figure 5

construction consists of 7 phases, indicated by dash lines wit

of threads required is 4. Between any two consecutive phases, we need to insert a synchronization

to enforce data consistency between threads.

Computer Science & Information Technology (CS & IT)

Avoiding duplicated computation when calculating the completion time table of child permutations

from the one of the parent permutation.

We adopt another solution to address the above problem. After the new parent permutation is

d block to calculate the completion time table of the new parent

permutation and store the table in global memory. In our proposed approach, we need to

construct the completion time table for the next parent permutation, which is the unique overhead

r approach comparing the previous work [14, 17]. Therefore, minimizing the execution

time of constructing the table is the key issue of the success of our proposed approach. We

parallelize the above table construction with a single thread block [11], as shown in Figure 5

Because of the data dependency, the completion time table construction, is parallelized

In the example shown in Figure 5, there are 4 machines and 4 jobs. The table

construction consists of 7 phases, indicated by dash lines with numbers. The maximum number

of threads required is 4. Between any two consecutive phases, we need to insert a synchronization

to enforce data consistency between threads.

Avoiding duplicated computation when calculating the completion time table of child permutations

We adopt another solution to address the above problem. After the new parent permutation is

d block to calculate the completion time table of the new parent

In our proposed approach, we need to

construct the completion time table for the next parent permutation, which is the unique overhead

r approach comparing the previous work [14, 17]. Therefore, minimizing the execution

time of constructing the table is the key issue of the success of our proposed approach. We

own in Figure 5.

Because of the data dependency, the completion time table construction, is parallelized

, there are 4 machines and 4 jobs. The table

h numbers. The maximum number

of threads required is 4. Between any two consecutive phases, we need to insert a synchronization

Computer Science & Information Technology (CS & IT)

Fig. 5. The parallelization of building the completion time table of the next par

4. EXPERIMENT RESULTS

The Tabu Search for PFSP is written in C and evaluated on an

GB memory and NVIDIA Tesla C2050 with 448 CUDA cores

configurations are shown in Table 1.

approaches of ours and Czapi

Problem using the Tabu Search algorithm. The operating system instal

is Ubuntu 11.10, 32-bit.

Table 1. The specifications of the Intel Pentium CPU and the NVIDIA Tesla C2050.

Intel® Pentium® D

of Cores 2

of Threads 2

Clock Speed 3GHz

Memory Size 2GB

Memory Types DDR2 667

Cache 2MB

We show the speedups of our approach over the

we vary the numbers of the machines, jobs and generations. The speedup is derived from dividing

the execution time of our approach by the execution time of

the shared memory size (SMs) is either 16 MB or 48 MB.

and (# of jobs) is smaller than or equal to 3000, our approach would degrade the performance.

The reason is as follows. (1) The number of columns that we have no need to re

rather limited. (2) The computation time of constructing the next parent permutation the

completion time table of significantly increases the critical path of the whole execution.

other hand, when the product is bigger than or equal to 5000, our approach

previous work. The larger the product, the higher the speedup. The reason is because we can

avoid more duplicated computation for larger problem sizes.

Computer Science & Information Technology (CS & IT)

The parallelization of building the completion time table of the next parent permutation by one

thread block.

ESULTS

The Tabu Search for PFSP is written in C and evaluated on an Intel Pentium 2.5 GHz CPU with

Tesla C2050 with 448 CUDA cores and 2.6 GB memory. Detailed

configurations are shown in Table 1. We use CUDA version 4.2 to implement

Czapiński and Barnes’, for the Permutation Flowshop Scheduling

Problem using the Tabu Search algorithm. The operating system installed is Linux and its version

The specifications of the Intel Pentium CPU and the NVIDIA Tesla C2050.

Intel® Pentium® D NVIDIA Tesla C2050

of GPUs 1

Processor cores 448

3GHz Clock Speed 1.15GHz

2GB Memory Size 2.6GB

DDR2 667 Memory Types GDDR5

2MB Memory Clock 800MHz

We show the speedups of our approach over the Czapiński and Barnes’ method in Table 2, where

we vary the numbers of the machines, jobs and generations. The speedup is derived from dividing

the execution time of our approach by the execution time of Czapiński and Barnes’ method. Also,

s) is either 16 MB or 48 MB. When the product of (# of machines)

and (# of jobs) is smaller than or equal to 3000, our approach would degrade the performance.

The reason is as follows. (1) The number of columns that we have no need to re

r limited. (2) The computation time of constructing the next parent permutation the

completion time table of significantly increases the critical path of the whole execution.

other hand, when the product is bigger than or equal to 5000, our approach outperforms the

previous work. The larger the product, the higher the speedup. The reason is because we can

avoid more duplicated computation for larger problem sizes.

 21

ent permutation by one

2.5 GHz CPU with 2

B memory. Detailed

.2 to implement both the

for the Permutation Flowshop Scheduling

led is Linux and its version

The specifications of the Intel Pentium CPU and the NVIDIA Tesla C2050.

and Barnes’ method in Table 2, where

we vary the numbers of the machines, jobs and generations. The speedup is derived from dividing

and Barnes’ method. Also,

When the product of (# of machines)

and (# of jobs) is smaller than or equal to 3000, our approach would degrade the performance.

The reason is as follows. (1) The number of columns that we have no need to re-calculate is

r limited. (2) The computation time of constructing the next parent permutation the

completion time table of significantly increases the critical path of the whole execution. On the

outperforms the

previous work. The larger the product, the higher the speedup. The reason is because we can

22 Computer Science & Information Technology (CS & IT)

Table 2. Speedups of Tabu Search for PFSP, compared with the Czapiński and Barnes’ method

5. CONCLUSION

In this paper, an approach of avoiding duplicated computation was presented for the Tabu Search

algorithm to solve PFSP on a CUDA GPU. In the previous work, each thread has to calculate the

whole completion time table for its assigned child permutation in every iteration. However, we

have observed that most child permutations has the same prefix as the parent permutation. Using

this observation, we have proposed a new approach. One thread block builds the completion time

table of the next parent permutation in parallel and stores the table in the global memory. Each

thread fetches the table data of the column, from the global memory, corresponding to the last job

in the same prefix. Next, each thread calculates the flowtime according to the column data,

without the need of constructing the whole completion time table for its child permutation.

Experimental results demonstrated our approach has the best speedup up to 1.5, comparing with

the previous work.

In further work, we will apply more optimization techniques of CUDA and utilize the features of

a GPU workstation to optimize the Tabu search algorithm, such as how to efficiently manage

device memories, synchronize blocks, and reduce the number of computing subtasks.

ACKNOWLEDGMENT

The authors would like to thank the Ministry of Science and Technology, Taiwan, for financially

supporting this research under Contract No. MOST104-2221-E-018-007.

REFERENCES

[1] Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Kruger, J., Lefohn, A.E., Purcell, T.J.: A

survey of general-purpose computation on graphics hardware. Computer Graphics Forum 26, pp. 80–

113, (2007)

Computer Science & Information Technology (CS & IT) 23

[2] NVIDIA GPU, http://www.nvidia.com/object/cuda_home_new.html.

[3] NVIDIA GPU Programming Guide, http://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html.

[4] Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors. NVIDIA.

[5] Oster, Brent: Programming the CUDA Architecture: A Look at GPU Computing. Electronic Design,

Vol. 57, Issue 7. (2009)

[6] Ge, M., Wang, Q.-G., Chiu, M.-S., Lee, T.-H., Hang, C.-C., Teo, K.-H.: An effective technique for

batch process optimization with application to crystallization. Chemical Engineering Research and

Design, Vol. 78, No. 1, pp. 99-106. (2000)

[7] Precup, R.-E., David, R.-C., Petriu, E. M., Preitl, S. Radac, M.-B.: Novel adaptive gravitational

search algorithm for fuzzy controlled servo systems. IEEE Transactions on Industrial Informatics,

Vol. 8, No. 4, pp. 791–800. (2012)

[8] Saha, S. K., Ghoshal, S. P., Kar, R. Mandal, D. Cat swarm optimization algorithm for optimal linear

phase FIR filter design. ISA Transactions, Vol. 52, No. 6, pp. 781-794. (2013)

[9] Yazdani, D., Nasiri, B., Azizi, R. Sepas-Moghaddam, A., Meybodi, M. R.: Optimization in dynamic

environments utilizing a novel method based on particle swarm optimization. International Journal of

Artificial Intelligence, Vol. 11, No. A13, pp. 170-192. (2013)

[10] Bożejko, W., Wodecki, M.: Parallel genetic algorithm for the flow shop scheduling problem. Lecture

Notes in Computer Science, Vol.3019, pp.566–571. (2004)

[11] Glover, F.: Tabu search—part I. ORSA Journal on Computing 1, Vol.3, pp.190-206. (1989)

[12] Glover, F.: Tabu search—part II. ORSA Journal on Computing 2, Vol.1, pp.4-32. (1990)

[13] Janiak, A., Janiak, W., Lichtenstein, M.: Tabu search on GPU. Journal of Universal Computer

Science 14, Vol.14, pp.2416–2427. (2008)

[14] Czapiński, M., Barnes, S.: Tabu Search with two approaches to parallel flowshop evaluation on

CUDA platform. J. Parallel Distrib. Comput., Vol.71, pp.802-811. (2011)

[15] Chakroun, I. Bendjoudi, A. Melab, N. Reducing Thread Divergence in GPU-Based B&B Applied to

the Flow-Shop Problem. PPAM. (2011)

[16] Johnson, S.M.: Optimal two- and three-stage production schedules with setup times included. Naval

Research Logistics Quarterly 1, Vol.1, pp.61-68. (1954)

[17] Liang-Tsung Huang, Syun-Sheng Jhan, Yun-Ju Li, Chao-Chin Wu, “Solving the Permutation

Problem Efficiently for Tabu Search on CUDA GPUs,” 6th International Conference on

Computational Collective Intelligence Technologies and Applications, LNAI 8733, pp. 342-352,

24th-26th September 2014, Seoul, Korea.

