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ABSTRACT 

 

Graphics Processing Units (GPUs) have been emerged as powerful parallel compute platforms for various 

application domains. A GPU consists of hundreds or even thousands processor cores and adopts Single 

Instruction Multiple Threading (SIMT) architecture. Previously, we have proposed an approach that 

optimizes the Tabu Search algorithm for solving the Permutation Flowshop Scheduling Problem (PFSP) 

on a GPU by using a math function to generate all different permutations, avoiding the need of placing all 

the permutations in the global memory. Based on the research result, this paper proposes another 

approach that further improves the performance by avoiding duplicated computation among threads, 

which is incurred when any two permutations have the same prefix. Experimental results show that the 

GPU implementation of our proposed Tabu Search for PFSP runs up to 1.5 times faster than another GPU 

implementation proposed by Czapiński and Barnes. 
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1. INTRODUCTION 
 

GPUs (Graphics Processing Units) have been emerged as powerful parallel compute platforms 

for various application domains. A GPU consists of hundreds, even more than one thousand, of 

processing elements, making it very suitable for executing applications with big data and data-

level parallelism [1, 2]. Compute Unified Device Architecture (CUDA) [3-5] is proposed by 

nVIDIA for easier programming on nVIDIA GPUs. Due to the low cost and the popular GPU-

inside desktops and laptops, more and more researchers focus on how to parallelize various 

algorithms on GPU architecture. On the other hand, computational intelligence has been 

successfully applied to solve many kinds of applications [6-9]. Researchers have investigated 

how to use GPU computing to accelerate computational intelligence. For example, Janiak et al. 

[10] proposed the GPU implementations of the Tabu Search algorithm for the Travelling 

Salesman Problem and the Permutation Flowshop Scheduling Problem. Lots of research has 
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reported that the optimized GPU implementations can run tens of times, or even more than one 

hundred times, faster than their sequential CPU counterparts.  

 

The Tabu Search algorithm is a neighbourhood-based and deterministic metaheuristic, which is 

proposed to solve many discrete optimisation problems by Glover [11, 12]. This algorithm is 

similar to the function of human’s memory. If the solution has been chosen by the previous 

generation, then it cannot be chosen again until a specified time interval has passed. This way can 

avoid choosing the local optimal solution to the problems. While computing the flowtime of the 

permutations, we use the Tabu list to record which permutations have been chosen to produce 

local optimal solutions during the previous several generations. In addition, users can set an 

initial value for the so called Tabu value, which determines how many generations the 

corresponding permutation cannot be used again since the permutation is selected. Whenever a 

permutation is selected, it is added into the Tabu list and its corresponding Tabu value is set to 

the user specified input value. Each Tabu value in the Tabu list will be decreased by one 

whenever proceeding to the next generation. The permutations in the Tabu list cannot be used 

until its corresponding Tabu value becomes zero. How to optimizing Tabu search on GPUs has 

been discussed on several projects [13-15].   

 

The Permutation Flowshop Scheduling Problem (PFSP) has been first proposed by Johnson [16] 

in 1954. The PFSP is to find the best way to schedule many jobs to be processed on several 

ordered machines, which minimizes the flowtime that is equal to the total processing time of a 

permutation of the jobs. PFSP can be applied to the manufacturing and resources management in 

factories and companies. Due to the large number of jobs, the sequential program for PFSP is too 

slow to be adopted. GPUs have been adopted to solving the PFSP by using the Tabu search [14, 

17]. To compute the flowtime of all permutations on GPUs, the previous work proposed placing 

all the permutations in the global memory initially to avoid branch divergence [14]. These 

permutations are produced by CPU sequentially. In each generation, each thread will read a 

permutation from the global memory. For efficient global memory access, the authors of 

Reference [10] proposed a data placement method that enables coalesced global memory 

accesses. They arrange all the permutations in an interleaving way. In other words, all the i-th 

elements of C
N

2 permutations are stored in the global memory contiguously. Following the i-th 

elements are the contiguous C
N

2 (i+1)-th elements. Nevertheless, it takes time to read the 

permutations from the global memory in each generation. The latency of global memory access is 

about 300 to 400 cycles. Previously, we have address this problem about how to create the 

appropriate numbers of threads and blocks and efficiently manage the shared memory [17]. 

Moreover, we propose using a math function to generate all the permutations on the fly, without 

the need of generating all the permutations by CPU and placing them on the global memory. 

 

To solve the PFSP, in each generation of Tabu search, every thread will exchange two positions 

of the parent permutation to generate its child permutation. In the previous work [14,17], every 

thread has to compute the flowtime by constructing the whole completion time table. However, 

we have observed the following feature. If two child the two corresponding permutations share 

the same prefix, completion time tables contain several identical column data between them. 

More precisely, the number of identical columns equals to the legth of the same prefix .Therefore 

, there is much duplicated computation between threads in the previous work[14.17]. We will 

address this issue in this paper. Compared with the sequential CPU version, our new approach 

can run up to 1.5 times faster. 
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This paper is organized as follows. Section 2 introduces the CUDA architecture, the Permutation 

Flowshop Scheduling Problem, and related parallel methods. In Section 3, our proposed approach 

for implementing the PFSP on a CUDA GPU is described in detail. Section 4 demonstrates the 

experimental results and analyse the performance. Finally, conclusions are given in Section 5. 

 

2. RELATED WORK 
 

2.1. Compute unified device architecture 
 

The CUDA (Compute Unified Device Architecture) development environment is mainly based 

on a sequential programming language, such as C/C++, and extended with some special functions 

that hide most issues of GPUs [3-5]. A GPU consists of several streaming multiprocessors (SMs) 

and each SM has multiple streaming processor cores [1-2]. From the software perspective, a 

CUDA’s device program is organized as a hierarchy of grids, blocks and threads. To design a 

CUDA device program, programmers must define a C/C++ function, called kernel. While a CPU 

invokes a kernel to execute the kernel on GPU, the programmer must specify the number of 

blocks and the number of threads to be created. A block will be allocated to a SM and the threads 

within a block are able to communicate each other through the shared memory in the SM. Each 

thread is executed on a streaming processor. One or more blocks can be executed concurrently on 

a streaming multiprocessor at a time. There are hundreds or even thousands of threads within a 

block on CUDA. These threads can be organized as a 1-, 2- or 3-dimensional array, as shown in 

Figure 1. However, blocks can be organized as only a 1-, or 2-dimensional array. 

 

There are many types of memory on GPU. They have different size, access time, and whether 

they can be written or read by blocks and threads. The description of each memory type is as 

below. Global memory is the main memory on a GPU, it can be allocated and deallocated 

explicitly through invoking the CUDA APIs in the kernel to communicate the CPU with the 

GPU. It has the largest memory space on the GPU, but it requires 400-600 clock cycles to 

complete a read or write operation. Blocks can communicate with each other via the global 

memory. 

 

Constant memory is accessible as global memory except it is cached. A read operation takes the 

same time as that for the global memory in the case of a cache miss, otherwise it is much faster. 

The CPU can write and read the constant memory. It is read-only for GPU threads. Shared 

memory is a very fast memory on the GPU, it is used to communicate between threads in the 

same block. Data in the shared memory of a block cannot be directly accessed by other blocks. 

Accessing shared memory requires only 2-4 clock cycles. Unfortunately, the memory space of 

shared memory is limited. The maximum space is 16384 bytes per block for Tesla C1060. When 

a thread needs more space than the shared memory, the thread has to swap out and in the data in 

shared memory explicitly. Registers are the fastest memory that can only be used in the thread 

scope. They are for automatic variables. The number of 32-bit register is limited up to 16384 on 

each streaming multiprocessor on Tesla C1060. Local memory is used for large automatic 

variables per-thread, such as arrays. Both read and write operations take the same time as that for 

the global memory.  
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Figure 1. 

2.2. Permutation Flowshop Scheduling Problem

In the PFSP, a set of N jobs is to be processed on a set of 

into R parts and go through the R

is Job k. Let Pi,j denote the processing time of Job 

denoted as Ci,k, for processing Jk

permutation has its own flowtime 

where

C

C

C

C

To solve the PFSP is to find the minimum of all flowtimes from all permutations. Let 

permutation, then Cm,n(ωi) denotes the flowtime of the permutation 

permutations of length x.   

,x Cω Ω∈∀

Because the PFSP is a NP problem, it has been parallelized to shorten its execution time. For 

instance, Chakroun et al. [10] used the branch

method to improve the performance of the flowshop problem on GPUs. 

each thread calculates the flowtime for a permutation. Each thread is responsible for sequentially 

computing the flowtime for a permutation. The advantage is that the threads have no data 

dependency between each other in the block
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 The relations between threads, blocks, and grids 
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jobs is to be processed on a set of R machines. Each job will be divided 

R machines in a predefined order. Assume Mi is Machine 

denote the processing time of Job k on Machine i. Compute the flow

k on machine Mi, which is defined as the following formula. Each 

permutation has its own flowtime Cm,n. 
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To solve the PFSP is to find the minimum of all flowtimes from all permutations. Let 

denotes the flowtime of the permutation ωi. Ωx denotes the set of all 

)}(),...,(),(max{ ,2,1,max xnmnmnm CCCC ωωω=  

Because the PFSP is a NP problem, it has been parallelized to shorten its execution time. For 

[10] used the branch-and-bound algorithm and the inter

method to improve the performance of the flowshop problem on GPUs. In the inter

each thread calculates the flowtime for a permutation. Each thread is responsible for sequentially 

computing the flowtime for a permutation. The advantage is that the threads have no data 

dependency between each other in the block, so they do not need to synchronize with each other 

machines. Each job will be divided 

is Machine i, and Jk 

. Compute the flowtime, 

, which is defined as the following formula. Each 

To solve the PFSP is to find the minimum of all flowtimes from all permutations. Let ωi is a 

denotes the set of all 

Because the PFSP is a NP problem, it has been parallelized to shorten its execution time. For 

bound algorithm and the inter-task parallel 

In the inter-task method, 

each thread calculates the flowtime for a permutation. Each thread is responsible for sequentially 

computing the flowtime for a permutation. The advantage is that the threads have no data 

, so they do not need to synchronize with each other 
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or wait for another. The disadvantage is that each thread needs a large amount of the shared 

memory space for processing a permutation. It has low performance when more jobs and 

machines have to be processed because threads in the same block contend for the use of the 

shared memory. Due to the limitation of available shared memory space, the maximum number 

of threads per block cannot be very large.  

On the other hand, the intra-task method let all the threads in a block process a permutation 

together. Michael et al. [11] used the intra-task method by well utilizing the characteristic of the 

GPU memory, such as memory coalescing for accessing the global memory, and avoiding bank 

conflict on the shared memory. They let each block be responsible for computing the flowtime of 

a permutation, where multiple threads in a block work together to compute the flowtime for a 

permutation. The advantage of the method is that a larger number of threads can execute the 

PFSP concurrently because of using less shared memory when the flowtime of a permutation is 

processed by a block. In other words, it means the elements in an anti-diagonal have no data 

dependency between each other. Unfortunately, this method has two drawbasks. First, the 

number of threads in each phase is not equivalent. It causes the waste of thread resources, due to 

the idle threads in some phases. Second, the elements in each anti-diagonal have to wait for the 

results produced by the elements in the previous anti-diagonal. It needs synchronization between 

threads and blocks, making it necessary to invoke one kernel for each phase. 

 

3. AVOIDING DUPLICATED COMPUTATION 

 
In this section, we describe the proposed approach of avoiding duplicated computation. Section 

3.1 presents the relation between the completion tables of the parent permutation and the child 

permutation. Section 3.2 explains how we can use the above important observation to design an 

algorithm to accelerate the execution of the completion time tables for child permutations. 
 

3.1. Observation 
 

For the Tabu search for PFSP, in each generation, the permutations to be processed are generated 

based on the best processing order of jobs produced in the previous generation. If there are N 

jobs, there will be C
N

2 permutations at most to be processed in each generation, where any 

permutation leading to a job processing order the same as one in the Tabu list will be prohibited 

in the generation.  

 

In each generation of the Tabu search, each thread will be assigned on permutation to calculate 

the flow time of the permutation. To accelerate the computation of the flow time, each thread will 

be allocated with M words on shared memory if there are M machines in the PFSP. Shared 

memory is fast memory for the scope of a CUDA block. The number of threads is limited by the 

available space of shared memory if each thread requires shared memory space. In other words, if 

each thread uses less shared memory space to process and compute the flowtime of a 

permutation, the block can have more threads. For PFSP, the number of machines is less than that 

of jobs in general. To keep the required shared memory as much as possible, the number of 

shared memory words per thread is equal to the number of machines. As shown in Figure 2, if 

there are 3 machines and 4 jobs, we allocate 3 shared memory words for a thread. Then, it 

computes sequentially according to the order of the permutation. 
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Fig. 2. The space allocation of shared memory, the completion time table, 

calculating completion time within the same column

For the thread to process the permutation, J

completion time for J0 on each machine, from M

continues the computations for the subsequent jobs, J

flow time for the permutation. If we exchange the positions of J

new permutation, J0, J1, J3, J2, is generated. To compute the flow time, a thread will be assigned to 

perform the same procedures as that illustrated in Figure 2

two tables in Figure 3 to show the completion times for each job on different machines f

above two permutations. Note that each call of any table contains one completion time and all the 

completion time in one table are calculated one by one from top to bottom and from left to night. 

As a result, the first two columns in both tables hav

first two jobs in the two permutations are both J

tables are different because the third job in the original permutation is J

new permutation is J2. Since the calculation of i

column, the results in the two third columns are diffe

columns, the same columns on both tables have

In general, assume there are a parent permutation, 

derived from the parent permutation by  exchanging two positions, 

≦ n , 0 ≦ j ≦ n , The first (i-1) columns in the two corresponding table

have the same contents. For the subsequent columns in the two tables any pair of two columns 

with the same column number must have different completion times. As a result, if we have the 

completion time table of the parent permuta

permutation from the i-th column after copying the 

parent permutation. In fact the computation of the first 

for the child permutation is redundant if we are given the completion time table for the parent 

permutation. 

To solve the PFSP, at most C
N

2 

search based on the parent permutation, where each child permutation is obtained by exchanging 

two positions in the parent permutation. In previous world [14, 17], at most 

forked in each generation and each thread is assigned with one child permutation. All threads 

compute the flowtimes in parallel for their permutations because each flowtime computation 

depends on only the parent permutation. Since each thread constructs a

time for its assigned permutation from the scratch based on mainly the parent permutation, too 
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The space allocation of shared memory, the completion time table, and the register reutilization for 

calculating completion time within the same column 

For the thread to process the permutation, J0, J1, J2, J3, as show in Figure 2, it will calculate the 

on each machine, from M0 to M2 one by one, as show in Figure 2

continues the computations for the subsequent jobs, J1, J2, J3, one by one, and finally obtain the 

flow time for the permutation. If we exchange the positions of J2 and J3 on the above permutation, 

, is generated. To compute the flow time, a thread will be assigned to 

as that illustrated in Figure 2, except the job ordering. 

to show the completion times for each job on different machines f

above two permutations. Note that each call of any table contains one completion time and all the 

completion time in one table are calculated one by one from top to bottom and from left to night. 

As a result, the first two columns in both tables have the same contents, respectively because the 

first two jobs in the two permutations are both J0 and J1. However, the two third columns in the 

tables are different because the third job in the original permutation is J3 but the third Job in the 

. Since the calculation of i-th column depends in the results in 

column, the results in the two third columns are different. Furthermore, for the following 

columns, the same columns on both tables have different values. 

assume there are a parent permutation, π0, π1, π2, … …, πn and a child permutation is 

the parent permutation by  exchanging two positions, πi and πj , where i<j and 0 

1) columns in the two corresponding tables of completion time will 

have the same contents. For the subsequent columns in the two tables any pair of two columns 

with the same column number must have different completion times. As a result, if we have the 

completion time table of the parent permutation, we can calculate the flowtime of the child 

column after copying the (i-1)-th column in the completion table for the 

parent permutation. In fact the computation of the first (i-1) columns in the completion time table 

child permutation is redundant if we are given the completion time table for the parent 

 child permutations will be generated in each generation of Tabu 

search based on the parent permutation, where each child permutation is obtained by exchanging 

two positions in the parent permutation. In previous world [14, 17], at most C
N

2 threads will be

forked in each generation and each thread is assigned with one child permutation. All threads 

compute the flowtimes in parallel for their permutations because each flowtime computation 

depends on only the parent permutation. Since each thread constructs all the table of completion 

time for its assigned permutation from the scratch based on mainly the parent permutation, too 

and the register reutilization for 

, it will calculate the 

show in Figure 2. Next, it 

, one by one, and finally obtain the 

on the above permutation, 

, is generated. To compute the flow time, a thread will be assigned to 

, except the job ordering. We depict 

to show the completion times for each job on different machines for the 

above two permutations. Note that each call of any table contains one completion time and all the 

completion time in one table are calculated one by one from top to bottom and from left to night. 

e the same contents, respectively because the 

. However, the two third columns in the 

but the third Job in the 

th column depends in the results in (i-1)-th 

nt. Furthermore, for the following 

ld permutation is 

, where i<j and 0 ≦ i 

s of completion time will 

have the same contents. For the subsequent columns in the two tables any pair of two columns 

with the same column number must have different completion times. As a result, if we have the 

tion, we can calculate the flowtime of the child 

column in the completion table for the 

columns in the completion time table 

child permutation is redundant if we are given the completion time table for the parent 

child permutations will be generated in each generation of Tabu 

search based on the parent permutation, where each child permutation is obtained by exchanging 

threads will be 

forked in each generation and each thread is assigned with one child permutation. All threads 

compute the flowtimes in parallel for their permutations because each flowtime computation 

ll the table of completion 

time for its assigned permutation from the scratch based on mainly the parent permutation, too 
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much redundant computation is performed, resulting in worse performance. Therefore, we 

propose an approach in the following subsection

by using Tabu search on GPU. 

 

Fig. 3. Comparison between completion time tables of two permutations, where two positions are different 

3.2. Our Proposed Approach

Instead of computing the flowtime from the empty completion time table as that adopted in the 

previous for each child permutation work [14, 17], we start the computation from the 

after copying the (i-1)-th column from the parent’s completion ti

we have to store all the completion time table for the parent permutation in the global memory, 

which is not necessary in the previous work [14, 17]. Figure 4

proposed approach. The completion t

calculated and stored in the global memory. Assume the thread T

the parent permutation to produce his child permutation, (1, 2, 6, 4, 5, 3). T

whole second column in the completion time table of the parent permutation in the global 

memory and save the column data into shared memory. Following the similar computat

procedures shown in Figure 2, T

way, T1 can avoid the computation of the first two columns, resulting in a shorter execution time. 

Similarly, if T2 will exchange Jobs 4 and 6 in the parent permutation, it has to fetch the third 

column from the global memory, which is used to 

following columns and derive the flowtime. Totally, the computation of three columns are 

avoided for T2. After the flowtimes for all possible child permutation are produced, we will select 

the permutation with the minimum flowtime to become the parent permutation for the next 

generation. However, in fact, the completion time table of the newly selected parent permutation 

does not exist because all column data are stored in the same shared memory of one

size, as shown in Figure 4. At the end, only the last column data are stored in shared memory.

 

Note that it is impossible to store all the information about the whole completion time table in 

shared memory for every thread because of the limited shared memor

impossible to know which child permutation will become the parent permutation for the next 

generation before the flowtimes of all possible child permutations are calculated. One possible 

solution to address the above problem is that eve

memory. However, this solution will result in high overhead due to a large amount of long

latency global memory access. 
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much redundant computation is performed, resulting in worse performance. Therefore, we 

propose an approach in the following subsection to accelerate the execution of solving the PFSP 

Comparison between completion time tables of two permutations, where two positions are different 

in the permutations 

Our Proposed Approach 

Instead of computing the flowtime from the empty completion time table as that adopted in the 

previous for each child permutation work [14, 17], we start the computation from the 

column from the parent’s completion time table. To achieve the goal, 

we have to store all the completion time table for the parent permutation in the global memory, 

previous work [14, 17]. Figure 4 demonstrates an example of our 

proposed approach. The completion time table for the parent permutation, (1, 2, 3, 4, 5, 6), is 

calculated and stored in the global memory. Assume the thread T1, will exchange Jobs 3 and 6 in 

the parent permutation to produce his child permutation, (1, 2, 6, 4, 5, 3). T1 has to fetch the 

ole second column in the completion time table of the parent permutation in the global 

memory and save the column data into shared memory. Following the similar computat

, T1 can calculate the flowtime for its child permutati

can avoid the computation of the first two columns, resulting in a shorter execution time. 

will exchange Jobs 4 and 6 in the parent permutation, it has to fetch the third 

column from the global memory, which is used to calculate the completion times for the 

following columns and derive the flowtime. Totally, the computation of three columns are 

. After the flowtimes for all possible child permutation are produced, we will select 

imum flowtime to become the parent permutation for the next 

generation. However, in fact, the completion time table of the newly selected parent permutation 

does not exist because all column data are stored in the same shared memory of one-

e, as shown in Figure 4. At the end, only the last column data are stored in shared memory.

Note that it is impossible to store all the information about the whole completion time table in 

shared memory for every thread because of the limited shared memory space. Also it is 

impossible to know which child permutation will become the parent permutation for the next 

generation before the flowtimes of all possible child permutations are calculated. One possible 

solution to address the above problem is that every thread writes all its column data to the global 

memory. However, this solution will result in high overhead due to a large amount of long
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much redundant computation is performed, resulting in worse performance. Therefore, we 

to accelerate the execution of solving the PFSP 

 
Comparison between completion time tables of two permutations, where two positions are different 

Instead of computing the flowtime from the empty completion time table as that adopted in the 

previous for each child permutation work [14, 17], we start the computation from the i-th column 

me table. To achieve the goal, 

we have to store all the completion time table for the parent permutation in the global memory, 

demonstrates an example of our 

ime table for the parent permutation, (1, 2, 3, 4, 5, 6), is 

, will exchange Jobs 3 and 6 in 

has to fetch the 

ole second column in the completion time table of the parent permutation in the global 

memory and save the column data into shared memory. Following the similar computation 

can calculate the flowtime for its child permutation. In this 

can avoid the computation of the first two columns, resulting in a shorter execution time. 

will exchange Jobs 4 and 6 in the parent permutation, it has to fetch the third 

calculate the completion times for the 

following columns and derive the flowtime. Totally, the computation of three columns are 

. After the flowtimes for all possible child permutation are produced, we will select 

imum flowtime to become the parent permutation for the next 

generation. However, in fact, the completion time table of the newly selected parent permutation 

-table-column 

e, as shown in Figure 4. At the end, only the last column data are stored in shared memory. 

Note that it is impossible to store all the information about the whole completion time table in 

y space. Also it is 

impossible to know which child permutation will become the parent permutation for the next 

generation before the flowtimes of all possible child permutations are calculated. One possible 

ry thread writes all its column data to the global 

memory. However, this solution will result in high overhead due to a large amount of long-
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Fig. 4 Avoiding duplicated computation when calculating the completion time table of child permutations 

We adopt another solution to address the above problem. After the new parent permutation is 

selected, we use one thread block to calculate the completion time table of the new parent 

permutation and store the table in global memory.

construct the completion time table for the next parent permutation, which is the unique overhead 

for our approach comparing the previous work [14, 17]. Therefore, minimizing the execution 

time of constructing the table is the key issue of the success of our proposed approach. We 

parallelize the above table construction with a single thread block 

Because of the data dependency, the completion time table construction, is parallelized 

diagonally. In the example shown in Figure 5

construction consists of 7 phases, indicated by dash lines wit

of threads required is 4. Between any two consecutive phases, we need to insert a synchronization 

to enforce data consistency between threads.

Computer Science & Information Technology (CS & IT) 

Avoiding duplicated computation when calculating the completion time table of child permutations 

from the one of the parent permutation. 

We adopt another solution to address the above problem. After the new parent permutation is 

d block to calculate the completion time table of the new parent 

permutation and store the table in global memory. In our proposed approach, we need to 

construct the completion time table for the next parent permutation, which is the unique overhead 

r approach comparing the previous work [14, 17]. Therefore, minimizing the execution 

time of constructing the table is the key issue of the success of our proposed approach. We 

parallelize the above table construction with a single thread block [11], as shown in Figure 5

Because of the data dependency, the completion time table construction, is parallelized 

In the example shown in Figure 5, there are 4 machines and 4 jobs. The table 

construction consists of 7 phases, indicated by dash lines with numbers. The maximum number 

of threads required is 4. Between any two consecutive phases, we need to insert a synchronization 

to enforce data consistency between threads. 

 
Avoiding duplicated computation when calculating the completion time table of child permutations 

We adopt another solution to address the above problem. After the new parent permutation is 

d block to calculate the completion time table of the new parent 

In our proposed approach, we need to 

construct the completion time table for the next parent permutation, which is the unique overhead 

r approach comparing the previous work [14, 17]. Therefore, minimizing the execution 

time of constructing the table is the key issue of the success of our proposed approach. We 

own in Figure 5. 

Because of the data dependency, the completion time table construction, is parallelized 

, there are 4 machines and 4 jobs. The table 

h numbers. The maximum number 

of threads required is 4. Between any two consecutive phases, we need to insert a synchronization 
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Fig. 5. The parallelization of building the completion time table of the next par

4. EXPERIMENT RESULTS

The Tabu Search for PFSP is written in C and evaluated on an 

GB memory and NVIDIA Tesla C2050 with 448 CUDA cores

configurations are shown in Table 1. 

approaches of ours and Czapi

Problem using the Tabu Search algorithm. The operating system instal

is Ubuntu 11.10, 32-bit. 

 
Table 1.  The specifications of the Intel Pentium CPU and the NVIDIA Tesla C2050.

Intel® Pentium® D

# of Cores 2 

# of Threads 2 

Clock Speed 3GHz

Memory Size 2GB

Memory Types DDR2 667

Cache 2MB

We show the speedups of our approach over the 

we vary the numbers of the machines, jobs and generations. The speedup is derived from dividing 

the execution time of our approach by the execution time of 

the shared memory size (SMs) is either 16 MB or 48 MB. 

and (# of jobs) is smaller than or equal to 3000, our approach would degrade the performance. 

The reason is as follows. (1) The number of columns that we have no need to re

rather limited. (2) The computation time of constructing the next parent permutation the 

completion time table of significantly increases the critical path of the whole execution.

other hand, when the product is bigger than or equal to 5000, our approach

previous work. The larger the product, the higher the speedup. The reason is because we can 

avoid more duplicated computation for larger problem sizes.
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The parallelization of building the completion time table of the next parent permutation by one 

thread block. 

ESULTS 

The Tabu Search for PFSP is written in C and evaluated on an Intel Pentium 2.5 GHz CPU with 

Tesla C2050 with 448 CUDA cores and 2.6 GB memory. Detailed 

configurations are shown in Table 1. We use CUDA version 4.2 to implement 

Czapiński and Barnes’, for the Permutation Flowshop Scheduling 

Problem using the Tabu Search algorithm. The operating system installed is Linux and its version 

The specifications of the Intel Pentium CPU and the NVIDIA Tesla C2050.

Intel® Pentium® D NVIDIA Tesla C2050 

# of GPUs 1 

Processor cores 448 

3GHz Clock Speed 1.15GHz 

2GB Memory Size 2.6GB 

DDR2 667 Memory Types GDDR5 

2MB Memory Clock 800MHz 

 

We show the speedups of our approach over the Czapiński and Barnes’ method in Table 2, where 

we vary the numbers of the machines, jobs and generations. The speedup is derived from dividing 

the execution time of our approach by the execution time of Czapiński and Barnes’ method. Also, 

s) is either 16 MB or 48 MB. When the product of (# of machines) 

and (# of jobs) is smaller than or equal to 3000, our approach would degrade the performance. 

The reason is as follows. (1) The number of columns that we have no need to re

r limited. (2) The computation time of constructing the next parent permutation the 

completion time table of significantly increases the critical path of the whole execution.

other hand, when the product is bigger than or equal to 5000, our approach outperforms the 

previous work. The larger the product, the higher the speedup. The reason is because we can 

avoid more duplicated computation for larger problem sizes. 
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Table 2.  Speedups of Tabu Search for PFSP, compared with the Czapiński and Barnes’ method 

 

 
 

5. CONCLUSION 
 

In this paper, an approach of avoiding duplicated computation was presented for the Tabu Search 

algorithm to solve PFSP on a CUDA GPU. In the previous work, each thread has to calculate the 

whole completion time table for its assigned child permutation in every iteration. However, we 

have observed that most child permutations has the same prefix as the parent permutation. Using 

this observation, we have proposed a new approach. One thread block builds the completion time 

table of the next parent permutation in parallel and stores the table in the global memory. Each 

thread fetches the table data of the column, from the global memory, corresponding to the last job 

in the same prefix. Next, each thread calculates the flowtime according to the column data, 

without the need of constructing the whole completion time table for its child permutation. 

Experimental results demonstrated our approach has the best speedup up to 1.5, comparing with 

the previous work.  

 

In further work, we will apply more optimization techniques of CUDA and utilize the features of 

a GPU workstation to optimize the Tabu search algorithm, such as how to efficiently manage 

device memories, synchronize blocks, and reduce the number of computing subtasks.  
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