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ABSTRACT 
 
Multiply Sectioned Bayesian Network (MSBN) provides a model for probabilistic reasoning in 

multi-agent systems. The exact inference is costly and difficult to be applied in the context of 

MSBNs as the size of problem domain becomes larger and complex. So the approximate 

techniques are used as an alternative in such cases.  Recently, for reasoning in MSBNs, LJF- 

based Local Adaptive Importance Sampler (LLAIS) has been developed for approximate 

reasoning in MSBNs. However, the prototype of LLAIS is tested only on Alarm Network (37 

nodes). But further testing on larger networks has not been reported yet, so the scalability and 

reliability of algorithm remains questionable. Hence, we tested LLAIS on three large networks 

(treated as local JTs) namely Hailfinder (56 nodes), Win95pts (76 nodes) and PathFinder(109 

nodes). From the experiments done, it is seen that LLAIS without parameters tuned shows good 

convergence for Hailfinder and Win95pts but not for Pathfinder network. Further when these 

parameters are tuned the algorithm shows considerable improvement in its accuracy and 

convergence for all the three networks tested. 
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1. INTRODUCTION 

 
Multiply Sectioned Bayesian Networks (MSBN) is the  model  grounded  on  the  idea  of  

cooperative multi-agent probabilistic reasoning, is an extension of the traditional Bayesian 

Network model and it provide us with solution to the probabilistic Reasoning under cooperative 

agents. The Multiple agents [1] collectively and cooperatively reason about their respective 

problem domain on the basis of their local knowledge, local observation and limited inter-agent 

communication. Typically the inference in MSBN is generally carried out in some secondary 

structure known as linked Junction tree forest (LJF).  The  LJF  provides  a  coherent framework 

for exact inference with MSBN [2], LJF constitutes  local  Junction  trees  (JT)  and  linkage trees  

for  making  connections  between  the neighbouring agents to communicate among themselves. 

Agents communicate through the messages passed over the LJF linkage trees and belief updates 

in each LJF local junction tree (JT) are performed upon the arrival of a new inter-agent message. 
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However the computational cost of exact inference   makes   it   impractical   for   larger   and 

complex domains. So the approximate inference algorithms are being used to estimate the 

posterior beliefs. Hence, it is very important to study the practicability and convergence 

properties of sampling algorithms on large Bayesian networks. 

To date there are many stochastic sampling algorithms proposed for Bayesian Networks and are 

widely used in BN approximation but this area is quite problematic, since many attempts have 

been made  in  developing  MSBN  approximation algorithms but all of these forgo the LJF 

structure and sample MSBN directly in global context. Also it has been shown that such type of 

approximation requires more inter-agent message passing and also leaks the privacy of local 

subnet [3]. So, sampling MSBN in global context is not good idea as it analyses   only   small   

part of entire multi-agent domain space. So in order to examine local approximation and to 

maintain LJF framework, the sampling process is to be done at each agent’s subnet. The LJF-

based Local adaptive Importance Sampler (LLAIS) [3] is an example of extension of BN 

Importance sampling techniques to JT’s. An important   aspect   of   this   algorithm   is   that   it 

facilitates inter-agent message calculation along with the approximation of the posterior 

probabilities. 

So  far  the  application  of  LLAIS  is  done  on smaller  network  consisting  of 37  nodes which  

is treated as local JT in LJF. LLAIS produced good estimates of local posterior beliefs for this 

smaller network but its further testing on larger sizes of local JTs is not reported yet. We tested 

LLAIS for its scalability and reliability on the three larger networks treating them as local JTs in 

LJF. It is important  to  test  the  algorithm  since  the  size  of local  JT  can  vary  and  can  go  

beyond  37  nodes network, on which preliminary testing has been done. Our testing 

demonstrated that without tuning of parameters, LLAIS is quite scalable for Hailfinder (56 nodes) 

and Win95pts (76 nodes) but once it is applied to Pathfinder (109 nodes) network its performance 

deteriorates. Further, when these parameters are tuned properly it resulted in significant 

improvement in the performance of algorithm, now it requires less number of samples and less 

updates than required by the original algorithm to give better results.  

2. BACKGROUND  

2.1 Multiply Sectioned Bayesian Networks (MSBNs)  

In this paper, we assume that the reader is familiar with Bayesian networks (BNs) and basic 

probability theory [4]. The Multiply Sectioned Bayesian Networks (MSBNs) [2] extend the 

traditional BN model from a single agent oriented paradigm to the distributed multi-agent 

paradigm and provides a framework to apply probabilistic inference in distributed multi-agent 

systems. Under MSBNs, a large domain can be modelled modularly and the inference task can be 

performed in coherent and distributed fashion.  

The MSBN model is based on the following five assumptions:  

1. Agent’s belief is represented as probability.  

2. Agents communicate their beliefs based on a small set of shared variables.  

3. A simpler agent organization is preferred.  

4. A DAG is used to structure each agent’s knowledge.  

5. An agent’s local JPD admits the agent’s belief of its local variables and the shared variables 

with other agents.  



Computer Science & Information Technology (CS & IT)                                   69 

 

 

 
 

Figure 1: (a) A BN (b) A small MSBN with three subnets (c) the corresponding MSBN hypertree. 

 

Figure 2. An MSBN LJF shown with initial potentials assigned to all the three subnets. 

MSBN consist of set of BN subnets where each subnet represents the partial view of a larger 

problem domain. The union of all subnet DAGs must also be DAG, denoted byG . These subnets 

are organised into a tree structure called a hypertree [2] denoted byψ . Each hypertree node, 

known as hypernode, corresponds to a subnet; each hypertree link, known as hyperlink, 

corresponds to a d-sepset, which is set of shared variables between the adjacent subnets. A 

hypertree ψ is purposely structured so that (1) for any variable x contained in more than one 

subnet with its parents ( )xπ in G , there must exist a subnet containing ( )xπ ; (2) shared 

variables between two subnets iN and jN are contained in each subnet on the path between 

iN and jN in ψ . A hyperlink renders two sides of the network conditionally independent similar 

to the separator in a junction tree (JT).  

Fig. 1 (a) shows BN which is sectioned into MSBN with three subnets in Fig. 1(b) and Fig. 1(c) 

shows the corresponding hypertree structure. A derived secondary structure called linked junction 

tree forest(LJF) is used for inference in MSBNs; it is constructed through a process of 

cooperative and distributed compilation where each hypernode in hypertree ψ is transformed into 

local JT, and each hyperlink is transformed into a linkage tree, which is a JT constructed from d-

sepset. Each cluster of a linkage tree is called a linkage, and each separator, a linkage separator. 

The cluster in a local JT that contains a linkage is called a linkage host. Fig. 2 shows the LJF 

constructed from the MSBN in Fig.1 (b) and (c). Local JTs, 0T , 1T and 2T are constructed from 

BN subnets 0G , 1G  and 
2G respectively, are enclosed by boxes with solid edges. The linkage 

trees; ( )0220 LL  and ( )1221 LL  , are enclosed by boxes with dotted edges. The linkage tree 

20L contains two linkages }{ cba ,, and }{ dcb ,, with linkage separator bc (not shown in the 

figure). The linkage hosts of 0T for 02L are clusters }{ cba ,,  and }{ dcb ,, . 
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3. BASIC IMPORTANCE SAMPLING FOR LJF  

Here we assume that readers are aware of basic importance sampling for LJF local JT. The 

research done so far has highlighted the difficulties in applying stochastic sampling to MSBNs at 

a global level [5]. Direct local sampling is also not feasible due to the absence of a valid BN 

structure [3]. However, an LJF local JT can be calibrated with a marginal over all the variables 

[6] making local sampling possible. Algorithms proposed earlier combine sampling with JT belief 

propagation but do not support efficient inter-agent message calculations in context of MSBNs.  

The [3] introduced a JT-based importance sampler by defining an explicit form of the importance 

function so that it facilitates the learning of the optimal importance function. The JPD over all the 

variables in a calibrated local JT can be obtained similar to Bayesian network DAG factorization.  

Let mCCC ,, 21 ΚΚ be the m JT clusters given in the ordering which satisfies the running 

intersection property. The separator ∅=iS for 1=i  and  )( 121 −∪∪∪∩= iii CCCCS ΚΚ for 

mi ,,3,2 Κ= . Since ii CS ⊂ , the residuals are defined as iii SCR \= . The junction tree running 

intersection property guarantees that the separator iS separates the residual iR from the set 

ii SCCC \)( 121 −∪∪∪ ΚΚ in JT.  

Thus applying the chain rule to partition the residues given by the separators and have JPD 

expressed as )|(),,(
11 i

m

i im SRPCCP ∏ =
=ΚΚ . The main idea is to select the root from the JT 

clusters and then directing all the separators away from the root forming a directed sampling JT. 

It is analogous to BN since both follow recursive form of factorization.  

Once the JPD has been defined for LJF local JT, the importance function 'P in basic sampler is 

defined as:  

                                        eE

m

i ii SERPEXP ==∏= |)|\()\('
1

                 (1)  

The vertical bar in eEii SERP =|)|\( indicates the substitution of e for E in )|\( ii SERP . This 

importance function is factored into set of local components each corresponding to the JT 

clusters. It means when the calibrated potential is given on each JT cluster iC we can easily 

compute for every cluster the value of )|( ii SRP directly. For the root cluster: 

0),()()|( === iCPRPSRP iiii . 

We traverse a sampling JT and sample variables of the residue set in each cluster 

corresponding to the local conditional distribution. This sampling is similar to the BN 

sampling except now group of nodes are being sampled and not the individual nodes. 

Whenever cluster is encountered with the node in the evidence set E, it will be assigned value 

which is given by evidence assignment. A complete sample consist of the assignment to all 

the non- evidence nodes according to the local JT’s prior distribution.  

The score for each sample can be computed as:  

                                         
)('

),(

i

i
i

SP

ESP
Score =                                           (2)  

The score so computed in Equation 2 will be used in LLAIS algorithm for adaptive importance 

sampling. It is proven that the optimal importance function for BN importance sampling is the 

posterior distribution )|( eEXP = [7]. Applying this result to JTs, we can define the optimal 

importance function as:  
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The above Equation 3 takes into account the influence of all the evidences from all clusters in the 

sample of current cluster.  

3.1 LJF-Based Local Adaptive Importance Sampler (LLAIS)  

In 2010, LJF local JT importance sampler called LLAIS [3] was designed that follows the 

principle of adaptive importance sampling for learning factors of importance function. This 

algorithm was specifically proposed for the approximation of posteriors in case of local JT in LJF 

providing the framework for calculation of inter-agent messages between the adjacent local JTs.  

The sub-optimal importance function used for LJF Local Adaptive Importance Sampling is as 

follows,  

                                  ∏ =
==

m

i ii eESERPEX
1

),|\()\(ρ                       (4)  

This importance function is represented in the form of set of local tables. This importance 

function is learned to approach the optimal sampling distribution.  

These local tables are called the Clustered Importance Conditional Probability Table (CICPT). 

These CICPT tables are created for each local JT cluster consisting of the probabilities indexed 

by the separator to the precedent cluster (based on the cluster ordering in the sampling tree) and 

conditioned by the evidence.  

For non-root JT clusters, CICPT table are defined in the form of ),|( ESRP ii , and for the JT 

root cluster, CICPT table are of the form of )|(),|( ECPESRP iii = .  

The learning strategy is to learn these CICPT tables on the basis of most recent batch of samples 

and hence the influence of all evidences is counted through the current sample set. These CICPT 

tables have the structure similar to the factored importance function and are alike to an ICPT table 

of Adaptive Importance Sampling of BN in the previous section 4.1 and are updated periodically 

by the scores of samples generated from the previous tables.  

Algorithm for LLAIS  

Step 1. Specify the total number of samples M , total updates K and update interval L , Initialize 

the CICPT tables as in Equation 4.  

Step 2. Generate L samples with the scores according to the current CICPT tables. Estimate 

),|(' eSRP ii
by normalizing the scores for each residue set given the states of separator set.  

Step 3. Update the CICPT tables based on the following learning function [45]:  

),|(')(),|())(1(),|(1
eSRPkeSRPkeSRP iiii

k

ii

K ηη +−=+
,  

where )(kη is the learning rate.  

Step 4. Modify the importance function if necessary, with the heuristic of Є-cutoff. For the next 

update, go to Step 2.  

Step 5. Generate the samples from the learned importance function and calculate scores as in 

Equation 2.  

Step 6. Output the posterior distribution for each node.  
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In LLAIS the importance function is dynamically tuned from the initial prior distribution and 

samples obtained from the current importance function are used to refine gradually the sampling 

distribution. It is well known that thick tails are desirable for importance sampling in BNs. The 

reason behind it is that the quality of approximation deteriorates in the presence of probabilities 

due to generation of large number of samples having zero weights [3]. This issue is solved using 

the heuristic Є-cutoff [7], the small probabilities are replaced with Є if less than a threshold Є, 

and the change is compensated by subtracting the difference from the largest probability.  

4. IMPROVING LLAIS BY TUNING THE TUNEABLE PARAMETERS  

The tuneable parameters plays vital role in the performance of sampling algorithm. There are 

many tuneable parameters in LLAIS such as the heuristic value of threshold ∈-cutoff, updating 

intervals, number of updates, number of samples and learning rate discussed as follows:  

1. Threshold ∈-cutoff – it is used for handling very small probabilities in the network. The 

proper tuning helps the tail of importance function not to decay faster, the optimal value for ∈-cutoff is dependent upon the network and plays key role in getting better precision these 

experiments with different cut-off values are motivated from [8].  

2. Number of updates and updating interval - the number of updates plays an important role 

in the sense that it denotes how many times the CICPT table has to be updated so that it will 

result in optimal output and updating interval denotes the number of samples that have to be 

updated.  

3. Number of samples - plays very important role in the stochastic sampling algorithm as the 

performance of sampling increases with the number of samples. It is always good to have 

minimum number of samples that can help you reach better output for it will be time and 

cost efficient  

4. Learning Rate - in [7] is defined as the rate at which optimal importance function will be 

learned as per the formula 
max/)()( kk

b

a
ak =η , where a = initial learning rate, b = learning 

rate in the last step, k = number of updates and maxk = total number of updates.  

These tuneable parameters are tuned after many experiments in which they were given 

heuristically different values and then checked for performance. Table 1 shows the comparison of 

values of various tuneable parameters for original and improved LLAIS.  

Table 1: Shows the comparison of values of various tuneable parameters for original LLAIS and improved 

LLAIS. 

 

Tunable parameters 
 

Original LLAIS 
 

Improved LLAIS 

Number of samp les 5000 4500 
 

Number of up dates 
 

5 
 

3 
 

Up dating interval 
 

2000 
 

2100 

 
 
 
 

Threshold value 

 
Nodes with outcomes <5 

 
Nodes with outcomes < 5 

0.05 0.01 
 
Nodes with outcomes < 8 

 
Nodes with outcomes < 8 

0.005 0.006 
Else = 0.0005 Else = 0.0005 
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5. EXPERIMENT RESULTS  

We used Kevin Murphy’s Bayesian Network toolbox in MATLAB for experimenting with 

LLAIS. For testing of LLAIS algorithm, the exact importance function is computed, which is 

considered to be the optimal one and then its performance of sampling is compared with that of 

approximate importance function in LLAIS. The testing is done on Hailfinder (56 nodes), 

Win95pts (76 nodes) and Pathfinder (109 nodes), which are treated as local JT in LJF. The 

approximation accuracy is measured in terms of Hellinger’s distance which is considered to be 

perfect in handling zero probabilities which are common in case of BN.  

From [8], The Hellinger’s distance between two distributions 1F and 2F which have the 

probabilities )(1 ijxP  and )(2 ijxP for state ),,2,1( injj ΚΚ= of node i respectively, such that 

EX i ∉ is defined as: 

                        
∑

∑ ∑

∈

∈ =
−

=
ENX i

EN

n

j ijij

i

i

n

xPxP
FFH

\

\X 1

2

21

21
i

})()({
),(        (5) 

where N is the set of all nodes in the network, E is the set of evidence nodes and in is the number 

of states for node i . )(1 ijxP  and )(2 ijxP  are sampled and exact marginal probability of state j of 

node i .  

5.1 Experiment Results for Testing LLAIS  

For each of the three networks we generated in total 30 test cases consisting of the three 

sequences of 10 test cases each. The three sequences include 9, 11 and 13 evidence nodes 

respectively. For each of the three networks, LLAIS with exact and approximate importance 

function is evaluated using samplesM 5000= . With LLAIS using approximate importance 

function, the learning function used is 
max/)()( kk

b

a
ak =η and set 4.0=a and 14.0=b , total 

updates 5=K and each updating step, 2000=L . The exact importance function is optimal 

hence it does not require updating and learning.  

Fig.4 shows the results for all the 30 test cases generated for Hailfinder network. Each test case 

was run for 10 times and average Hellinger’s distance was recorded as a function of )(EP to 

measure the performance of LLAIS as )(EP goes more and more unlikely. It can be seen that 

LLAIS using approximate importance function performs quite well and shows good scalability 

for this network.  
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Figure 4: Performance comparison of approximate and exact importance function combining all the 30 test 

cases generated in terms of Hellinger’s distance for Hailfinder network.  

 

Fig. 5 shows the results generated for all the 30 test cases generated from Win95pts network. It 

can be concluded that for this network too LLAIS using approximate importance function shows 

good scalability and its performance is quite comparable with that using exact importance 

function.  

Fig. 6 shows the results generated for all the 30 test cases generated from Pathfinder networkIt is 

seen that for this network LLAIS performed poor, the reason is the presence of extreme 

probabilities which needs to deal with. Hence LLAIS doesn’t prove to be scalable and reliable for 

this network.  

Table 2 below shows the comparison of the statistical results for all the 30 test cases generated 

using approximate and exact importance function in LLAIS.  

 

Figure 5: Performance comparison of approximate and exact importance function combining all the 30 test 

cases generated in terms of Hellinger’s distance for Win95pts network.  
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Figure 6: Performance comparison of approximate and exact importance function combining all the 30 test 

cases generated in terms of Hellinger’s distance for Pathfinder network.  

Table 2: Comparing the statistical results for all 30 test cases generated for testing LLAIS for all the three 

networks. 

Name of ne 

 
Hailfinde r ne twork 

Hellinger's 

 
Approx. imp 

func 
Exact imp 

func Minimum Error 0.0095 0.0075 
Maximum Error 0.0147 0.0157 

Mean 0.0118 0.0113 
Median 0.0118 0.0111 

Variance 1.99E-06 4.92E-06 
Name of ne 

 
Win95pts ne twork 

Hellinger's 

 
Approx. imp 

 
Exact imp 

 Minimum Error 0.0084 0.0054 
Maximum Error 0.0154 0.0178 

Mean 0.0114 0.0095 
Median 0.0114 0.0084 

Variance 3.18E-06 1.03E-05 
Name of ne 

 
Pathfinde r ne twork 

Hellinger's 

 
Approx. imp 

func 
Exact imp 

func Minimum Error 0.0168 0.0038 
Maximum Error 0.1 0.0774 

Mean 0.0403 0.0269 
Median 0.0379 0.0313 

Variance 6.05E-04 4.41E-04 
 

5.2 Experiment Results for Improved LLAIS  

After tuning the parameters as discussed in section 4, LLAIS shows considerable improvement in 

its accuracy and scalability with proper tuning of tunable parameters. Now the Improved LLAIS 

uses less number of samples and less updates in comparison to the Original LLAIS for giving 

posterior beliefs.  

Fig. 7 shows the comparison of performance of Original LLAIS with Improved LLAIS and it can 

be seen that Improved LLAIS performs quite well showing good scalability on Hailfinder 

network.  
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Figure 7: Performance comparison of Original LLAIS and Improved LLAIS for Hailfinder network. 

Hellinger’s distance  

Fig. 8 shows the comparison of performance of Original LLAIS with Improved LLAIS for 

Win95pts network and it can be seen in the graph that here also Improved LLAIS performed quite 

well with less errors as compared to the Original LLAIS.  

 

Figure 8: Performance comparison of Original LLAIS and Improved LLAIS for Win95pts network. 

Hellinger’s distance for each of the 30 test cases plotted against )(EP  

 

Fig 9 shows the comparison of performance of Improved LLAIS with Original LLAIS. The most 

extreme probabilities are found in this network, hence adjustments with threshold values played a 

key role in improving the performance; hence after tuning the parameters Improved LLAIS 

showed better performance in comparison to the original one for this network.  

Table 3 shows the comparison of statistical results from all 30 test cases generated for Improved 

LLAIS and Original LLAIS.  
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Figure 9: Performance comparison of original LLAIS and improved LLAIS for Pathfinder network. 

Hellinger’s distance for each of the 30 test cases plotted against )(EP  

 

Table 3: shows the comparison of results for original LLAIS and Improved LLAIS from all 30 test cases 

generated.  

Name  of ne 

twork 
Hailfinde r ne twork 

Hellinger's 

distance 
Orignal  

LLAIS 
Improve d 

LLAIS Minimum Error 0.01 0.0076 
Maximum Error 0.0205 0.014 

Mean 0.0128 0.0101 
Median 0.0119 0.0097 

Variance 7.08E-06 2.73E-06 
Name  of ne 

twork 
Win95pts ne twork 

Hellinger's 

distance 
Orignal  

LLAIS 
Improve d 

LLAIS Minimum Error 0.0087 0.0054 
Maximum Error 0.02 0.0125 

Mean 0.0114 0.0078 
Median 0.0105 0.0075 

Variance 6.45E-06 2.50E-06 
Name  of ne 

twork 
Pathfinde r ne twork 

Hellinger's 

distance 
Orignal  

LLAIS 
Improve d 

LLAIS Minimum Error 0.0168 0.0068 
Maximum Error 0.117 0.0451 

Mean 0.0427 0.0166 
Median 0.0387 0.0149 

Variance 7.80E-04 1.09E-04 
 

6. CONCLUSION AND FUTURE WORKS  

LLAIS is the extension of BN importance sampling to JTs. Since the preliminary testing of the 

algorithm was done only on smaller local-JT in LJF of 37 nodes, hence the scalability and 

reliability of the algorithm was questionable as the size of local-JTs may vary. From the 

experiments done, it can be concluded that LLAIS without parameters tuned performs quite well 

on local-JT of size 56 and 76 nodes but its performance deteriorates on 109 nodes network due to 

presence of extreme probabilities, once the parameters are tuned algorithm shows considerable 

improvement in its accuracy. It has been seen that learning time of the optimal importance 

function takes too long, so the choice of initial importance function )\(Pr0
EX close to the 
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optimal importance function can greatly affect the accuracy and convergence in the algorithm. As 

mentioned in [3], there is still one important question that remains unanswered how the local 

accuracy will affect the overall performance of the entire network. Further experiments are still to 

be done on the full scale MSBNs.  
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