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ABSTRACT 

 
EM algorithm is popular in maximum likelihood estimation of parameters for state-space 

models. However, extant approaches for the realization of EM algorithm are still not able to 

fulfill the task of identification systems, which have external inputs and constrained parameters. 

In this paper, we propose new approaches for both initial guessing and MLE of the parameters 

of a constrained state-space model with an external input. Using weighted least square for the 

initial guess and the partial differentiation of the joint log-likelihood function for the EM 

algorithm, we estimate the parameters and compare the estimated values with the “actual” 

values, which are set to generate simulation data. Moreover, asymptotic variances of the 

estimated parameters are calculated when the sample size is large, while statistics of the 

estimated parameters are obtained through bootstrapping when the sample size issmall. The 

results demonstrate that the estimated values are close to the “actual” values.Consequently, our 

approaches are promising and can applied in future research. 
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1. INTRODUCTION 

 
One of the advantages of the state-space models for linear dynamic systems is their ability to fit 

more parsimonious structures with fewer parameters to describe a multivariate time series. As a 

result, the application of state-space models is not limited to engineering practice.  

 

For example, in certain scenarios, the dynamics of the brand equity of a firm can be represented 

by a state-space model in the form of Kalman filter [1],  
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    ��� = α���� + 	
� + ��� = ℎ�� + �� �,            (1) 

 

where �� is the invisible brand equity, 
� is the investment, the external input, � is the brand 

performance, the output, at a certain step �. The transition coefficient, α(|�| < 1), and the input 

coefficient, 	, are parameters of interest. The observation coefficient, ℎ, is constrained to be a 

constant, i.e., ℎ=1. The observation noise, ��, the process noise,��, and the initial state,��, at each 

step, {x0, ��, ..., ��, �� ... ��}, are all assumed to be mutually independent, where ��~�(0, ��� ),��~�(0, � �), and ��~�(!�, ���). 

 

As exemplified in Equation (1) where ℎ=1, a constrained state-space modemeans that some 

parameters, some elements in the parameter matrix of a Kalman filter, are fixed or shared thus not 

all of them have to be estimated. Conversely, if the model is unconstrained, any parameters or any 

elements of each parameter matrix will be estimated. Moreover, the model has an time-variant 

external input series, 
�. By the way, parameter estimation of state space models with external 

inputs can be seen as supervised problems while that of state space models without external 

inputs can be treated as unsupervised problems.  

 

Maximum likelihood estimation (MLE) [2] is used to obtain the time-invariant parameters of the 

Kalman filter from input, 
�, and the output, �. Because of the existence of hidden variables, ��, 

in the formulated likelihood function, expectation-maximization (EM) algorithm [3], an iterative 

method, is used to complete MLE of parameters in state-space models.  

 

The approaches for the implementation of EM algorithm in the MLE of unconstrained state-space 

model are delivered in [4]-[7]. The approaches for certain constrained state-space models are 

covered in [7]-[10]. Since those constraints are quite specific, the approaches proposed are lack of 

generalicity. On the other hand, approaches for state-space models with external inputs are 

usually not provided except in [7]-[9]. However, the state space mode in [7]-[9] is not typical 

because the inputs are constants or do not affect the hidden variable. Especially in [5], the 

external input is actually a constant, which is a parameter to be estimated. Therefore, as we know 

from extant literature, no innovative methods are explored to estimate the unknown parameters of 

such constrained state-space modelsin the recent years. 

 

Our research is to find appropriate methods for the supervised problem: using EM algorithm for 

the MLE of those constrained state-space models who have external inputs. In this paper, we use 

the model represented by Equation (1) as an example. Our target is to estimate the parameters,α, 	, � , ��, !� and ��. Our work is carried out mainly in two phases: (i) initial guessing using our 

innovative approach, and (ii) implementation of MLE using EM algorithm with approaches 

different from those in extant literature. In addition, if the sample size is large, we use the 

asymptotic variances of the estimated parameters to check the accuracy of the estimation. If the 

sample size is small, we introduced bootstrapping to examine the distribution of the estimated 

parameters. 

 

2. INITIAL GUESSING 

 
The initial guess is performed through two steps. Firstly, the system parameter � and the 

variances � , �� and �� are guessed using autocovariance of the observations. Then the initial 

state mean !� and input parameter γ are guessed using weighted linear square. 

 

2.1.GuessingSystem Parameter and the Variances  

 

Denote "� = ∑ �$���$%$&� , from (1) it can be proved that 
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    �� = '()��* + "� .                  (2) 

 

For ℎ = 0,1,2 … …, we can obtain the covariance and autocovariance of "� as 

 

    	-(ℎ) = ./0*1��*0,                                 (3) 

 

while it is obvious that 

    σ�� = ./0��30.              (4) 

 

which means that we don’t have to estimate �  and �� separately, as was performed in extant 

literature. 

 

Moreover, we have the variance of � 
 

    	4(0) = 5� + 56,             (5) 

 

and the covariance of � when ℎ = 1, 2, 3 ⋯,  

 

    	4(ℎ) = 	-(ℎ).              (6) 

 

Hence we can obtain the guessed initial values for system parameter,�, and standard deviations,  �  and ��, from 

    

;<=
<> � = '?(�)'?(�)� � = @��30A'?(�)3��� = 	4(0) − CD0��30

� .            (7) 

 

2.2. Guessing Initial State Mean and Input Parameter 

 
Denoting 

    E� = ∑ α��F
F�$&� ,             (8) 

and 

    G� = ∑ α��F�F�$&� + ��,             (9) 

we have, 

    � = α�!� + 	E� + G�,            (10) 

where  G�~�@0, �H�A and   

    �H� = ��30)��30 � � + ���            (11) 

 

In order to estimate !� and 	, we perform linear regression between �, as dependent variable, 

and α� and E�, as independent variables, using T samples of 
� and �. Since G� is 

heteroscadestical, we apply weighted least square (WLS). WLS finds its optimum when the 

weighted sum, S, of squared residuals is minimized where  

 

    I =  ∑ @4J�3)KL�'MJA0
NOP0)NOP0 CD0QCR0

S�&�  .          (12) 

Denote that 5� = (1 − α��)� � + (1 − α�)��� , we solve the gradient equation (regarding !� and 	 

respectively) for the sum of squares 
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    T∑ 3)@4J�3)KL�'MJA@��30AUJS�&� = 0
∑ MJ@4J�3)KL�'MJA@��30AUJS�&� = 0� .   (13) 

 

Therefore, we will have initial guess about as below: 

 

    

;<
=
<>	 = ∑ P0)VJWJXN ∑ YJ?JVJWJXN �∑ P)?JVJWJXN ∑ P)YJVJWJXN

∑ P0)VJWJXN ∑ YJ0VJWJXN �∑ P)YJVJWJXN ∑ P)YJVJWJXN
!� = ∑ P)?JVJWJXN ∑ YJ0VJWJXN �∑ P)YJVJWJXN ∑ ?JYJVJWJXN

∑ P0)VJWJXN ∑ YJ0VJWJXN �∑ P)YJVJWJXN ∑ P)YJVJWJXN

�.         (14) 

3. ESTIMATION USING EM ALGORITHM 

The conditional density for the states and outputs are,  

 

  Z(��|����) = �CD√�\ ��] ^− (_J�3_JON�'(J)0�CD0 `,        (15) 

 

  Z(�|��) = �CR√�\ ��] ^− (4J�_J)0�CR0 `.         (16) 

 

Assuming a Gaussian initial state density 

 

  Z(��) = �CL√�\ ��] ^− (_L�KL)0�CL0 `,          (17) 

 

By the Markov property implicit in this model, we calculate the joint probability, not the partial 

probability used by Shumway (2011), regarding all T samples of �� and �, denoted as a�b and ab respectively: 

 

                              Z(a�b, ab) = Z(��) ∏ Z(��|����)S�&� ∏ Z(�|���)S�&�                    (18) 

 

We denote the joint log probability as  

    d = logZ(a�b, ab).          (19) 

 

According to Equation (4), we only need to estimate the parameter set, h = aα, 	, � , �� , !�b, 

through maximizing the objective function: 

 d(α, 	, � , �� , !�) = − @��30A(_L�KL)0�CD0 − �� log CD0��30 − ∑ (_J�3_JON�'(J)0�CD0S�&� − �� ilog� � −∑ (4J�_J)0�CR0S�&� − �� ilog��� − �SQ�� log(2j).            (20) 

3.1. EM Algorithm 

Since the objective function expressed by Equation(20) depends on the unobserved data 

series,��(� = 1, 2, … T), we consider applying the EM algorithm conditionally with respect to the 

observed output series �, �, …, l. The objective function above has an input series. 

Accordingly, the input coefficient has to be estimated. Consequently, our approaches are unlike 

the approaches[6] used inthe implementation ofEM algorithm for linear dynamic systems. 
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The EM algorithm mainly has two steps: the E-STEP and the M-Step. During the E-Step, the 

parameters are assumed known, the hidden states and their variance are estimated over all the 

samples, and then the likelihood function constructed from joint probability are calculated.  

During the M step, we have to find the parameter set  hm(n) = aα(n), 	(n), � (n), ��(n), !�(n)b 

for the kth counts of the recursions by maximizing the conditional expectation, or the above 

objective function. 

 

The overall procedure for the implementation of EM algorithm is as below: 

 

(i) Initialize the procedure by selecting the guessed values as starting values for the 

parameters. 

                  On iteration k, (k=1,2,……) 

 

(ii) Compute the log-likelihood (optional), 

 

(iii) Use the parameters to obtain the smoothed values of the hidden states and their 

correlations, for t= 1,2, …...,T.  

 

(iv) Use the smoothed values to calculate the updated parameters. 

 

(v) Repeat Steps (ii) – (iv) to convergence. 

 

We mainly perform two sub-steps in the E-step of EM algorithm: Kalman filtering and Kalman 

smoothing. 

3.2. Kalman Filtering and Smoothing 

Assuming thatwe already know the parameter set { α,  	, � ,��,!�,��}(��~�(!�, ���)), and the 

observations � and 
�, we have the estimation of the hidden state, as well as the variances 

estimated based on the observations for the period 1 to t. 

 

    ��|���� = α����|���� + 	
�,        (21a) 

 

    5�|���� = α�5���|���� + � �,        (21b) 

 

    �o = � − ��|����,         (21c) 

 

    p� = 5�|���� + 5�,         (21d) 

 

    n� = 5�|����p���,          (21e) 

 

    ��� = ��|���� + n��o ,          (21f) 

 

    5�� = (1 − n�)5�|����,         (21g) 

 

where ��|�� = !� and 5�|�� = ���. 

According to [6],to computeqr��|a, 
bs ≡ ��S and the correlation matrices ]� ≡ 5�S + ��S(��S)u 
one performs a set of backward recursion using 

 

    v��� = α UJON|JON�UJ|JON� ,           (22) 
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  ����S = ����|���� + v���@��S − α����|���� − 	
�A,          (23) 

 

  5���S = 5���|���� + v���@5�S − 5�|����Av���u ,          (24) 

 

where �SS = �S|S� and 5SS = 5S|S�. We also have ]�,��� ≡ w�,���S + ��S(����S )u, where 5�,���S  can be 

obtained through the backward recursions 

 5���,���S = 5���|����v���u + v���@5�,���S − α5���|����Av���u ,         (25) 

 

which is initialized  using 5S,S��S = α(1 − nS)5S��S��. 

Note that the state estimate, ��S, differs from the one computed in a Kalman filter in that it is the 

smoothed estimator of �� based on all of the observed data (and input data), i.e. it depends on past 

and future observations; the Kalman filter estimatesqr��|ab�� s is the usual Kalman filter 

estimator based on the obsearved data up to the current time instant x.  

3.3. Expected Log-Likelihood Formulation 

After we have got the expected values for ��and�� as ��S ≡   qr��|a, 
bs and ��S ≡ qr��|a, 
bs 
respectively, we can calculate the expectation of the log-likelihood 

 

    q(d) = qrlogZ(a�b, ab)s.           (26) 

Denote  

yZ���S = ∑ qr��������u |absS�&�Z�S = ∑ qr����u|absS�&�Z�,���S = ∑ qr������u |absS�&�
�, yz���S = ∑ q(����
�)S�&�z�S = ∑ q(��
�)S�&�{�S = ∑ 
��S�&�

�, and y|���S = ∑ q(�����)S�&�|�S = ∑ q(���)S�&�}�S = ∑ ��S�&�
�,  

 

we have  

  q(d) = − �� q(d�) − �� q(d�) − �� q(d�) − �SQ�� log(2j)         (27) 

where 

   q(d�) = ��30CD0 r5�S + (��S − !�)�s + log CD0��30       (27a) 

 q(d�) = � ��@Z�S + α�Z���S + 	�{�S − 2αZ�,���S − 2	z�S + 2α	z���S A + ilog� �                 (27b) 

 

   q(d�) = ����(}�S + Z�S − 2|�S) + ilog���        (27c) 

3.4. Estimation of the Parameters 

We use the first order condition on partial derivatives of q(d) to individual parameters to obtain 

the gradient and then the values of individual parameters. This method is not the multivariate 

regression approach [6]. The parameters are chosen when the objective function is maximized, 

i.e., the gradients are all zero. The estimates of α, 	, � �, ���  and !�are from below five equations: 

 

 α(1 − α�)5�S − α� � − α(1 − α�)Z���S + (1 − α�)Z�,���S − 	(1 − α�)z���S = 0     (28a) 

 

    	{�S − z�S + αz���S = 0        (28b) 

 (1 − α�)5�S − (1 + i)� � + Z�S + α�Z���S + 	�{�S − 2αZ�,���S − 2	z�S + 2α	z���S = 0     (28c)  
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              ��� = �S (}�S + Z�S − 2|�S)     (28d) 

 

     !� = ��S     (28e) 

Moreover, we use the second orders of the derivatives of q(d) to calculate the second derivatives 

and then the information matrix. Most of the second order derivatives of q(d) are zero except 

those listed below: 

   
~0�(�)~*0 = ULWQ@_LW�KLA0��JONWCD0 − �Q30(��30)0,    (29) 

 

    
~0�(�)~'~* = ~0�(�)~*~' = − �JONWCD0  ,    (30) 

 ~0�(�)~CD~* = ~0�(�)~*~CD = �@3�JONW ��J,JONW Q'�JONW A��3^ULWQ@_LW�KLA0`CD� ,   (31) 

 

     
~0�(�)~'0 = − �JWCD0      (32) 

 

    
~0�(�)~CD~' = ~0�(�)~'~CD = �@'�JW��JWQ3�JONW ACD�    (33) 

 ~0�(�)~CD0 = SQ�CD0 − �@��30A^ULWQ@_LW�KLA0`CD� − �@�JWQ30�JONW Q'0�JW��3�J,JONW ��'�JWQ�3'�JONW ACD�        (34)  

 

   
~0�(�)~CR0 = SCR0 − �@�JWQ�JW���JWACR�     (35) 

 

     
~0�(�)~KL0 = − ��30CD0     (36) 

According to Cramer-Rao Theorem, the MLE is an efficient estimate. When the sample size is 

large enough, the asymptotic variances of the estimates can be considered as the metric of the 

accuracy of the estimation. The asymptotic variances are calculated using the inverse of the 

information matrix, which is the inverse of the negative of the expected value of the Hessian 

matrix. The vector of the asymptotic variances of the estimates is 

 

��
���
���
��
� (i +  1)(α�  −  1)�{� �(i + 1)(1 − α�)�(P�{ − {���  − M��) + ( 1 + i − α� + iα�){� �r(1 + i)(1 −  α�)�(P� − ���) +  (1 +  i −  α� +  iα�)� �s� �(i + 1)(1 − α�)�(P�{ − {���  − M��) + ( 1 + i − α� + iα�){� �r(1 −  α�)�(P�{ − M�� − {���) + ( 1 +  α�){� �s� �(i + 1)(1 − α�)�(P�{ − {���  − M��) + ( 1 + i − α� + iα�){� ����2i��� ��

���
���
��
�
 

If the sample size is small, we introduce boot-strapping procedure where the estimates are 

obtained from likelihood constructed from re-sampled standardized innovation, �o , in Equation 

(21c). Moreover, the mean squared errors (MSE) of the state variables which is estimated from 

Equations (21a-g) using estimated parameters are also estimated. 
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4. SIMULATION AND RESULTS 

 
The output data is generated through presetting the input series and the values of the parameters. 

We implement the initial guessing, EM iteration, and finally obtain the parameter estimates. This 

makes it easier to evaluate our work by comparing the actual values with the estimated values, or 

by checking the standard deviation of the estimates. 

 

4.1. Data Generation 

 
We generate data from the state-space model described as Equation (1). We assume α = 0.8, γ = 1.5, and !� = 0. Moreover, the process noises, ��, and  observation noise, ��, are generated 

independently where ��~�(0, 1.1�) and ��~�(0, 0.9�). We assume that the input,
�, is a slow 

changing periodical square wave signal whose period is 10 time unit.  The standard deviation of 

initial state, ��, is not needed during the data generation but can be calculated according to 

Equation (2). The expected log-likelihood can be calculated using Equation (27). Both are treated 

as “actual” values to be compared with guessed values and estimated values. 

 

We performed our simulation using two different sample sizes: the large size of 1000 and the 

small size of 50. When the sample size is small, we applied bootstrapping method to estimate the 

accuracy of the estimate. 

 

4.2. Results 

We provide the results of the simulation with small sample size of 50 in Table 1, and the results 

of the simulation with large sample size of 1000 in Table 2. 

Table 1. The parameters estimate with small sample size 

Parameters Actual Guessed Estimated Std. Dev. 

α 0.8 0.879 0.801 0.023 

γ 1.5 1.075 1.438 0.104 

σe 1.1 1.400 0.708 0.158 

σw 0.9 0.922 0.862 0.193 

µ0 0 0.992 2.143 1.231 

σ0 1.83 3.811 1.183 0.252 

In Table 1and Table 2, we displayed the actual values, the guessed values, the estimated values 

and the standard deviations of the estimated values for transition coefficient, α, input coefficient, 

γ, standard deviation of process errors, σe, standard deviation of observation errors, σw,  mean of 

initial state, µ0, and standard deviation of initial state, σ0. In general, the guessed value is near the 

actual value while the estimated value is much more close to the actual value than the guessed 

ones for the parameters of the most interest: α and γ. The standard deviations in Table 1 are from 

bootstrapped distribution while the standard deviations in Table 2 are from the asymptotic 

variances. 

Table 2: The parameters estimated with large sample size 

 

Parameters Actual Guessed Estimated Std. Dev. 

α 0.8 0.879 0.800 0.0001 

γ 1.5 1.276 1.424 0.0012 

σe 1.1 2.024 1.033 0.0011 

σw 0.9 0.533 0.971 0.0005 

µ0 0 2.459 1.667 2.9614 

σ0 1.83 4.250 1.721 NA 
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In general, the guessed value is near the ‘actual” value while the estimated value is much closer to 

the “actual” value than the guessed ones, especially for the parameters of interest: � and 	. It is 

worth noting that the deviations of the estimated values are larger than the asymptotic ones due to 

the imperfectly generated data.  

 

5. CONCLUSIONS 

 
The research is to validate our innovative approaches in the application of EM algorithm in the 

MLE of a constrained dynamic linear system with external input. There are two main 

contributions in this research. Firstly, we realized that σ0 and σe has the relationship expressed by 

Equation (4) thus we don’t have to estimate both of them during the implementation of EM 

algorithm. Accordingly, the likelihood function in Equation (27) is not similar with those 

researchers who ignored the relationship. Secondly, in initial guessing of the value of input 

coefficient and the mean of initial state, we introduce weighted least square for the guessing of 

input coefficient, γ, and the mean of the initial state, µ0.  

 

It is obvious that more techniques have to be discovered for the initial guessing, and the 

estimating based on the guessed initial guessing of, the parameter values, especially for the 

implementation of the M-step of the EM algorithm. The approaches we proposed can be a new 

start point for the future research on the estimation of dynamic systems with higher dimensions of 

external inputs, hidden states and observations. 
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