

David C. Wyld et al. (Eds) : CCSEA, CLOUD, DKMP, SEA, SIPRO - 2016

pp. 53–62, 2016. © CS & IT-CSCP 2016 DOI : 10.5121/csit.2016.60206

COMPARISON OF OPEN-SOURCE PAAS

ARCHITECTURAL COMPONENTS

Mohan Krishna Varma Nandimandalam
1
 and Eunmi Choi

2

1
Graduate School of Business IT, Kookmin University, Seoul, South Korea

nmohankv@kookmin.ac.kr
2
Corresponding Author, School of Business IT,

Kookmin University, Seoul, Korea
emchoi@kookmin.ac.kr

ABSTRACT

Cloud computing is a widely used technology with three basic service models such as Software

as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). This

paper focuses on the PaaS model. Open source PaaS model provides choice of cloud, developer

framework and application service. In this paper detailed study of four open PaaS packages

such as AppScale, Cloud Foundry, Cloudify, and OpenShift are explained with the considerable

architectural component aspects. We also explained some other PaaS packages like Stratos,

Stakato and mOSAIC briefly. In this paper we present the comparative study of major open

PaaS packages.

KEYWORDS

Cloud Computing, AppScale, Cloud Foundry, Cloudify, OpenShift, Stackato & Stratos

1. INTRODUCTION

Cloud computing is an emerging paradigm in which computers are networked to provide storage

and compute services using virtualization technology. Cloud computing must satisfy five

essential characteristics. They are on demand service, access network, resource pooling, elasticity

and measured services. To achieve these five essential characteristics, cloud computing provides

three kinds of service models: Software as a Service (SaaS), Platform as a Service (PaaS) [7] and

Infrastructure as a Service (IaaS) [8]. Cloud computing service models are shown in Figure 1.

CRM applications are widely used services in the SaaS. Application platform delivered as a

service is described as PaaS and it is used to deploy the user code. AppScale [2], Cloud Foundry,

Cloudify and OpenShift open-source environments can be used as PaaS. IaaS is used to build

their private infrastructure, which reduces the setup cost. IaaS can provide virtualized resources

such as computation, storage and communication. Eucalyptus [1], open stack and cloud stack

open-sources can be used to provide IaaS.

54 Computer Science & Information Technology (CS & IT)

Figure 1. Cloud computing service models

This paper will focus on the PaaS service model. It is easy to deploy, run and scale application

using PaaS. Some of the PaaS have limited language and framework support. They do not deliver

key application services needed for cloud applications. They sometime restrict deployment to a

single cloud. Whereas open PaaS provides choice of cloud like private, public or hybrid, choice

of developer framework like spring, ruby, or java and application services like mongoDB,

MySQL, or PostgreSQL for running our applications. This paper deals with the architectural

components of major open PaaS packages like AppScale, Cloud Foundry, Cloudify and

OpenShift.

The paper is organized as follows. Section 2 introduce AppScale and its components, Cloud

Foundry architecture and component explanation given in Section 3, Cloudify open PaaS is

explained in Section 4, Section 5 deals with OpenShift, other open PaaS technologies are

introduced in Section 6, comparison of open-source PaaS technologies are given in Section 7 and

finally Section 8 concludes the paper.

2. APPSCALE

AppScale [3] is a scalable, distributed, and fault-tolerant cloud runtime system that executes over

cluster resources. It can be deployed on Xen [4], Kernel-based Virtual Machine (KVM), Amazon

EC2 or Eucalyptus. AppScale initial design utilizes the standard three-tier web deployment model

in the design. In the later design cycles more components are added to the AppScale. Table 1

shows the AppScale components, language used to design the component and their functionality.

Table 1. AppScale Components

Component Language Functionality

AppController Ruby Executes on every node and starts automatically when the

guest virtual machine boots

AppLoadBalancer Ruby on Rails Processes arriving requests from users and forwards them to

the application server

AppServer Python Running through a number of distant hosts to support

automated execution of applications

Database Master Python Offers persistent storage for applications, processes protocol

buffers from apps and makes requests on its behalf to read

and write data to the data store

Database Slave Python Facilitate distributed, scalable, and fault tolerant data

management

AppScale Tools Ruby Starts an AppScale system, deploys and tear down

applications, queries the state and performance of AppScale

deployment or application, and manipulates AppScale

configuration and state

Computer Science & Information Technology (CS & IT) 55

3. CLOUD FOUNDRY

Cloud Foundry [10] is an open PaaS, which provides choice of clouds, developer frameworks and

application services. Cloud Foundry makes application development faster and easier. We can

build, test, deploy and scale applications with help of Cloud Foundry. It is an open-source project

available through a variety of private cloud distributions and public cloud instances. Cloud

Foundry started as a platform to deploy Java Spring applications on Amazon Web Services.

VMware acquired the Cloud Foundry and made it into an open-source, multi-language and multi-

framework PaaS. Cloud Foundry supports multiple languages and multiple runtimes such as Java,

Ruby, Scala, spring and Node.js. Cloud Foundry can run on anything like laptop, desktop, micro

cloud, private cloud or public cloud. So, it is called as open PaaS as shown in Figure 2. Cloud

Foundry has three dimensions to the platform: choice of frameworks, choice of application

services and the deployment choice. Cloud Foundry supports spring for Java, Rails and Sinatra

for Ruby, Node.js and JVM languages like Groovy, Grails and Scala. It also supports Microsoft

.NET Framework and became the first non-Microsoft platform to support .NET.

Figure 2. Cloud Foundry as Open PaaS

Cloud Foundry supports RabbitMQ for messaging, MongoDB and Redis for NoSQL, relational

databases MySQL and PostgreSQL. Cloud Foundry can be deployed on notebooks through Micro

Cloud Foundry. It is the complete version of Cloud Foundry designed to run in a virtual machine.

It can also be deployed on Private Cloud or Public Cloud. These features made Cloud Foundry as

a flexible PaaS.

Cloud Foundry components perform routing, authentication, messaging, logging, application

storage and execution, provide services and take care of application life cycle. The router routes

incoming traffic to the appropriate component, usually the Cloud Controller or a running

application on a DEA (Droplet Execution Agent) node. The User Account and Authentication

(UAA) server work with Login Server to provide identity and authentication management.

OAuth2 Server is uses as the user account and authentication server. Cloud controller and health

56 Computer Science & Information Technology (CS & IT)

manager components take care of the application lifecycle in the cloud foundry.

is responsible for managing the lifecycle of applications. When a developer pushes an application

to cloud foundry, application is tar

raw application bits, creates a record to track the application metadata, and directs a DEA node to

stage and run the application. Health manager m

version, and number of instances.

manager determine applications expected state, version, and number of instances.

the actual state of applications with their expected state.

controller to take action to correct any discrepancies in the state of applications.

Execution Agent manages application instances, tracks

messages. Application instances live

application instances run in isolation, get their fair share of resources, and are protected from

noisy neighbours. Blob Store holds the application code, build packs, and droplets.

typically depend on services like

provisions and binds a service to an application, the service broker for that service is responsible

for providing the service instance.

distributed queueing messaging system

internal communication performed via message bus.

the components. Operators can use this informatio

The application logging aggregator streams

Cloud Foundry components are shown in Figure

Figure 3.

4. CLOUDIFY

Cloudify [11] is another open PaaS cloud application manager. It automates common processes

needed to perform and to manage the applications in a cloud environment. Cloudify composed of

three main components. The components are Command line interface clien

Manager. Command line interface client is an executable file which is written in Python. It is

Computer Science & Information Technology (CS & IT)

manager components take care of the application lifecycle in the cloud foundry. Cloud

is responsible for managing the lifecycle of applications. When a developer pushes an application

oundry, application is targeting the cloud controller. Cloud controller then stores the

raw application bits, creates a record to track the application metadata, and directs a DEA node to

. Health manager monitor applications to determine their state

ersion, and number of instances. Applications state may be running, stopped, or crashed

etermine applications expected state, version, and number of instances.

the actual state of applications with their expected state. Health manager direct

ontroller to take action to correct any discrepancies in the state of applications.

Execution Agent manages application instances, tracks, started instances, and broadcasts state

messages. Application instances live inside warden containers. Containerization ensures that

application instances run in isolation, get their fair share of resources, and are protected from

noisy neighbours. Blob Store holds the application code, build packs, and droplets.

like databases or third-party SaaS providers. When a developer

provisions and binds a service to an application, the service broker for that service is responsible

for providing the service instance. Cloud Foundry uses a lightweight publish-subscribe and

distributed queueing messaging system for internal communication between components

internal communication performed via message bus. The metrics collector gathers

the components. Operators can use this information to monitor an instance of Cloud Foundry.

The application logging aggregator streams the application logs to the corresponding

shown in Figure 3.

Figure 3. Cloud foundry components

Cloudify [11] is another open PaaS cloud application manager. It automates common processes

needed to perform and to manage the applications in a cloud environment. Cloudify composed of

three main components. The components are Command line interface client, Agents, and

Manager. Command line interface client is an executable file which is written in Python. It is

Cloud controller

is responsible for managing the lifecycle of applications. When a developer pushes an application

ontroller then stores the

raw application bits, creates a record to track the application metadata, and directs a DEA node to

onitor applications to determine their state,

crashed. Health

etermine applications expected state, version, and number of instances. It reconciles

irects the cloud

ontroller to take action to correct any discrepancies in the state of applications. The Droplet

started instances, and broadcasts state

arden containers. Containerization ensures that

application instances run in isolation, get their fair share of resources, and are protected from

noisy neighbours. Blob Store holds the application code, build packs, and droplets. Applications

party SaaS providers. When a developer

provisions and binds a service to an application, the service broker for that service is responsible

subscribe and

for internal communication between components. This

 metrics from

n to monitor an instance of Cloud Foundry.

the corresponding developers.

Cloudify [11] is another open PaaS cloud application manager. It automates common processes

needed to perform and to manage the applications in a cloud environment. Cloudify composed of

t, Agents, and

Manager. Command line interface client is an executable file which is written in Python. It is

Computer Science & Information Technology (CS & IT)

packaged with python and relevant dependencies in an executable file. Command line interface

client can run on Windows, Linux and Mac operating sy

preform two tasks. First one is manager bootstrapping and another is managing applications.

Bootstrapping is the process of installing the Cloudify manager. Command line interface client

provides the user with the full set of functions for deploying and managing applications including

log and event browsing.

Cloudify Agents are responsible for managing the manager’s command execution using a set of

plugins. There is a manager side agent per application deployment and opt

application Virtual Machine (VM). The manager side agents handle IaaS related tasks, like

creating a VM or a network, and binding a floating IP to a VM. Manager side agents can also be

used with other tools such as REST to remotely exec

optionally located on application VM’s. The user can state in the blueprint which VM’s will have

an agent installed on them. The application side agents are installed by the manager side agent as

part of the VM creation task. Once running, the application side agent can install plugins and

execute tasks locally. Typical tasks will be middleware installation and configuration, and

application modules deployment.

Cloudify Manager deploys and manages applications des

main responsibilities are to run automation processes described in workflow scripts and issue

execution commands to the agents. Cloudify is controlled via a REST API. The REST API

covers all the cloud orchestration and m

the REST API to add additional value and visibility. Cloudify uses a Workflow engine to allow

automation process through built

timing and orchestrating tasks for creating or manipulating the application components. The user

can write custom workflows in Python using API’s that provide access to the topology

components.

Cloudify uses different databases as data store, some of the technologies for processing and

messaging, and different servers as front end. Total stack is shown in Figure 4. Cloudify uses

elastic search as its data store for deployment state. The deploymen

stored as JSON documents. Blueprints are stored in the elastic search and it is used as runtime

DB. Cloudify uses InfluxDB as the monitoring metrics repository. Influx provides flexible

schema for metrics and metrics metadata a

metric reported by a monitoring tool into influxdb and define time based aggregations as well as

Computer Science & Information Technology (CS & IT)

packaged with python and relevant dependencies in an executable file. Command line interface

client can run on Windows, Linux and Mac operating systems. Command line interface client

preform two tasks. First one is manager bootstrapping and another is managing applications.

Bootstrapping is the process of installing the Cloudify manager. Command line interface client

set of functions for deploying and managing applications including

Cloudify Agents are responsible for managing the manager’s command execution using a set of

plugins. There is a manager side agent per application deployment and optional agent on each

application Virtual Machine (VM). The manager side agents handle IaaS related tasks, like

creating a VM or a network, and binding a floating IP to a VM. Manager side agents can also be

used with other tools such as REST to remotely execute tasks. The application side agents are

optionally located on application VM’s. The user can state in the blueprint which VM’s will have

an agent installed on them. The application side agents are installed by the manager side agent as

eation task. Once running, the application side agent can install plugins and

execute tasks locally. Typical tasks will be middleware installation and configuration, and

application modules deployment.

Cloudify Manager deploys and manages applications described in blueprints. The manager’s

main responsibilities are to run automation processes described in workflow scripts and issue

execution commands to the agents. Cloudify is controlled via a REST API. The REST API

covers all the cloud orchestration and management functions. Cloudify’s Web GUI works with

the REST API to add additional value and visibility. Cloudify uses a Workflow engine to allow

automation process through built-in and custom workflows. Workflow engine is responsible of

ating tasks for creating or manipulating the application components. The user

can write custom workflows in Python using API’s that provide access to the topology

Figure 4. Cloudify Stack

Cloudify uses different databases as data store, some of the technologies for processing and

messaging, and different servers as front end. Total stack is shown in Figure 4. Cloudify uses

elastic search as its data store for deployment state. The deployment model and runtime data are

stored as JSON documents. Blueprints are stored in the elastic search and it is used as runtime

DB. Cloudify uses InfluxDB as the monitoring metrics repository. Influx provides flexible

schema for metrics and metrics metadata as well as a query language. Cloudify stores every

metric reported by a monitoring tool into influxdb and define time based aggregations as well as

 57

packaged with python and relevant dependencies in an executable file. Command line interface

stems. Command line interface client

preform two tasks. First one is manager bootstrapping and another is managing applications.

Bootstrapping is the process of installing the Cloudify manager. Command line interface client

set of functions for deploying and managing applications including

Cloudify Agents are responsible for managing the manager’s command execution using a set of

ional agent on each

application Virtual Machine (VM). The manager side agents handle IaaS related tasks, like

creating a VM or a network, and binding a floating IP to a VM. Manager side agents can also be

ute tasks. The application side agents are

optionally located on application VM’s. The user can state in the blueprint which VM’s will have

an agent installed on them. The application side agents are installed by the manager side agent as

eation task. Once running, the application side agent can install plugins and

execute tasks locally. Typical tasks will be middleware installation and configuration, and

cribed in blueprints. The manager’s

main responsibilities are to run automation processes described in workflow scripts and issue

execution commands to the agents. Cloudify is controlled via a REST API. The REST API

anagement functions. Cloudify’s Web GUI works with

the REST API to add additional value and visibility. Cloudify uses a Workflow engine to allow

in and custom workflows. Workflow engine is responsible of

ating tasks for creating or manipulating the application components. The user

can write custom workflows in Python using API’s that provide access to the topology

Cloudify uses different databases as data store, some of the technologies for processing and

messaging, and different servers as front end. Total stack is shown in Figure 4. Cloudify uses

t model and runtime data are

stored as JSON documents. Blueprints are stored in the elastic search and it is used as runtime

DB. Cloudify uses InfluxDB as the monitoring metrics repository. Influx provides flexible

s well as a query language. Cloudify stores every

metric reported by a monitoring tool into influxdb and define time based aggregations as well as

58 Computer Science & Information Technology (CS & IT)

statistic calculations. Clodify uses RabbitMQ task broker for messaging. Cloudify offers a policy

engine that runs custom policies in order to make runtime decisions about availability, service

level agreement, etc. For example, during installation, the policy engine consumes streams of

events coming from monitoring probes or tools. The policy engine analyses these streams to

decide if a specific node is up and running and provides the required functionality. Policies are

registered, activated, deactivated and deleted by the Workflow Engine. For logging purpose

logstash is used and agent play main role in processing. Nginx proxy and file server, Flask or

Gunicorn REST server, and Node.js GUI servers can be used as front end in the Cloudify.

5. OPEN SHIFT

OpenShift [12] enables us to create, deploy and manage applications within the cloud. Two basic

functional units of the Openshift are the Broker and Node servers. Communication between the

Broker and Nodes is done through a message queuing service. Broker is the single point of

contact for all application management activities. It is responsible for managing user logins,

DNS, application state, and general orchestration of the applications. Customers don’t contact the

broker directly; instead they use the Web console or CLI tools to interact with Broker over a

REST based API. Nodes are the systems that host user applications. In order to do this, the Nodes

are configured with Gears and Cartridges. A gear represents the part of the Node’s CPU, RAM

and base storage that is made available to each application. An application can never use more of

these resources allocated to the gear, with the exception of storage. OpenShift supports multiple

gear configurations, enabling users to choose from the various gear sizes at application setup

time. When an application is created, the Broker instructs a Node to create a new gear to contain

the application. Cartridges represent pluggable components that can be combined within a single

application. These include programming languages, database engines, and various management

tools. Users can choose from built-in cartridges that are served directly through OpenShift, or

from community cartridges that can be imported from a git repository. The built-in cartridges

require the associated languages and database engines to be installed on every Node.

6. OTHER PAAS

In this section we are going to give brief introduction about Stratos, Stakato and mOSAIC open

PaaS environments.

6.1. Stratos

Apache Stratos [5] is a highly-extensible PaaS framework that helps to run Apache Tomcat, PHP,

and MySQL applications, and can be extended to support many more environments on all major

cloud infrastructures. For developers, Stratos provides a cloud-based environment for developing,

testing, and running scalable applications. In Single JVM deployment model Stratos could

accommodate up to 100 cartridge instances. In a distributed deployment model Stratos could

accommodate up to 1000 cartridge instances.

6.2. Stakato

Stackato [6] is open PaaS software based on Cloud Foundry, Docker and other open-source

components. It has multi-tenancy capabilities and can be installed on internal infrastructure or

public cloud. Multi-tenancy capabilities are important because they allow us to run multiple

Computer Science & Information Technology (CS & IT) 59

applications on the same IaaS infrastructure. Stackato allows developers to automatically package

applications into their own Docker containers and scales instances up or down on demand.

Stackato provisions all required components, including languages, frameworks and service

bindings, automates logging and monitoring, allows for automated application versioning and

rollback.

6.3. mOSAIC

mOSAIC [9] is an open-source API and platform for designing and developing multi-Cloud-

oriented applications. The architecture has been designed with open and standard inter faces. The

main goal is to provide a unified cloud programming interface which enables flexibility to build

applications across different cloud providers. The main middleware components providing

integration features are the Cloudlet, Connector, Interoperability, and Driver API. The Cloudlet

and Connector API layers facilitate the integration into the target language environment which is

used by the developers in their applications. The Driver API layer provides abstraction over

resource allocation on top of the native resource API. Interoperability API is the middleware

layer that integrates the connector API and compatible driver API implementations that could be

written in different languages. It is a remote API that follows the model of RPC with

functionalities including marshalling, request/response correlation, and error detection. Apart

from its cloud integration features, mOSAIC framework is promised to have a semantic-oriented

ontology for describing cloud resources.

7. COMPARISON OF MAJOR PAAS

This section compares the major open PaaS frameworks. Table 2 shows the basic functionality

and its corresponding AppScale, Cloud Foundry, Cloudify, and OpenShift architectural

components.
Table 2. Open PaaS Components comparison

Functionality AppScale Cloud Foundry Cloudify OpenShift

Core functionality AppController Cloud controller Manager Broker

Providing third party database

services

Database Master Service Broker Agent Cartridge

Routing of incoming traffic AppLoadBalancer Router Manager REST API

Querying the state of apps AppScale Tools Cloud controller CLI client Broker

Messaging AppController Message Bus Manager Broker

Application instance

management

AppServer Droplet Execution

Agent

Agent Node

Application state change AppLoadBalancer Health Manager Manager Broker

Containerization Database Slave Warden Agent Gear

Load balancing of user

requests

AppLoadBalancer Droplet Execution

Agent

Manager Broker

Framework provider AppServer Blob Store Agent Cartridge

Table 3 shows the AppScale, Cloud Foundry, Cloudify, and OpenShift PaaS supported languages

(java, python, ruby), databases (MongoDB, MySQL, HBase) and frameworks (spring, rails, and

flask). In OpenShift, languages and databases are supported in the form of cartridges. User

defined cartridges are also allowed in OpenShift. Cloud Foundry provisions languages in the

60 Computer Science & Information Technology (CS & IT)

form of build packs. Users can also pick to write their own build packs. Cloudify, Cloud Foundry

and Openshift have extensible language support feature.

Table 3. Language, Database and Frameworks supported by open PaaS

 Languages Databases Frameworks

AppScale Python, Java, Go, PHP Cassandra, HBase,

Hypertable, MongoDB,

SimpleDB, MySQL

Django, Flask,

Spring

Cloud

Foundry

Java, Ruby, Scala, Node.js,

Groovy, Grails, PHP, Go,

Python

MonogoDB, MySQL,

PostgreSQL

Spring, Rails,

Grails, Play,

Sinatra

Cloudify Java, PHP, Ruby MySQL, MongoDB -

OpenShift Java, PHP, Ruby, Python, Perl,

JavaScript, Node.js

PostgreSQL, MySQL,

MongoDB

Rails, Flask,

Django, Drupal,

Vert.x

Table 4 shows the features support by AppScale, Cloud Foundry, Cloudify, and OpenShift

platforms.

Table 4. Open PaaS Considerable Feature Support

Features AppScale Cloud Foundry Cloudify OpenShift

Relational database support Yes Yes Yes Yes

NoSQL database support Yes Yes Yes Yes

Horizontal Scaling Yes Yes Yes Yes

Vertical Scaling No Yes No Yes

Auto Scaling Yes No Yes Yes

Spring Framework support Yes Yes No No

8. CONCLUSIONS

Cloud computing service models like Software as a Service (SaaS), Platform as a Service (PaaS),

and Infrastructure as a Service (IaaS) are introduced in this paper. PaaS is explained in detail with

the help of open PaaS packages like AppScale, Cloud Foundry, Cloudify, and OpenShift.

AppScale components are explained in table format, Cloud Foundry components are explained in

detailed with a diagram, Cloudify and OpenShift components are also explained. Stakato, Stratos

and mOSAIC open PaaS environments also explained in this paper. Comparative study is

performed among the AppScale, Cloud Foundry, Cloudify and OpenShift open PaaS componets.

ACKNOWLEDGEMENTS

This research was supported by Basic Science Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of Education. (Grant Number: 2011-

0011507).

Computer Science & Information Technology (CS & IT) 61

REFERENCES

[1] Daniel Nurmi, Richard Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman, Lamia Youseff

& Dmitrii Zagorodnoy, (2009) “The Eucalyptus Open-Source Cloud-Computing System”, CCGrid,

pp124-131.

[2] Bunch, C., Chohan, N., Krintz, C., Chohan, J., Kupferman, J. & Lakhina, P., et al., (2010) “An

Evaluation of Distributed Datastores Using the AppScale Cloud Platform”, IEEE International

Conference on Cloud Computing.

[3] Bunch, Chris, Navraj Chohan & Chandra Krintz, (2011) “Appscale: open-source platform-as-a-

service”, UCSB Technical Report.

[4] Varma, N. M. K., Min, D. & Choi, E. (2011) “Diagnosing CPU utilization in the Xen virtual machine

environment”, In Computer Sciences and Convergence Information Technology (ICCIT), 6th

International Conference, pp. 58-63, IEEE.

[5] Pawluk, P., Simmons, B., Smit, M., Litoiu, M. & Mankovski, S. (2012) “Introducing STRATOS: A

cloud broker service”, In 2012 IEEE Fifth International Conference on Cloud Computing, pp. 891-

898, IEEE.

[6] Fortiş, T. F., Munteanu, V. I., & Negru, V., (2012), “Towards a service friendly cloud ecosystem”, In

Parallel and Distributed Computing (ISPDC), 11th International Symposium, pp. 172-179, IEEE.

[7] Hossny, E., Khattab, S., Omara, F. & Hassan, H., (2013) “A Case Study for Deploying Applications

on Heterogeneous PaaS Platforms”, In Cloud Computing and Big Data (CloudCom-Asia),

International Conference on (pp. 246-253), IEEE.

[8] Varma, N. M. K. & Choi, E., (2013) “Extending Grid Infrastructure Using Cloud Computing”, In

Ubiquitous Information Technologies and Applications, pp. 507-516, Springer Netherlands.

[9] Marpaung, J., Sain, M. & Lee, H. J., (2013) “Survey on middleware systems in cloud computing

integration”, In Advanced Communication Technology (ICACT), 15th International Conference, pp.

709-712, IEEE.

[10] D. Bernstein, (2014) “Cloud Foundry Aims to Become the OpenStack of PaaS”, IEEE Cloud

Computing, (2), 57-60.

[11] Graham, S. T. & Liu, X., (2014) “Critical evaluation on jClouds and Cloudify abstract APIs against

EC2, Azure and HP-Cloud”, In Computer Software and Applications Conference Workshops

(COMPSACW), IEEE 38th International, pp. 510-515, IEEE.

[12] A. Lomov, (2014) “OpenShift and Cloud Foundry PaaS: High-level Overview of Features and

Architectures”, Available at www.altoros.com/openshift_and_cloud_foundry_paas.html.

62 Computer Science & Information Technology (CS & IT)

AUTHORS

Name: Mohan Krishna Varma Nandimandalam

Address: B-304, DIS Lab, School of Business IT, International Building,

Kookmin University, Seoul-136702, South Korea

Education: Completed Bachelor of Computer Applications degree in 2002, Received

Master of Science in Information Systems degree in 2004 and Master of Technology in

Computer Science and Engineering in 2007 from VIT University, India. At present studying Ph.D. in

Graduate School of Business IT, Kookmin University, South Korea.

Eunmi Choi is a Professor in the School of Business IT,

Chairperson of School of Management Information Systems,

Head of Distributed Information System & Cloud Computing Lab., and

Executive Chief of Business IT Graduate School at Kookmin University, Korea,

Her current research interests include big data infra system and processing, cloud

computing, cyber physical system, information security, distributed system, SW meta-

modelling, and grid & cluster computing. Professor Choi received and MS and PhD in computer science

from Michigan State University, U.S.A., in 1991 and 1997, respectively, and BS in computer science from

Korea University in 1988.

