

David C. Wyld et al. (Eds) : CCSEA, CLOUD, DKMP, SEA, SIPRO - 2016

pp. 01–12, 2016. © CS & IT-CSCP 2016 DOI : 10.5121/csit.2016.60201

EFFICIENT CALL PATH DETECTION FOR

ANDROID-OS SIZE OF HUGE SOURCE

CODE

Koji Yamamoto and Taka Matsutsuka

Fujitsu Laboratories Ltd., Kanagawa, Japan
{yamamoto.kouji,markn}@jp.fujitsu.com

ABSTRACT

Today most developers utilize source code written by other parties. Because the code is

modified frequently, the developers need to grasp the impact of the modification repeatedly. A

call graph and especially its special type, a call path, help the developers comprehend the

modification. Source code written by other parties, however, becomes too huge to be held in

memory in the form of parsed data for a call graph or path. This paper offers a bidirectional

search algorithm for a call graph of too huge amount of source code to store all parse results of

the code in memory. It refers to a method definition in source code corresponding to the visited

node in the call graph. The significant feature of the algorithm is the referenced information is

used not in order to select a prioritized node to visit next but in order to select a node to

postpone visiting. It reduces path extraction time by 8% for a case in which ordinary path

search algorithms do not reduce the time.

KEYWORDS

Call graph, Graph path, Bidirectional search, Static source code analysis, Huge amount of

source code

1. INTRODUCTION

Source code written by other parties, especially open source code, are often utilized to build

developers' own software products and services.The developers merge other party’s code as a

library, or adds their own original functions into it in order to make their software high value with

competitive development cost.In the latter case, it is the key to success to understand the overlook

and details of the source code.

It is an effective approach of source code comprehension to recognize relationships between

classes or methods in the code. The main kinds of relationships for imperative object oriented

programming languages like Java and C++ are caller-callee relationship (as known as call graph

[1]), data structure, and class inheritance.We believe grasping caller-callee relationship,

especially a caller-callee relationship path (abbreviated “call path” hereafter), is one of the best

entries to comprehend source code because it highlights outlook of behaviours of the executed

code so as to emphasize which methods/classes have to be first investigated in detail. Call paths

are acquired using static program analysis.

2 Computer Science & Information Technology (CS & IT)

The size of open source code is increasing huge. For instance, open source version of Android

OS source [2] consists of 50 to 100 million lines of code. In spite of that, the required time for

static analysis of source code has been reduced drastically today. Understand ™ [3] by Scientific

Toolworks, Inc., for example, consumes less than one tenth of static analysis time of the previous

tools such as Doxygen [4] in our experience. Static analysis of huge scale source code written by

other parties is now the realistic first step to comprehend them if the following problem is

resolved.

Huge amount of analysis result of huge size source code is, however, still barrier to understand

the source code for an ordinary development environment. A developer usually has a general

type of laptop/desktop computer with tiny memory, at most 16GB. The memory does not store

all the result if the target source code is for Android OS, 50-100 million lines of code or similar

size of code. Actually a server with much more size of memory cannot treat the result efficiently.

It takes much more time to extract a call path. It disturbs developers' source code comprehension.

Our contribution is a bidirectional search algorithm to extract a call path from a call graph of too

huge source code to store all parse results of the code in memory. It reduces 8% of path

extraction time for a case in which ordinary path search algorithms do not reduce the time.The

first characteristic feature of the algorithm is it refers to a method definition in source code

corresponding to the visited node in the call graph. The second significant feature is the

referenced information is used not in order to select a prioritized node to visit next but so as to

select a node to “postpone” visiting. They are dedicated to the search time reduction. In addition,

the algorithm halves the required time for the aforementioned case if all the data is stored in

memory, though it is far from a real situation.

In the rest of this paper, we explain call graphs themselves and graph search algorithms. After

that, we introduce our bidirectional search algorithm for call graphs and its evaluations. Then we

make some discussions followed by concluding remarks.

2. DEFINITIONS

2.1. Call Graph

A call graph is the directed graph where the nodes of the graph are the methods (in Java; the

functions in C++) of the classes of the program; each edge represents one or more invocations of

a method by another method [1]. The former method is referred to as a callee method, and the

latter as a caller method. The staring node of the edge corresponds to the caller method. The

ending node stands for the callee method.

An example of call graphs is depicted in Figure 1, which is retrieved from the source code shown

in Figure 2. Each bold text part in Figure 2 corresponds to the node having the same text in

Figure 1. Information on methods and their invocations is retrieved from source code using static

analysis tools like as [3] and [4]. In practice graph could be more complicated: Each method

might be invoked by other methods than method “transmit()”; Method “transmit()” itself might

be invoked by some methods.

Computer Science & Information Technology (CS & IT) 3

Figure 1. An example of call graphs

public class Tranceiver implements ITranceiver {

 private Transformer transformer;

 private Protocol protocol;

 private boolean send(Host destination) { ... }

 ...

 public boolean transmit(String data, Host destination) {

 byte[] encodedData = transformer.encode(data);

 header = protocol.makeHeader();

 send(header, encodedData, destination);

 }

}

Figure 2. Source code corresponding to the call graph in Figure 1

Figure 3. A complicated example of call graphs

4 Computer Science & Information Technology (CS & IT)

2.2. Call Path

A call path is a sequence of edges where all the edges are connected and each edge is connected

to at most one incoming edge and at most one outgoing edge. The edge having no incoming edge

is called as an “initial node.” The edge with no outgoing edge is called as a “final node.” The

methods corresponding to the initial node and the final node are called as an “initial method” and

a “final method” respectively.

Figure 4 shows an example of call paths, which is extracted from a little bit complicated call

graph shown in Figure 3. In most cases, extracted call paths are simpler to grasp caller-callee

relationship than general call graphs for developers if they know the names of an initial method

and a final method to be concerned.

Figure 4. An example of call paths, which is extracted from the graph in Figure 3

2.3. Bidirectional Search Algorithm for Call Graphs

A bidirectional graph search algorithm is a graph search algorithm that finds a shortest path from

an initial node to a final node in a directed graph.It traverses nodes forward in the graph and

traverses nodes backward simultaneously [5]. Recent bidirectional algorithms use a heuristic

distance estimate function to select a node to visit next [6] [7] [8]. An example of heuristic

functions is Euclidean distance of a pair of nodes for the corresponding real distance is

Manhattan distance.

To our knowledge, no heuristic estimate function for a call graph has been found yet.

3. BIDIRECTIONAL SEARCH ALGORITHMS FOR CALL GRAPH

We present an algorithm for bidirectional search in a call graph. The algorithm use source code

properties corresponding to a visiting node in order to select a next node to visit, while other

bidirectional search algorithms use a heuristic estimate value between a visiting node and the

initial/final node [6] or frontier nodes [7][8]. In our algorithm 'bidir_postpone', a next visiting

node is decided using the type of method corresponding to the visiting node in addition to the

outgoing or incoming degree (outdegree or indegree) of the node.

procedure bidir_postpone(E, V, initialNode,

finalNode):

 1: todoF := {initialNode}

 2: todoB := {finalNode}

 3: /* Let prevF and prevB be dictionaries

of type V to V.

 Let delay, distF, and distB be dictionaries

of type V to integer. */

 4: for v in V do

27: if frwd then

28: next := {v | (u->v) in E}

29: else

30: next := {v | (v->u) in E}

31: endif

32: for node v in next; do

33: alt := dist[u] + 1 /* all the edge

weighs one in a call graph.

*/

Computer Science & Information Technology (CS & IT) 5

 5: prevF[v] := None; prevB[v] := None

 6: delay[v] := 0

 7: distF[v] := ∞; distB[v] := ∞ /* which

stand for the distance from v along

with

forward (F)/backward (B) path. */

 8: endfor

 9: intermed := None

10: while |todoB| > 0 or |todoF| > 0 do

11: if |todoB| < |todoF| then

12: frwd := True; todo := todoF;

frontiers := todoB; dist := distF

13: else

14: frwd := False; todo := todoB;

 frontiers := todoF; dist := distB

15: endif

16: todo2 := { }

17: for node u in todo; do

18: if delay[u] > 0 then

19: delay[u] := delay[u] - 1

20: add u to todo2

21: continue for-loop with next node u

22: else if the type of the class of

 the method corresponding to

u

 is interface and not frwd

then
 not frwd then

23: add u to todo2

24: delay[u] := 3 - 1

25: continue for-loop with next node u

26: endif

34: if dist[v] > alt then

35: prev[v] := u

36: dist[v] := alt

37: if v in frontiers then

38: intermed := v

39: exit from while

40: endif

41: add v to todo2

42: endif

43: endfor

44: if frwd then todoF := todo2

45: else todoB := todo2 endif

46: todo2 := { }

47: endfor

48: endwhile

49: if intermed is None then

50: output ERROR

51: else

52: v := intermid

53: while prevF[v] is not None do

54: output (prevF[v] -> v)

 as a path constituent

55: endwhile

56: v = prevB[intermid]

57: while prevB[v] is not None do

58: output (v -> prevB[v])

as a path constituent

59: endwhile

60: endif

Figure 5. Algorithm ‘bidir_postpone’

Another difference between our algorithm and the previous algorithms is that the selected node

by our algorithm is not a prioritized node to visit next but a node that is high cost to visit. The

node will be scheduled to visit some steps later instead of visiting immediately.

Figure 5 shows our algorithm ‘bidir_postpone.’ E and V in parameters in the figure stand for a

set of edges and a set of nodes in the call graph respectively.

At line 22, the algorithm determines next node to visit should be treated immediately or should be

postponed treating. If the corresponding class type of the visiting node is interface in Java or

abstract class in C++, the treatment is postponed. This type of method can be called by many

methods. Therefore indegree of the corresponding node is greater than usual nodes. That is why

visiting to such nodes should be postponed. If the visiting node is the case, treatment of the node

will be suspended for 3 steps (See the line 24 and lines 18-20).

6 Computer Science & Information Technology (CS & IT)

It is false that the postponement can be achieved by assigning heavy weight to edges adjacent to

the nodes that hold the condition at line 22, instead of the treatment suspension because an

algorithm using such heavy edges may output longer path than algorithm bidir_postpone.

4. EVALUATION

We compare the results of applying four types of algorithms to four pairs of initial and terminal

nodes (hereupon the both nodes are referred to as starting point nodes) under two kinds of

conditions. The result tells (1) if all the data is stored in memory, our algorithm reduces the

duration for the significant case where the original bidirectional search does not reduce time

compared to more naïve unidirectional search. (2) Even if the data is stored in HDD, our

algorithm reduces the path extraction time by 8% for the aforementioned case. The details are

shown hereafter.

4.1. Algorithms, data, and conditions to compare

The algorithms are the following four types. The second and third ones are almost the same as

our algorithm itself:

A1 ‘Bidir_3postpone’: It is the algorithm shown in Figure 5.

 A2 ‘Bidir_6postpone’: It is slightly modified version of algorithm of A1 ‘Bidir_3postpone’

with delay 6. It delays node visiting for 6 steps at line 24 in Figure 5 instead of 3 steps. The

purpose to compare the algorithm A1 with A2 is to check whether postponement step of

algorithm A1 is adequate or not.

A3 ‘Bidir_0postpone’: It is almost the same algorithm as A1 ‘Bidir_3postpone’ and A2

‘Bidir_6postpone.’ In this algorithm, the condition at line 22 in Figure 5 is always false while

the property in the source code, which is the type of the corresponding method, is retrieved

from the parse result stored in HDD. The algorithm is for evaluation of an overhead of the

parse result retrieval.

A4 ‘Bidir_balanced’: It is the almost original version (appeared in [9]) of bidirectional search

algorithm with no heuristic estimate functions, due to missing of estimate functions for call

graphs. The difference between the algorithm and A1 in Figure 5 is that lines 18 through 26

are omitted and the rest of the for-loop starting from line 32 is always executed.

The starting point node pairs are as follows:

P1 ‘A->C’: The number of reachable nodes by traversing forward from the initial node is

much more than the number of reachable nodes by traversing backward from the final node.

P2 ‘C->N’: The numbers of forward nodes from the initial node and backward nodes from the

final node are both few.

P3 ‘N->R’: Opposite pattern of P1 ‘A->C’. The number of forward nodes from the initial

node is much less than backward nodes from the final node.

Computer Science & Information Technology (CS & IT) 7

 P4 ‘A->R’: The numbers of forward nodes from the initial node and backward nodes from the

final node are both many.

Figure 6 shows the numbers of nodes reachable from the initial node and the final node. For P2

and P4, the numbers of both type of nodes are almost the same. They are different from each

other for P1 and P3. Note that the measurement of the number is logarithmic. For instance, the

number for the final node for P3 is 5 times greater than one for the initial node.

Figure 6. The numbers of nodes reachable from starting points

The conditions are the following two patterns. The latter is more similar to practical use case:

C1 ‘In memory’: All graph data is stored in memory.

C2 ‘In HDD’: A part of graph data is constructed on demand from the source code parse

results that are stored in hard disk drive. Some graph edges and all graph nodes correspond to

some parse result straightforwardly. Some other edges should be built up with syntactical

analysis results and lexical analysis results.

C1 is the condition to measure the performance of the algorithms themselves. C2 is the condition

that is almost the same as the actual execution environment with an exception. The environment

contains parse result of source code stored in hard disk drive, and a result extraction program to

convert specified part of the parse result to graph edges and nodes. The exception that differs

from the actual environment is all the data stored in hard disk drive is not cached into memory

(that is disk cache) at initial time. It makes measurement variance due to disk cache very small.

The source code for evaluation from which the call graph is constructed is partial source files of

practical source code of Android OS for smartphones, version 4.4.4_r2 in [2]. The number of

methods in the partial source files set is about 2% of the number in the whole source set. The

parsed data for only 2% of the whole code occupies 2 GBytes size or more. For ordinary lap top

computers of developers, even this size of partial source files are too huge to be held in memory.

4.2 Results

The measurements are executed 3 times. The average measured values are described in Figures 7

to 9, where logarithmic scale is used for all the Y axes. Figure 7 shows the time to traverse under

8 Computer Science & Information Technology (CS & IT)

the condition C1 ‘In memory’. Figure 8 is for the time to traverse under the condition C2 ‘In

HDD’. Figure 9 tells the number of visited nodes. Note that an I-shaped mark at the top of each

plotted box, in Figures 7 and 8, stands for the range of the sample standard deviation, +σ and -σ.

Three times measurements seem enough because the deviations are sufficiently small.

Figure 7 depicts algorithm A1 ‘Bidir_3postpone’ halves the time to traverse for the case in which

the numbers of reachable nodes from the starting point nodes are both large (P4). The precise

ratio is 1.07 seconds for our algorithm (A1) to 2.71 seconds for the original algorithm (A4),

which stands for 60.5% reduction. Actually in other cases P1, P2, and P3, naïve bidirectional

search (A4) runs in much shorter time than a unidirectional search, which is the directed edge

version of Dijkstra algorithm, and is much more naïve than A4. Thus the time reduction in the

case P4 is most desired by developers.

The resulting time to traverse for in-memory access case (C1, in Figure 7) is almost proportional

to the number of nodes to be visited by each algorithm, shown in Figure 9. Therefore the less

nodes are visited by the algorithm, the less traversal time can be achieved.

In contrast to the in-memory access, the results of the cases in which the data is stored in HDD

(C2), in Figure 8, tell our algorithm takes worse time than the original algorithm (A4) for the case

P3. In the case P4 that is most desired to reduce the time by developers, however, our algorithm

(A1) spends 281.9 seconds and the original algorithm (A4) consumes 307.8 seconds. The

difference is 25.9 seconds, which means ours (A1) achieves 8.4% reduction to the original (A4).

Figure 7. Time to traverse (in memory)

Computer Science & Information Technology (CS & IT) 9

Figure 8. Time to traverse (in HDD)

Figure 9. The numbers of visited nodes

4.3. Barriers to time reduction

We assume the overhead time for in-HDD case (C2, in Figure 8) comes from extra disk accesses

to retrieve the properties of methods that occur at line 22 in Figure 5. Our disk access method in

our algorithm is still naïve. Therefore the effect of the disk accesses could be reduced by the

result of further investigation.

Figure 10. The numbers of nodes that the algorithms visited forward

Figure 11. The numbers of nodes the the algorithms visited backward

The algorithm A1 visits remarkably large number of nodes for the starting point pair P3, in which

the number of forward edges reachable from the initial node is much less than backward edges

10 Computer Science & Information Technology (CS & IT)

reachable from the final node. The algorithm traverses forward the same number of nodes from

the initial node of P3 as the other algorithms (See Figure 10). It visits backward five times as

large number of nodes from the final node of P3 as the algorithms A3 and A4, as shown in Figure

11. In the both algorithms A1 and A4, the forward search and the backward search meet at the

same node. Note that the meeting point node is expressed as 'intermed' at line 38 in Figure 5.

The node adjacent to the meeting point node (abbreviated as 'MP node' hereafter) in forward

direction holds the postponement condition described at the line 22 in Figure 5. The adjacent

node is on the path between the MP node and the final node. Thus visiting backward to the MP

node is postponed for 3 steps. One hundred and twenty seven extra nodes has been visited while

that. P3 notices our algorithm can be improved using other kinds of information than the type of

the class corresponding to the visited node.

5. DISCUSSION

5.1. Intermediate Nodes

Actually resulting paths for our evaluation data P1 through P3 can be concatenated because the

final node for Pn is the initial node for P(n+1) for n=1, 2. In addition, the concatenated path

starts from the initial node of P4 and ends with the final node of P4.

It is interesting the summation of the numbers of visited nodes for P1 through P3 is much less

than the numbers of visited nodes for P4 (See Figure 9.) It states the possibility of existence of

somewhat “efficient” intermediate nodes for path search of source code call graph. If as

bidirectional search algorithm can start traversing from the “efficient” intermediate nodes in

addition to starting point nodes, it takes less time to extract call path than our current version of

algorithm. We will try to find the feature of such type of intermediate nodes.

Note: The resulting path for P4, however, does not include the initial node and the final node of

P2. Therefore we treat P1 through P4 as almost independent example data from each other.

5.2. More Aggressive Use of Features in Source Code

Our algorithm shown in Figure 5 only uses the class type corresponding to the visiting node as

properties retrieved from source code. As discussed in the last section, there might be more types

of properties that can reduce the number of nodes to be visited.

The result of further investigations on the kinds of useful properties of source code also affects

the parsing way of source code itself. It will change the requirements of the source code parser.

For example, some optional high cost feature of parsing will be executed by default. It will also

change the database schema for the parse results to retrieve the useful properties with less cost.

6. RELATED WORKS

A bidirectional search algorithm in [6] or alike is called front-to-back algorithm. It uses the

heuristic function to estimate the distance from the current visiting node (i.e., front) to the goal

node (i.e., back). The function is similar to the heuristic function of A* search method [10]. The

algorithm is executed under the assumption that the heuristic function estimates a value that is

Computer Science & Information Technology (CS & IT) 11

equal to or less than the real value (i.e., not overestimating.) The function is said to be admissible

if the property holds.

A bidirectional search algorithm called front-to-front [7] [8] uses the heuristic estimate function

that calculates the distance from the current visiting node (i.e., front) to the frontier node of the

opposite direction search (i.e., (another) front.) The algorithm achieves the best performance

when the function is admissible and consistent, that is, given nodes x, y, and z where x and z are

the end nodes of a path and y is on the path, the estimated distance between x and z is equal to or

less than the summation of the real distance between x and y and the estimated distance between

y and z.

The former algorithm has been verified by experimental evaluations [6] for at least Fifteen-puzzle

problems. The latter has been proved theoretically in [8].

For call graphs, however, either type of heuristic function has not been found yet to the best of

our knowledge. Hence bidirectional search algorithms with heuristic estimate functions cannot

apply to call graphs.

Although unfortunately we have not found previous works on call graph traversal especially

related to bidirectional search, researchers of call graph visualizer made a comment on

bidirectional search [11]. From experiences of participants attending to a lab study to evaluate the

visualizer, they said “A significant barrier to static traversal were event listeners, implemented

using the Observer Pattern. To determine which methods were actually called, participants would

have to determine which classes implemented the interface and then begin new traversals from

these methods.” Our approach could resolve the difficulty and might make their traversal

processes easier.

7. CONCLUSION

We have offered a bidirectional search algorithms for a call graph of too huge source code to

store all parse results of the code in memory. It reduces 8% of path extraction time for a case in

which ordinary path search algorithms do not reduce the time. The algorithm refers to a method

definition in source code corresponding to the visited node in the call graph. The significant

feature of the algorithm is the referred information is used not in order to select a prioritized node

to visit next but in order to select a node to postpone visiting. They contribute to the search time

reduction.

ACKNOWLEDGEMENTS

We would like to thank all our colleagues for their help and the referees for their feedback.

REFERENCES

[1] Ryder, Barbara G., (1979) “Constructing the Call Graph of a Program”, Software Engineering, IEEE

Transactions on, vol. SE-5, no. 3, pp216–226.

[2] “Android Open Source Project”, https://source.android.com/

12 Computer Science & Information

[3] Scientific Tools, Inc., “Understand ™ Static Code Analysis Tool”, https://scitools.com/

[4] “Doxygen”, http://www.stack.nl/~dimitri/doxygen/

[5] Pohl, Ira, (1969) “Bi-directional and heuristic search in path pr

Science, Stanford University.

[6] Auer, Andreas & Kaindl, Hermann, (2004) “A case study of revisiting best

search”, ECAI. Vol. 16.

[7] de Champeaux, Dennis & Sint, Lenie, (1977) “An improved

Journal of the ACM 24 (2), pp177

[8] de Champeaux, Dennis, (1983) “Bidirectional heuristic search again”, Journal of the ACM 30 (1),

pp22–32, doi:10.1145/322358.322360.

[9] Kwa, James B. H, (1989) “BS

Artificial Intelligence 38.1, pp95

[10] Hart, Peter E. & Nilsson, Nils J. & Raphael, Bertram, (1968) "A Formal Basis for the Heuristic

Determination of Minimum C

SSC4 4 (2), pp100–107, doi:10.1109/TSSC.1968.300136.

[11] LaToza, Thomas D. & Myers, Brad A, (2011) “Visualizing Call Graphs”, 2011 IEEE Symposium on

Visual Languages and Human

AUTHORS

Koji Yamamoto works at Fujitsu Laboratories, Japan, since 2000. He is interested in

software engineering especially using program analysis, formal methods, and (semi

automatic theorem proving and its systems. He received doctoral degree in engineering

from Tokyo Institute of Technology, Japan, in 2000. He is a member of ACM.

Taka Matsutsuka received his M.S. degree in Computer Science from Tokyo Institute

of Technology. He works for Fujitsu Laboratories Ltd., and is e

analysis. He is a visiting professor at Japan Advanced Instit

Technology and a member of Information Processing Society of Japan.

Computer Science & Information Technology (CS & IT)

Scientific Tools, Inc., “Understand ™ Static Code Analysis Tool”, https://scitools.com/

“Doxygen”, http://www.stack.nl/~dimitri/doxygen/

directional and heuristic search in path problems”, Diss. Dept. of Computer

Auer, Andreas & Kaindl, Hermann, (2004) “A case study of revisiting best-first vs. depth

de Champeaux, Dennis & Sint, Lenie, (1977) “An improved bidirectional heuristic search algorithm”,

Journal of the ACM 24 (2), pp177–191, doi:10.1145/322003.322004.

de Champeaux, Dennis, (1983) “Bidirectional heuristic search again”, Journal of the ACM 30 (1),

32, doi:10.1145/322358.322360.

James B. H, (1989) “BS∗: An admissible bidirectional staged heuristic search algorithm”,

Artificial Intelligence 38.1, pp95-109.

Hart, Peter E. & Nilsson, Nils J. & Raphael, Bertram, (1968) "A Formal Basis for the Heuristic

Determination of Minimum Cost Paths", IEEE Transactions on Systems Science and Cybernetics

107, doi:10.1109/TSSC.1968.300136.

LaToza, Thomas D. & Myers, Brad A, (2011) “Visualizing Call Graphs”, 2011 IEEE Symposium on

Visual Languages and Human-Centric Computing, pp117-124, doi: 10.1109/VLHCC.2011.6070388.

works at Fujitsu Laboratories, Japan, since 2000. He is interested in

software engineering especially using program analysis, formal methods, and (semi-)

automatic theorem proving and its systems. He received doctoral degree in engineering

stitute of Technology, Japan, in 2000. He is a member of ACM.

received his M.S. degree in Computer Science from Tokyo Institute

He works for Fujitsu Laboratories Ltd., and is engaged in R&D of OSS

ing professor at Japan Advanced Institute of Science and

Technology and a member of Information Processing Society of Japan.

Scientific Tools, Inc., “Understand ™ Static Code Analysis Tool”, https://scitools.com/

oblems”, Diss. Dept. of Computer

first vs. depth-first

bidirectional heuristic search algorithm”,

de Champeaux, Dennis, (1983) “Bidirectional heuristic search again”, Journal of the ACM 30 (1),

: An admissible bidirectional staged heuristic search algorithm”,

Hart, Peter E. & Nilsson, Nils J. & Raphael, Bertram, (1968) "A Formal Basis for the Heuristic

ost Paths", IEEE Transactions on Systems Science and Cybernetics

LaToza, Thomas D. & Myers, Brad A, (2011) “Visualizing Call Graphs”, 2011 IEEE Symposium on

124, doi: 10.1109/VLHCC.2011.6070388.

