

Jan Zizka et al. (Eds) : CCSIT, SIPP, AISC, CMCA, SEAS, CSITEC, DaKM, PDCTA, NeCoM - 2016

pp. 117–129, 2016. © CS & IT-CSCP 2016 DOI : 10.5121/csit.2016.60111

RELIABILITY EVALUATION OF SOFTWARE

ARCHITECTURE STYLES

Gholamreza Shahmohammadi

Department of Information Technology,

Olum Entazami Amin University, Tehran, Iran
Shahmohamadi@yahoo.co.uk

ABSTRACT

In process of software architecture design, different decisions with system-wide impacts are

made. An important decision of design stage is the selection of appropriate software

architecture style. Since quantitative impacts of styles on quality attributes have not been

studied yet, their application is not systematic. Since Reliability is one of the essential quality

requirements of software systems, especially for life critical ones, one of the main criteria in

choosing architecture style of these systems is high reliability. The goal of this study is to

quantify the impact of architecture styles on software reliability that is desired quality of life

critical software. We evaluate styles through reliability block diagram method. First, the

reliability equation of each architectural style was computed using of Reliability block diagram

approach. Then, reliability rank of architectural styles is computed by setting of the number of

effective components in a transaction parameter in reliability equation of architectural styles.

The main innovation of this article is quantification of impact of styles on software reliability

that is essential for style selection.

KEYWORDS

Software Architecture, Software Architecture Style Evaluation, Reliability block diagram

1. INTRODUCTION

Software systems are increasingly entering consumers’ everyday life. To satisfy the consumers’

requirements, these systems must demonstrate high reliability and availability. Thus, they must

function correctly and without interruption [1]. The software architecture design stage is the first

stage of software development in which it is possible to evaluate how well the quality

requirements are being met [1]. In the process of architecture design, different decisions are made

that have system-wide impact [2]. Architectural decisions made early in the design process are a

critical factor in the successful development of system. In particular, the selection of an

appropriate software architecture style (SAS) has a significant impact on various system quality

attributes [3]. Functionality may be achieved using any of a number of possible structures [4], so

SASs are selected based on amount of their support from quality attributes. Styles present models

for solving the problem of designing the software architecture in a way that each model describes

its components, responsibilities of the components and the way they cooperate [5]. Since

quantitative impacts of SASs on quality attributes have not been studied yet [6], their applications

118 Computer Science & Information Technology (CS & IT)

are not systematic [7]. In other words, present use of styles in design is based on intuition of

software developers.

Software reliability is widely recognized as one of the most important aspects of software quality

[8]. Thus, quantification of impact of SASs on software reliability plays an important role in

selecting SASs. This study is a step towards quantification of influence of SASs on quality

attributes.

In [9], a method is shown to map an architectural style, expressed formally in an architectural

description language, into a relational model that can be checked for various style properties such

as consistency. In [3], the impact of a distributed software system’s architectural style on the

system’s energy consumption has been estimated. In [10], a method for specifying the

relationship between six SASs and quality attributes such as reliability has been proposed. The

relationship between the quality attributes, design principles and some SASs has been specified

using a tree-based framework. In [6], impacts of SASs on quality attributes are determined based

on the description of style in [11]. [6] and [10] are not able to determine the amount of style

support from quality attributes and do not offer quantitative results about their reliability and are

not precise.

Different methods for evaluating software reliability are presented [12, 13, and 14]. Considering

available information about SASs, only some of those methods like reliability block diagram

(RBD) [14] can be used for evaluation of SASs reliability.

In this study, according to the concept of transaction, SASs are evaluated based on reliability

block diagram approach and reliability equation of SASs in this approach is determined. Then

reliability rank of SASs are determined by setting the number of effective components in a

transaction (NECT), and impact of different NECT on SASs rank is investigated. Thus,

quantitative impact of SASs on software reliability is determined.

The RBD method presents a block representation of software components and their reliability

status, and is a suitable method for determining the reliability of SASs and the estimation of their

reliability.

In this work, eight styles: repository (PRS), blackboard (BKB), pipe and filter (P/F), layered

(LYD), implicit/invocation (I/I), client/server(C/S), broker (BRK) and object-oriented (OO) are

evaluated from reliability viewpoint.

The paper is organized as follows: in section 2 SASs, in section 3 software reliability and their

evaluation methods are discussed. In section 4 reliability evaluations of SASs and in section 5

ranking of SASs is described. In section 6 conclusions are explained.

2. SASS

SASs present models for solving the problem of designing the software architecture in a way that

each model describes its components, responsibilities of the components and the way they

cooperate [11]. Shaw and her colleague [5] introduce seven SASs. Buschmann et al [11] have

also described the pattern in different levels.

Computer Science & Information Technology (CS & IT) 119

Since the reliability of SASs are evaluated in this study, regarding effective components in

transactions, transaction definition and eight SASs introduced briefly. It should be noted that a

transaction is a set of operations that consists a logical unit of the job [15]. Since the evaluation is

performed at the level of architectural styles, the transaction is considered in term of effective

components in the transaction.

Repository style (RPS). In this style, there are two types of components: a central storage and a

set of components that store, retrieve and update information on the repository [5].

Blackboard style (BKB). The components of this style are Blackboard, experts (knowledge

resources), and the control. The control component in a loop, checks the blackboard status,

evaluates knowledge resource, and activates one of them for the execution [5].

Pipe and filter (P/F). This style is composed of a set of computational components. Each

component acts as a filter and has a number of inputs and outputs. The output of each component

is the input of the next component [5].

Layered style (LYD). In this style, the emphasis is on different abstraction level in the software.

The layered style organized hierarchically. Each layer provides a service for its above layer and

uses its lower layer [5].

Implicit Invocation (I/I). Implicit invocation style is an event-driven style based on broadcast

concepts and announces the occurrence of the event instead of directly invoking a function.

Interested components relate a function to an event. With the occurrence of an event, software

invokes all registered functions [5]. Components of this style are: (1) event publishers, (2)

components that are interested in events, and (3) dispatcher that invokes interested components in

response to an event occurrence.

Client/server(C/S). The components of this style are clients and servers. Clients should be aware

of the name and services presented by servers [5].

Broker style (BRK). Client, servers, broker, client side proxy and server side proxy are the

components of this style. Broker is responsible for coordinating the relationship between clients

and servers. Servers register themselves with the broker, and make their services available to

clients through method interfaces. Clients access services of servers by sending requests via the

broker. Locating appropriate servers, forwarding the request to it and return the results to the

client are the responsibilities of the broker [11].

Object-oriented (OO). In this style, data presentations and the related operations encapsulated in

an object. Objects are the components of this style and they interact through invoking the

functions [5].

3. SOFTWARE RELIABILITY AND THEIR EVALUATION METHODS

The main objective of software is to offer services desired according to the predetermined quality

level. The quality of software has a direct relationship with software architecture. Software often

redesigned not because they are functionally deficient, but because they are difficult to maintain,

port, or scale[16].

120 Computer Science & Information Technology (CS & IT)

According to IEEE standard 610-12[17] software architecture should provide two types of quality

requirements: developmental and operational. Developmental quality Requirements such as

maintainability and reusability are important in software development in future. Operational

quality requirements such as performance and reliability are important for software users and if

the software lacks them, will not be used.

Reliability is a set of sub-characteristics that determines the capability of the software to maintain

performance under stated conditions for a stated time period [18]. In other words, reliability

indicates a time during which the software is available for use. Reliability sub-characteristics are

as follows [18]:

• Maturity: the capability of the software product to avoid failures, as a result of faults in

the software. The less the frequency of failure, the higher the software maturity will be.

• Fault tolerance: the ability to maintain a specified level of performance in case of

software fault.

• Recoverability: Capability to re-establish the level of performance, Capability to recover

the data, and the time and effort needed for it.

The analysis of reliability sub-characteristics indicates the following points:

• The frequency of software failure is directly related to the number of critical components

of software architecture, because the more the number of software architecture critical

components, the higher the potential possibility of software failure will be.

• Software fault tolerance has a reverse relationship with the number of SAS critical

components, because the more the number of SAS critical components, the lower the

software fault tolerance will be.

• Recoverability has a reverse relationship with the number of SAS critical components,

because principally recoverability is discussed about components by failure of which the

performance of software decreases substantially.

Considering the above-mentioned, RBD approach that do reliability evaluation based on software

components and their interactions, is suitable method for evaluation of reliability at the level of

SAS.

3.1. Software Reliability Evaluation Methods

The software Reliability assessment methods have been classified into quantitative and

qualitative methods [1]. There are different types of quantitative methods; some of them are

usable before software implementation and some after. Measurement based methods which

focuses on the failure of the system are usable before and after software implementation.

RBD method has been presented as a method based on software structure in order to evaluate

reliability of software systems. Tripathi et al. [19] have used RBD to estimate reliability of

complex software systems from a hierarchy of modules. Leblanc et al. [20] presented a model

Computer Science & Information Technology (CS & IT) 121

based on RBD for indicating real world issues and an algorithm for analysis of this model at the

early stage of software development. So this method can be used to evaluate SAS reliability.

3.1.1. Reliability Block Diagram (RBD) Method

RBD is a block representation of software components in order to investigate the reliability of

components [14]. Since in each architectural style the constituent components the architecture

and their interactions are known, RBD method is suitable for evaluating SASs. RBD method,

determines SASs reliability based on their structure. SASs reliability prediction is done through

investigating the reliability of components. In order to create an RBD the configuration of

software architecture components should be determined first. Figure 1 represents a sequential

configuration of components. In a sequential configuration, a failure of any component results in

failure for the software. The reliability of software with sequential configuration equals the

probability that all the components of the architecture of that software succeed. In this case, the

reliability of software is computed by Eq. (1). Where Rs is software reliability, Xi is event of

Figure 1. Block diagram of sequential configuration [14]

component i being operational, and P(Xi) is the probability that component i is operational. If

components are considered independent then Eq. (1) becomes Eq. (2). In this Eq., Ri is the

reliability of component i. In a

Sequential configuration, the component with the smallest reliability has the biggest effect on

software reliability. As the number of components increases, the software’s reliability decreases.

Similarly, RBD method can be used for computing software reliability with parallel and

sequential-parallel configuration.

4. RELIABILITY EVALUATION OF SASS

In section 4.1, RBD method was presented to compute SASs reliability.

Although methods have been offered to predict software components reliability, since the

evaluation is done at the architectural styles level, there is no enough information of SASs

components. Thus, the reliability of each component is considered Ri.

4.1. Reliability Evaluation of SASs using RBD Method

In this section, SASs will be evaluated using RBD method.

Repository style (RPS). In this style, an independent component Ci interacts with the repository

in a transaction. As a result, reliability of style is computed by Eq. (3), where Rrps is the reliability

of the repository component, and Ri is the reliability of each of the independent components.

122 Computer Science & Information Technology (CS & IT)

Blackboard style (BKB). For a transaction in BKB, the control component (Cc) checks the

blackboard component (Cbkb) status and selects a suitable knowledge resource (Ckr), then the

knowledge resource interacts with the blackboard. Thus, the reliability of style is computed by

Eq. (4), where Rc is the reliability of the control component, Rbkb is the reliability of the

blackboard, and Rkr is the reliability of the knowledge resource.

Pipe and Filter style (P/F). In this style, in order to perform a transaction all components should

be active. Since in each transaction m components are effective, the reliability of P/F is computed

by Eq. (5), where Ri is the reliability of each filter.

Layered style (LYD). In this style in order to perform a transaction, all layers must be active.

Thus, reliability of style is also computed by Eq. (5). Ri is the reliability of each layer.

Implicit invocation style (I/I). In this style, a transaction begins with occurrence of an event.

Then the event dispatcher component (Cd) activates interested component (Ci). After the

interested component finishes its activity, transaction ends. Thus, the reliability of this style is

computed by Eq. (6), where Rd is the reliability of event dispatcher component and Ri is the

reliability of component interested in the event.

Client/Server style (C/S). In this style, a transaction begins by sending the request of client to

the server. After the request is processed by the server that usually needs interaction with

repository component, the result is sent to the client. Since the server is a complex component,

and consists of several components, the execution of the server is in fact the execution of m

components. Thus, in a transaction, m+1 components, consist of repository and m components in

the server, are each effective. Therefore, the reliability of this style is computed by Eq. (7), where

Rrps is the reliability of the repository component and R1…Rm are the reliability of server

components.

Broker style (BRK). In broker style, a transaction begins by sending the request of client. The

broker component (Cbrk), client side proxy (Ccsp), server (Cs) and repository (Crps) are effective in

the transaction. Similar to client/server style, the execution of the server is in fact execution of m

components. Thus, in a transaction, m+7 components are effective. so the reliability of this style

is computed by Eq. (8), where Rcsp is the reliability of client side proxy, Rbrk is the reliability of

the broker component, Rssp is the reliability of the server side proxy, and Rrps is the reliability of

the repository component.

In server component of client/server and broker styles, a fraction of m components is effective in

transaction. Figure 2 shows the diagram of change in reliability rank of client/server style in

terms of the number of server components effective in transaction for m =5. According to

diagram, by increasing the number of these components the reliability rank of the style is

Computer Science & Information Technology (CS & IT) 123

decreased. This value is considered m/2 based on authors’ experience in producing software

systems. Software developers determine this parameter based on their former experience in

software development.

Figure 2. Diagram of change in reliability rank of client/server style in terms of the number of server

components effective in transaction for m=5

Object-Oriented style (OO). In this style, the reliability of each use case that consists of k

classes is computed by Eq. (9). An Object-oriented system includes a few use cases, and each

use-case has its own execution path. By failure of one use case, the system continues its work

with lower throughput. Thus, the configuration of this style is like figure 3, where each execution

path indicates a use case. So, the reliability of the style is computed by Eq. (10), where p is the

number of use cases, and Ru is the reliability of each use case. By substituting Ru into Eq. (10),

the reliability of this style is computed by Eq. (12).

Figure 3. Block Diagram of various transactions

In this equation, Ru reliability of each use case. By substitution of Ru from Eq. (12), Eq. (11) is

obtained. Since some of the classes are common among use cases, the reliability of the style is

calculated by Eq. (12) in which c is the number of common classes in use cases. In object

oriented reliability equation, c indicates the number of common classes in use cases. Investigation

124 Computer Science & Information Technology (CS & IT)

of the reliability of parallel section ()1(1
1 1

∏ ∏
= =

−−
p

u

k

j

jR

) with different class number

showed that the reliability of this section is close to 1. So, reliability of the style is equal to that of

sequential section (∏
=

c

l

lR
1

). So, reliability of this style is calculated by Eq. (13).

Figure 4 shows the diagram of change in reliability of object oriented style in terms of percent

common classes in use cases for no=15. According to diagram, by increasing this percent,

reliability of the style is decreased. Based on their experience, the authors considered the percent

of common classes in use cases to be 20% of all classes.

Figure.4. Diagram of change in reliability rank of client/server style in terms of the number of common

classes of use cases for no=15

Software developers determine common class parameters in use cases and the number of

effective server components in transaction based on their former experience in software

development.

Table 1 indicates the reliability equation of SASs based on RBD method.

4.2. Reliability Evaluation of Large Systems

In some systems, not only an SAS is used as the main basis for system structuring, but also each

of their components may use a specific SAS. Concerning determination of reliability of SASs in

this study, it is also possible to evaluate and determine the reliability of such systems too.

Computer Science & Information Technology (CS & IT) 125

Table 1. Reliability equation of SASs based on RBD method

5. RANKING OF SASS

In section 4, the reliability of SASs was computed. In the reliability Eq. of most SASs, a parameter

'm' exists which indicates NECT. So, in order to investigate the impact of NECT, the value of 'm'

is considered as 2, 3, 4, 5, 6, and 7. The components of object-oriented style (i.e. classes) are

more fine grain than components of other SASs. Thus, with the approximation of three classes in

each component in a transaction in average, number of effective classes in a transaction,

corresponding to the NECT in other SASs, will be considered as 6, 9, 12, 15, 18, and 21 the. We

consider the reliability of each component/class 0.98.

For different values of m and based on the reliability Eq. of SASs in tables 1, the reliability of

SASs is computed and is shown in tables 2.

Table 2. Reliability of SASs using RBD method

m=7 m=6 m=5 m=4 m=3 m=2

Symbol no =21 no =18 no =15 no =12 no =9 no =6

0.96 0.96 0.96 0.96 0.96 0.96 RPS

0.941 0.941 0.941 0.941 0.941 0.941 BKB

0.868 0.885 0.904 0.922 0.941 0.96 P/F

0.868 0.885 0.904 0.922 0.941 0.96 LYD

0.96 0.96 0.96 0.96 0.96 0.96 I/I

0.913 0.922 0.932 0.941 0.951 0.96 C/S

0.859 0.868 0.877 0.886 0.895 0.904 BRK

0.919 0.93 0.941 0.953 0.964 0.976 OO

The reliability rank of SASs has been computed by Eq. (13).

Reliability Symbol Style

rpsRR
i
.

RPS Repository

 RR R krbkbc
 BKB Blackboard

∏
=

m

i

iR
1

 P/F Pipe and Filter

∏
=

m

i

iR
1

LYD Layered

 RR id
 I/I Implicit invocation

rpsm RRRR
12

...2/

C/S Client/Server

rps12m/2sspbrkcsp RR...RRRRR BRK Broker

∏
=

c

i

jR
1

 OO Object-oriented

126 Computer Science & Information Technology (CS & IT)

Xij is the reliability value of style in i-th row and j-th column. For more clarity, rank

values have been shown by coefficient of 1000 in tables 3.

Table 3 shows changes in rank of SASs Reliability based on the changes of software size.

With increasing software size, rank of some styles such as pipe and filter(P/F) and layered (LYD)

are decreased, rank of some style such as Repository(RPS) and implicit invocation(I/I) are

increased and rank of some style such as Client/server(C/S) has not changed considerably

Table 3. Reliability ranks of SASs using RBD method

m=7 m=6 m=5 m=4 m=3 m=2

Symbol no =21 no =18 no =15 no =12 no =9 no =6

131.7 130.6 129.4 128.3 127.1 126 RPS

129 127.9 126.7 125.6 124.5 123.4 BKB

119.1 120.5 121.9 123.2 124.6 126 P/F

119.1 120.5 121.9 123.2 124.6 126 LYD

131.7 130.6 129.4 128.3 127.1 126 I/I

125.3 125.4 125.6 125.7 125.9 126 C/S

117.9 118.1 118.2 118.4 118.5 118.6 BRK

126.1 126.5 126.9 127.3 127.6 128.1 OO

5.1. Analysis of Reliability Rank of Styles According to Reliability of Designed

Components

In most SASs, the functionalities of some of components are deterministic without considering

specific software. Other components are designed regarding the functionalities of the specific

software. Thus, the components of each SAS are classified into two types: components with

specific or constant functionalities, and designed components. For instance, in the broker style,

functionalities of broker, client side proxy, and server side proxy components are constant. We

consider the reliability of components with constant functionalities as 0.98. As it was mentioned

in section 5.3, we consider the reliability of each component at the time of returning from calling

of another component as 0.99.

In this section, by changing the reliability of designed components from 0.7 to 0.98, the impact of

this change on the reliability of SASs for m=5 are studied. According to the graph shown in figure

5, by increasing the reliability of designed components, the rank-difference of the SASs reliability

decrease. For R=0.7, the object-oriented style has the lowest and the repository style has the

highest reliability rank. By increasing of the reliability of designed components, the trend of

reliability rank in the repository, the blackboard and the implicit invocation style is decreasing,

while the trend of reliability rank of other SASs is increasing.

Computer Science & Information Technology (CS & IT) 127

Figure 5. Reliability rank changing trend of SASs based on Change of the reliability of designed

components

6. CONCLUSION

In this paper, due to the lack of study of quantitative SASs impact on quality attributes

specifically reliability; SASs effect on the software reliability was analyzed. First, the reliability

equation of each SAS was extracted using of RBD approach. Then, reliability rank of SASs is

computed by setting of NECT parameter in reliability equation of SASs in ranges of 2 to 7. Thus,

effect of different values of NECT on reliability rank of SASs is determined.

The most important innovation of this paper is quantification of software reliability at the level of

SASs and at the stage of SAS selection essential to recommend and select SASs.

Author was evaluated SASs from maintainability viewpoint in [21] and this research extends

previous research.

No other similar study was found dealing with evaluation, ranking and comparison of the

reliability of SASs. In contrast to [6] and [10], the proposed model is based on architecture

evaluation method. The proposed model offers: 1) equations to determine value of reliability of

SASs, while [6] and [10] have not done so. In contrast to [6] and [10], the proposed approach

offers quantitative results on SASs reliability essential to recommend and select SASs based on

recognition of the quantitative effect of SASs on quality attributes. In addition, the proposed

approach considered the impact of NECT on rank of SASs reliability. [9] is placed in

mathematical model-based evaluation. This method verify features such as consistency and

satisfy some features by SASs that are different from desired quality attributes of this paper.

128 Computer Science & Information Technology (CS & IT)

REFERENCES

[1] Immonen A, Niemelä E,(2008) “Survey of reliability and availability prediction methods from the

viewpoint of software architecture”, Journal of Software and Systems Modeling, Springer, Vol. 7,

No.1, pp. 49-65.

[2] Jansen A G, Bosch J,(2005) “Software Architecture as a set of Architectural Design Decisions”, 5th

IEEE/IFIP Working Conference on Software Architecture, pp. 109–119.

[3] Seo C, Edwards G, Malek S, Medvidovic N, (2009) “A Framework for Estimating the Impact of a

Distributed Software System’s Architectural Style on its Energy Consumption”, 7th Working

IEEE/IFIP Conf. on Software Architecture, pp. 277-280.

[4] Bass L, Clements P, Kazman R, (2003) “Software Architecture in Practice (2nd Edition),” Addison-

Wesley.

[5] Shaw M, Garlan D,(1996) “Software Architecture: Perspectives Discipline on an Emerging”,

Prentice Hall.

[6] Harrison B, Avgeriou P,(2007) "Leveraging Architecture Patterns to Satisfy Quality Attributes", 1st

European Conf. on Software Architecture, Springer, pp. 263-270.

[7] Avgeriou P, Zdun U, (2005) “Architectural patterns revisited:a pattern language” ،Proc. of 10st

European Conf. on Pattern Languages of Programs ،pp.1-39.

[8] Goseva- Popstojanova K, Trivedi K, (2000)” Failure correlation in software reliability models”. IEEE

Trans. Rel. 49 1, pp. 37–48.

[9] Kim J S, Garlan D, (2005) "Analyzing Architectural Styles with alloy", Proc. of the ISSTA 2006

workshop on Role of software architecture for testing and analysis, pp. 70-80, 2006.

[10] Reza H, Grant E, () ” Quality-Oriented Software Architecture”, Proc. of the IEEE Conf on

Information Technology, Coding and Computing, pp. 140- 145.

[11] Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M, (1996) ” Pattern-Oriented Software

Architecture- A system of Patterns”. John Wiley & Sons.

[12] Cheung R C, (1980) “A User-Oriented Software Reliability Model”, IEEE Transactions on Software

Engineering Vol.6, No 2, pp. 118–125.

[13] Y. Meng-Lai, C.L.Hyde and L.E. James, (2000) ” A Petri-Net Approach For Early-Stage System-

Level Software Reliability Estimation”, Proc. of the IEEE Annual Reliability and Maintainability

Symposium, , pp. 100-105.

[14] Farr W, (1996) Chapter 3 (Software Reliability Modeling Survey), M.R. Lyu (Editor), Handbook of

Software Reliability Engineering, McGraw-Hill, New York.

[15] Silberschatz A, Korth H F, Sudarshan S, (1997) ”Database System Concepts”, McGraw-Hill Series in

Computer Science.

[16] Kazman R, Klein M, Barbacci M, Longstaff T, Lipson H, Carriere J, (1998) “ The Architecture

Tradeoff Analysis Method”, proc. of the 4th Int. IEEE Conf. on Engineering of Complex Systems.

CS Press.,pp.68-78.

[17] IEEE std 610.12-1990 (n.d.) (1990) IEEE Standard Glossary of Software Engineering Terminology.

[18] ISO, “ISO 9126-1:2001,(2001) Software Engineering – Product Quality, Part 1: Quality model”.

[19] Tripathi R, Mall R, (2005) “Early Stage Software Reliability and Design Assessment“, Proc. of the

12th Asia-Pacific Software Engineering Conference (APSEC’05), Dec.

[20] Leblanc S P, Roman P A, (2002) “Reliability Estimation of Hierarchical Software Systems”, Proc. of

Annual Reliability and Maintainability Symposium.

[21] Shahmohammadi G.R., (2014) “Evaluation of the Software Architecture Styles From Maintainability

Viewpoint”,int. Journal of computer science & information technology, Vol. 6, Issue 1.

Computer Science & Information Technology (CS & IT) 129

AUTHORS

Gholamreza Shahmohammadi received his Ph.D. degree from Tarbiat Modares

University (TMU, Tehran, Iran) in 2009 and his M.Sc. degree in Computer

Engineering from TMU in 2001. Since 2010, he has been Assistant Professor at the

Olum Entezami Amin University (Tehran, Iran). His main research interests are

Software Engineering, Software Architecture, Software Metrics, Software Cost

Estimation and Software Security.

