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ABSTRACT 

The problem of change-point detection has been well studied and adopted in many signal 

processing applications. In such applications, the informative segments of the signal are the 

stationary ones before and after the change-point. However, for some novel signal processing 

and machine learning applications such as Non-Intrusive Load Monitoring (NILM), the 

information contained in the non-stationary transient intervals is of equal or even more 

importance to the recognition process. In this paper, we introduce a novel clustering-based 

sequential detection of abrupt changes in an aggregate electricity consumption profile with 

accurate decomposition of the input signal into stationary and non-stationary segments. We also 

introduce various event models in the context of clustering analysis. The proposed algorithm is 

applied to building-level energy profiles with promising results for the residential BLUED 

power dataset. 
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1. INTRODUCTION 
 

Non-Intrusive Load Monitoring (NILM), also known as electricity disaggregation, is an energy 

monitoring technique that aims at inferring the energy consumption profiles of individual 

electrical loads merely from a single or a limited number of aggregate measurement points in a 

building [1]. Recently, NILM has witnessed a rapidly increasing progress in both academic and 

commercial research due to its promising applications in energy conservation, activity monitoring 

[2], dynamic pricing [3], demand forecasting [4], and home automation [5]. Currently, the 

majority of NILM systems are event-based approaches in the sense that they rely on the detection 

of abrupt changes occurring in the aggregate signal which indicate state-changes of the monitored 

appliances. It was observed that events attain distinctive features according to the physical 

properties of their appliances such as energy storage elements, counter-electromotive force in 

induction motors, or striking voltages in fluorescent lamps. Features extracted from steady and 

transient intervals (such as power surges, overshoot currents, decay rate, etc) are utilized in event 

clustering or classification stages of the disaggregation system. Consequently, a robust detection 
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and accurate segmentation of such change-intervals is of particular importance for event-based 

NILM systems. 

Basseville and Nikiforov [6] described various detection algorithms from which two approaches 

have been utilized in event-based NILM systems, namely the Generalized Likelihood Ratio 

(GLR) test [7, 8] and the CUmulative SUM (CUSUM) filtering [9]. Jin et al. [10] proposed a 

more robust change-point detection approach based on a Goodness-of-Fit (GoF) test. In addition, 

various machine learning tools such as kernel clustering [11], Hidden Markov Models (HMM) 

[12], and Support Vector Machines (SVMs) [13], have been proposed as solutions to address the 

change point detection problem.  

Even though many previous works on NILM proposed utilizing features extracted from the 

transient intervals, only few event detection approaches consider accurate segmentation of the 

transient periods for the extraction of more stable transient features [9, 14]. Moreover, many 

approaches need a probabilistic model for the sample distribution in the stationary segments 

which is often difficult to obtain from aggregate consumption profile of several, simultaneously 

operating appliances. The result is that the current event detection algorithms are not robust and 

fail sometimes provide reliable event-based feature for appliance recognition in practice. In this 

paper, we propose a novel clustering-based event detection algorithm for event-based NILM 

systems. In contrast to other event detection algorithms, the proposed approach features accurate 

segmentation of the input signal into stationary (steady) and non-stationary (transient) segments. 

Such accurate segmentation is crucial for the extraction of more stable and repeatable features 

from both transient and steady-state intervals. Moreover, the utilized density-based clustering 

scheme does not impose any probabilistic models on the sample distribution in either of the 

stationary segments and supports arbitrarily shaped, weakly stationary segments leading to an 

enhanced robustness to noise. In addition, the proposed algorithm features a sequential (instead of 

batch) clustering that is more efficient for real-time NILM systems. 

The presented approach is modular in the sense that it can combine any clustering-based event 

detection algorithm with any event model. For this purpose, we also introduce different event 

models at different complexity- and robustness-levels. This paper is organized as follows. In 

section 2, we introduce different event models in the context of spatial and time-series clustering. 

In section 3, we describe the proposed sequential event detection algorithm in which the Density-

Based Spatial Clustering for Applications with Noise [15] is assumed and utilized sequentially in 

spatial and temporal analysis of the input power signals. Section 4 shows results of application of 

the proposed algorithm on the publicly available, residential BLUED [16] dataset. Finally, 

section 5 concludes this paper. 

2. EVENT MODELS 

Event models will be introduced in the order of their increasing coverage of real events, 

robustness, and complexity. 

Let the matrix 

� = ���, ��, … , �	
,   �� ∈ ℝ�                                                   (1) 

 

contain a time series of � consecutive �-dimensional data samples (feature vectors). Typically, 

�� contains the measured real � and reactive � powers at time instance �. Assume that all � 

samples have been clustered into � non-empty, disjoint clusters (sets) ��, ��, … , ��. In addition, 
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we assume that a noise-aware clustering algorithm assigns un-clustered samples (i.e. outliers or 

noisy samples) to the set ��. Clearly, ∑ |��|�
��� = � where |��| is the cardinality of the cluster 

|��|. Let  

 � = !(��) ∈ "0,1,2, … , �%                                                   (2) 

 

be the corresponding cluster index of �� (i.e. �� ∈ �&'
). We then introduce the following 

definitions for two metrics of a cluster and three different event models: 

Definition 1: The temporal length Len(��) of cluster �� is defined as the minimum window size 

that contains all its elements. If  

 

∃,:  �. ∈ ��  and   �� ∉ ��  ∀(� < ,)                                          (3) 

 

∃5:  �6 ∈ ��  and   �� ∉ ��  ∀(� > 5)                                          (4) 

Then Len(��) is defined as  

Len(��) = 5 − , + 1     ≥   |��|                                                  (5) 

 

Here , and 5 denote the time instances of the first and last samples belonging to ��, respectively. 

Definition 2: The temporal locality ratio Loc(��) of  cluster �� is defined as  

Loc(��) =
|��|

Len(��)
      ∈  
 0, 1 
                                               (6) 

The temporal locality ratio is a measure of how a cluster is spreading over time domain. A value 

of one (Loc(��) = 1) refers to the maximum temporal locality where the cluster is represented by 

a single segment of consecutive observations. This measure is utilized later in the event models 

as a means to control the amount of noisy samples permitted in the stationary segments. 

Event model ℳ�: In this event model, a sequence of samples � is defined as an event if 

(a) it does not contain any noisy samples (i.e. �� = A), 

(b) it contains two clusters �� and �� (i.e.� = 2), 

(c) both clusters do not interleave (overlap) in the time domain
1
,  

     (i.e. ∃, ∶ �� ∈ �� ∀(� ≤ ,)  and  �� ∈ �� ∀(� > ,)). 
 

This is the simplest event model without any outliers. It consists of two stationary segments 

�D� = ���, ��, … , �.
 and �D� = ��.E�, �.E�, … , �	
. The segment �F = ��., �.E�
 (including 

the last sample of �D� and the first one of �D�) is called the change-interval of the event and , is 

the change point. In other words, an event ℳ� is a change interval of length two surrounded by 

two noise-free weakly stationary segments. This model is valid for switch-off events of most 

loads as well as switch-on events of resistive ones in a noise-free power signals. 

 

                                                           
1
 For simplicity, and without loss of generality, we assume that the first and second stationary segments of an event are assigned to the cluster sets ��and 

��, respectively. 
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Figure 1(a) shows an example of a signal segment matching the first event model ℳ� where the 

scalar samples G� ∈ ℝ and their corresponding cluster indices  � = !(G�) ∈ "1, 2% are plotted 

over time. The signal represents a step-like event that consists of two stationary segments (red, 

solid) and a change interval (blue, dashed). 

Event model ℳ�: A sequence of samples � is defined as an event if  

a) it contains two clusters �� and �� (i.e. � = 2) and the outliers set �� is not necessarily 

empty allowing noisy samples, 

 

b) both clusters �� and �� show a high temporal locality ratio, i.e. 

HIJ(��) ≥ 1 −  K, for  N =  1, 2  
 

c) both clusters do not interleave in the time domain, i.e. 

∃,, 5 > ,:  �� ∈ �� ∪ �� ∀(� < ,)  and  �. ∈ ��, and 

                             �6 ∈ �� ∪ �� ∀(� > 5)  and  �6 ∈ �� 

Compared with ℳ�, this event model permits noisy samples (i.e. outliers) as well as a lengthy 

transient interval. This, however, requires the utilization of a noise-aware clustering algorithm. 

By definition, �� ∈ ��, ∀(, < � < 5). In this case, the event contains two stationary segments 

�D� and �D� consisting of samples belonging to �� and ��, respectively, and a change-interval 

�F = ��., �.E�, . . . , �6Q�, �6
. 

 

Figure 1: 1-dimensional signals highlighting differences between the three event models. (a) shows a step-like 

event that is free of both outliers and a transient interval. In (b) random outliers as well as a transient interval 

are permitted. (c) shows a repeated pattern of spikes that eventually cluster in �R. Finally, (d) shows high 

fluctuations in stationary segments leading to the third cluster �R as well. The third event model ℳR fits all 

segments, the second event model ℳ� fits only (a) and (b), wherease the first model ℳ� fits only (a). 
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Figure 1(b) shows an example of a signal segment matching the second event model M_2 (but 

not the first one ℳ�) where the event contains a slower transient interval in a noisy signal. Even 

though ℳ� is valid for most of the switch-on/off and state-change events within noisy signals, it 

actually has one implicit assumption on the noise. The assumption that � = 2 (maximally two 

clusters representing two stationary segments) implies that the noise is random and does not 

contain a repeated pattern that eventually builds up a cluster when projected to the PQ-plane. This 

is not always the case as shown in the third example in Figure 1(c). 

 

In the aggregate power signal, some appliances trigger a repeated, sometimes periodic, pattern of 

high fluctuations or spikes. Such repeated patterns tackle the detection of other actual events. 

This masking behaviour is resolved in the third event model. 

 

Event Model ℳR: A sequence of samples � is defined as an event if 

(a) it contains at least two clusters �� and �� (i.e. � ≥ 2) and the outliers set �� is not  

necessarily empty, 

(b) clusters �� and �� show a high temporal locality ratio, i.e. 

      HIJ(��) ≥ 1 −  K, for  N =  1, 2  

    (c) clusters �� and �� do not interleave in the time domain, i.e. 

     ∃,, 5 > ,:  �� ∉ �� ∀(� > ,)  and  �. ∈ ��, and 

                             �6 ∉ �� ∀(� < 5)  and  �6 ∈ �� 

In this model, the limitation on the clustering cardinality is released and therefore a repeated 

noise pattern that eventually results in a wide (temporally wide) cluster would not mask events 

occurring in the same interval. Similar to ℳ�, the sequence in this model contains two stationary 

segments �D� and �D� consisting of samples belonging to �� and �� respectively, and a change 

interval consisting of �F = ��., �.E�, … , �6Q�, �6
. 

Figure 1 (b) and (c) show two event segments fit only by ℳR. Figure 1(a) shows the simplest 

event which is fit by all defined models. In Figure 1(b), the transient period as well as the noisy 

spikes can only be fit by ℳ� and ℳR. Finally, the repeated noise patten in Figure 1(c) or high 

fluctuations in Figure 1(d) only match the last event model ℳR. 

2. DETECTION ALGORITHM 

 

The main task of the event detection algorithm is to search for signal segments that match a given 

event model ℳ�. This is achieved by applying a clustering algorithm on different segments and 

checking how much each segment matches the model. In all of the three models introduced in 

section 2, the clustering cardinality � is not known in advance. Therefore, a utilized clustering 

algorithm should either be nonparametric or a model order estimation step has to take place 

beforehand. 

 

In our approach we utilized the commonly used Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) algorithm [15]. The DBSCAN algorithm (or density-based clustering in 

general) has several advantages that make it the best candidate for a non-parametric sequential 

event detection. First, DBSCAN assumes no prior knowledge of the number of clusters. Second, 

DBSCAN supports arbitrarily shaped clusters with no constraints on their samples’ distribution. 

In addition, DBSCAN is a noise-aware clustering algorithm and, therefore, can be utilized with 

any of the previously defined event models.  
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Ideally, the detection algorithm searches the input signal sequentially for segments that match a 

given event model. However, we control the matching process with a proximity measure that 

shows how much a segment matches the given model. 

Definition 3: The model loss between an event model ℳ� and a signal segment � is defined as 

ℒ(ℳT, �, ,, 5) = |"��: � ≤ ,  and  �� ∈ ��%| +                                                         

|"��: � ≥ 5  and  �� ∈ ��%| +                                                  (7) 

|"��: , < � < 5  and  �� ∈ �� ∪ ��%|                                           

where , and 5 are the indices of the first and last sample of the change-interval, respectively. In 

the case of ℳ� where 5 = , + 1, the last term in Equation 7 becomes zero regardless of ,. 

The model loss function counts the number of samples that need to be corrected (i.e. reassigned 

to a different set �V of the clustering structure) in order for the segment � to match the event 

model ℳ�. The lower the loss, the more the signal segment matches the event model. 

The proposed detection algorithm can then be presented as to two sub-tasks, the forward 

detection step which is the main process for finding an event, and the backward reduction step 

that is responsible for a more accurate segmentation. 

In the forward detection step, new samples are received one at a time and inserted into the 

clustering space. Upon insertion of a new sample, the clustering indices are updated and the 

model loss is re-estimated. Once a match is encountered (i.e. the model loss is zero or less than a 

predefined threshold W), a detection is declared with the current change point , of the matched 

segment and the change-interval �F = ��., �.E�, … , �6Q�, �6
 where �6 is the first sample of the 

second stationary segment. 

Once an event is declared, the backward reduction step begins. In this step, samples are removed 

from the clustering space in a First-In-First-Out (FIFO) fashion while updating the clustering 

structure upon each deletion and re-estimating the model loss. The reduction ends by the last 

sample that satisfies the matching condition (i.e. if that sample is deleted, the segment will no 

longer matches the event model within the predefined threshold loss W). The complete detection 

algorithm can be described as follows. Given an event model ℳ� 

1. Receive new sample �	E� and append it to � 

2. Update the clustering vector X and the clustering structure Y�VZ
V��

�
 

3. Check ℒ(ℳT, �, ,, 5) ≤ W for all ,, 5, if not satisfied, go to step (1) 

4. Declare event detection with change-interval �F = ��., �.E�, … , �6Q�, �6
 and change-point is 

, where , and 5 result in the minimum model loss between ℳ� and the current segment � 

(i.e. argmin.,6 ℒ(ℳT, �, ,, 5)). 

5. Delete oldest sample �� from the segment 

6. Update the clustering vector X and the clustering structure Y�VZ
V��

�
 

7. Check ℒ(ℳT, �, ,, 5) ≤ W for all ,, 5, if satisfied, go to step (5) 

8. Re-insert last sample and declare current segment � as a balanced event. 
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After each detection, the process restarts from the first sample of the second stationary segment 

�6. The main objective of the backward reduction step is to extract balanced stationary segments 

(i.e. |��| ≈ |��|) around the transient interval. Balanced segments lead to more stable steady-state 

features as well as an enhanced robustness to missed detections (i.e. false negatives). 

2. EXPERIMENTS AND RESULTS 

The proposed event detection approach has been evaluated on different power datasets among 

them is the Building-Level fUlly labelled Electricity Disaggregation (BLUED) dataset [16]. In 

the following, we show the results of applying the event detection algorithm with event model 

ℳR and the DBSCAN clustering scheme on the BLUED dataset. We only show evaluation of 

detection results. Evaluation of the accuracy of transient interval segmentation and the stability of 

extracted features is beyond the scope of this paper. 

Table 1 shows the event detection results on the real and reactive power signals from the BLUED 

dataset. BLUED include aggregate measurements from a two-phase residential building (phase A 

and B) and each is evaluated separately. True Positives (TP) is the number of successful 

detections, False Positives (FP) is the number of detections that do not correspond to actual 

events, while False Negatives (FN) is the number of missed events. Finally, False Positive 

Percentage (FPP), precision, recall, and the F1-score measures are defined as 

FPP =
a�
b

                                                                                     (8) 

precision =
f�

f� + a�
                                                                          (8) 

recall =
f�

f� + a�
                                                                          (9) 

a� − score =
2 × precision × recall

precision + recall
                                               (10) 

where b is the number of events. Results show highly precise detection rates where the number 

of false positives is relatively low in both phases. It is also observed that, noise in the second 

phase (phase B) still masks a relatively large number of events. 

Table 1.  Event detection results on BLUED [16] dataset. 

 Phase A Phase B Total 

Number of events b 892 1609 2501 
Number of detections 874 1176 2050 
True Positives (TP) 867 1097 1964 
False Positives (FP) 7 79 86 

False Negatives (FN) 25 512 537 
FPP 0.78% 4.91% 3.44% 

precision kk. lm% kn. lo% kp. oq% 
recall (TPR) kr. lm% so. qo% ro. pn% 

a�-score ko. qk% ro. ro% os. nq% 
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3. CONCLUSIONS 

 

We introduced a novel clustering-based approach for sequential event detection. The proposed 

algorithm features accurate segmentation of the stationary and non-stationary intervals for more 

stable feature extraction, support of arbitrarily shaped stationary segments with no prior 

assumptions on their sample distribution, and more robustness to noise as well as parameter 

variations. 
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