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ABSTRACT 

Recently, flash memory has been widely used because of its advantages such as fast access 

speed, nonvolatile, low power consumption. However, erase-before-write characteristic causes 

the B-tree implementation on flash memory to be inefficient because it generates many flash 

operations. To address this problem, variants of buffer-based B-tree index  have been proposed 

for flash memory which can reduce a number of write operations. Since these B-trees use a 

main-memory resident index buffer to temporarily store newly created index units, their data 

may be lost if a system crash occurs. This study introduces a novel recovery scheme for the 

buffer-based B-tree indexes on flash memory, called ERS. ERS can minimize the risk of losing 

data by deploying logging and recovery policies. The experimental results show that ERS yields 

a good performance and helps the buffer-based B-tree indexes improve the reliability.   
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1. INTRODUCTION 

 
Flash memory [1-2] has been widely used because it has many positive features such as high-

speed access, low power consumption, small size and high reliability. Besides these advantages, it 

has some downsides including erase-before-write, limited life cycle. In order to access data on the 

flash memory as accessing hard disk drives, hosts need to use a firmware module named Flash 

Translation Layer (FTL) [1]. FTL translates the logical address to physical address between the 

host and flash memory. The FTL has two main features: address mapping and garbage collection. 

Many FTL algorithms have been used to confine the limitation of physical characteristics and 

enhance the performance of flash memory. 

 

By using FTL algorithms, the performance of a flash memory has been improved. However, 

implementing B-tree index directly on flash memory may not be efficient because the erase-

before-write characteristic. Updating B-tree nodes causes the overwrite operations on flash 

memory occur frequently. To address these problems, variants of B-tree index have been 

proposed for flash memory. Among these B-tree variants, there are some B-trees using a main-

memory resident index buffer (called buffer-based B-tree for short) to temporarily store newly 

created index units in order to reduce the number of flash operations. However, using the main-

memory resident index buffer causes the index data in the buffer may be lost when a sudden 

power-off occurs. 
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This paper present a new recovery method for the buffer-based B-tree indexes on Flash Memory, 

called ERS. Whenever the index units are inserted into the index buffer, the ERS backs up the 

index units to an area called logger which is located in flash memory to avoid losing its data. If 

the system reboots after a crash, the backed up index units in the logger are read back to the index 

buffer. ERS could minimize the loss of data. 

 

The experimental results indicate that our proposed scheme achieves a good performance and it 

helps the buffer-based B-tree indexes improve the reliability. 

 

The paper is organized as follows: Section 2 reviews background and related works. The design 

of ERS and its operations are presented in Section 3. Section 4 experimentally evaluates the 

efficiency of ERS, and finally, Section 5 concludes the paper. 

 

2. BACKGROUND AND RELATED WORKS 
 

Flash memory is a storage device whose data is nonvolatile. It is widely used nowadays because 

its strong points. Different from a traditional hard disk drive, flash memory is consisted of a 

number of NAND flash memory arrays, a controller, and an SRAM. NAND flash memory arrays 

are organized in many blocks. Each block contains a fixed number of pages (e.g. 32, 64). A page 

is the smallest unit of read and write operations while the block is the smallest unit of erase 

operations. Similar to the hard disk drive, flash memory supports all basic operations: read, write 

and erase. The read operation is the fastest one, that is about 10 times faster than a write 

operation. The erase operation is very time-consuming, which takes about 2ms. The erase 

operation is over 10 times slower than a write operation. Also, as mentioned above, the main 

drawback characteristic of NAND flash memory is that it has erase-before-write architecture. 

Moreover, the life cycle of flash memory is limited. The number of erase cycles for a block is 

bounded about 100,000 times. Therefore, frequent erasing of some particular locations may 

deteriorate both the overall performance and lifetime of the flash memory. Since flash memory 

owns these physical characteristics, it requires an intermediate module called Flash Translation 

Layer (FTL) for translating the address mapping, managing and controlling data. By using FTL, 

the general performance of flash memory is improved and quickly deploy disk-based applications 

without any modifications.  

 

B-tree index [3] is a data structure which is popularly used in many file systems and database 

management systems because of quickly access capability. However, implementing B-tree 

directly on flash memory may suffer from degradation of the efficiency of B-tree index as well as 

the lifecycle of flash memory because of the erase-before-write limitation of flash memory. 

 

To address these problems, variants of B-tree have been proposed for flash memory. Wu et al. 

presented BFTL [4], the first B-tree variant. BFTL is consist of a node translation table and a 

reservation buffer. Every newly created index unit which reflects the inserted, deleted or modified 

records is temporarily stored in the reservation buffer. When the reservation buffer is full, all 

index units in the buffer are flushed to flash memory in FIFO order by an internal operation of 

BFTL called commit. Since some index units for the same node may be written in various pages, 

a node translation table is used. The node translation table collects all index units and maintain 

the information of the pages having the index units of the same B-tree node. As a result, BFTL 

reduces the number of flash operations. However, many read operations is needed to access a B-

tree node because the index units of one node may be scattered on many different flash pages. 

Moreover, since the buffer is a volatile storage, its data may be lost when a sudden power-off 

occurs leading to  the stored B-tree in the flash memory may be an unstable structure. And then, it 

may yield serious problems when managing a number of data. 
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In order to solve the drawbacks of BFTL, a new index buffer management scheme named IBSF 

[5] was proposed. The main idea of IBSF is to store all index units associated with a B-tree node 

onto one page, so IBSF does not need the node translation table. Similar to BFTL, IBSF 

temporarily stores newly created index units into the index buffer. When flushing records from 

the index buffer to flash memory, IBSF selects victim index units by identifying the records to be 

inserted into the same logical node. This prevents them from spreading across several flash pages. 

Thus, IBSF reduces the search overhead of BFTL. However, due to the fact that there are a lot of 

index units still in the index buffer of IBSF, its data may be lost when a sudden power-off occurs 

similarly to BFTL. 

 

Later on, a write-optimized B-tree layer for NAND Flash memory (WOBF) [6] was proposed. 

Basically, WOBF inherits the advantages of BFTL and IBSF. It employs the index buffer and the 

node translation table used in BFTL and the commit policy of IBSF. Its performance is improved 

by sorting all the index units in the index buffer before performing commit operations. Sorting all 

the index units prevents the index units belonging to the same node from being scattered over 

many pages. This reduces the number of read operations when building a logical node. 

Nevertheless, similar to BFTL and IBSF, WOBF still suffers from losing data when a sudden 

power-off occurs because the index buffer is volatile. 

 

Summary, the above buffer-based B-tree indexes reduce the number of writes when building a B-

tree by exploiting the main memory index buffer. However, since the index buffer is a volatile 

storage, their data may be lost when a sudden power-off occurs leading to the stored B-tree index 

in the flash memory may be an unstable structure. Therefore, it may yield serious problems when 

managing a number of data. 

 

3. THE DESIGN AND IMPLEMENTATION OF ERS 
 

3.1. The design of ERS 
 

This section presents a novel recovery scheme for the buffer-based B-tree indexes on flash 

memory, called ERS, to efficiently restore the data of buffer-based B-trees when a sudden power 

failure occurs. Its objective is to significantly reduce the risk of losing data of buffer-based B-tree 

indexes when a B-tree is built. In order to achieve the aforementioned goal, we maintain a flash-

memory resident logger which uses some blocks of flash memory to temporarily stores newly 

created index units whenever the newly created index units are inserted into the index buffer. 

Figure 1 shows the architecture of ERS comprising an index buffer, buffer-based B-tree policies, 

a logger and a recovery module.  

 

 
 

Figure 1. Overall architecture of ERS 
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The buffer-based B-tree policies module basically manages the index unit in the index buffer 

according to the buffer-based B-tree algorithms. The logger is located in flash memory to avoid 

losing its data. It uses some blocks of flash memory to store all newly generated index units. 

These blocks are called log blocks. The logger adopts the logging mechanism [7] for the recovery 

so that it sequentially records the newly created index units whenever a B-tree node is modified. 

Since writing data sequentially into the logger, the overhead of this writing is relatively small [8-

9]. When a commit operation is performed successfully (e.g. all the index units are written onto 

flash memory), a completion commit sign is set in the logger. The recovery is triggered when the 

system restarts after a crash. It detects and eliminates incompatibilities by restoring the state of 

the system just before the crash took place. By using the recovery module, ERS ensures the 

durability of all the data before the crash. 

3.2. The implementation of ERS 

3.2.1. Logging policy 

For recovering data after the system crash, BMS writes the newly created index units to the 

logger sequentially. When a record is inserted into B-tree or deleted from B-tree, one or more 

index units are created to reflect the insertion/deletion. After inserting the newly created index 

units into the index buffer, ERS backups these index units to the logger simultaneously. The 

newly created index units are temporarily stored in the index buffer based on the policies of the 

buffer-based B-tree indexes. Owing to the limitation of the index buffer size, all index units in the 

index buffer are flushed to the flash memory when the index buffer is full by using the commit 

operation. When a commit operation is performed successfully, a commit record is created in the 

logger to denote that all data is written to flash memory. The commit record is a checkpoint that 

denotes a commit operation is finished successfully. Since the size of an index unit is much 

smaller than that of a flash page, all the index units related to one record are written to one page 

of the log blocks. This reduces the number of write operations onto the logger and saves a lot of 

space of the log blocks.  

Figure 2 presents an example of the logging policy. Supposing that a buffer-based B-tree is built 

by inserting 10 records having key values as 1, 4, 8, 11, 12, 6, 7, 14, 15 and 18.  

 

Figure 2. Logging and recovery policy 

To build the B-tree, the index units are created to reflect the insertions or deletions and then they 

are inserted into the index buffer. Simultaneously, these index units are written to the logger (e.g. 

page #0 to page #7 in the first block of log blocks). In this example, the index buffer is already 
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full when index unit <14, C, i> is created. At this time, all index units in the index buffer are 

written to flash memory and then a commit record is set in the logger (e.g. stored in page #8 of 

the first log block). After vacating the index buffer, the newly generating index units are inserted 

into the index buffer continuously according to the insertion and deletion policies. Additionally, 

since the size of the logger is limited, the logger eventually is fulfilled. Therefore, some log 

blocks in the logger should be erased timely to vacate space. 

3.2.2. Recovery policy 

For reliability and compatibility of buffer-based B-trees, ERS performs the recovery policy when 

the system is rebooted after the crash. The recovery policy is described as follows: First, ERS 

finds the last commit record in the logger because all index units are written into flash memory 

successfully before the commit record is created. Then it redoes operations by restoring all 

records after the last commit records in the logger to the index buffer. At this point, ERS operates 

normally by applying insertion, deletion and commit policies. 

As shown in figure 2, supposing that the crash occurs after the record having key value 15 is 

deleted in node D (e.g. record 22 <15, D, d> in the figure). According to the recovery policy, ERS 

searches the last commit record in the logger. In this example, the last commit is the 13th record 

(page #8) in the logger. After getting the last commit record, ERS redoes operations by reading 

log records from 14th to 22th and inserts them into the index buffer. In this example, if there two 

more index units are inserted into the index buffer, a commit operation will be performed because 

the index buffer is full. So that, all the data that have not been written into flash memory is 

recovered successfully. 

Processing recovery operation under this order allows ERS to reduce the number of write 

operations and garbage collections of the buffer-based B-trees. By using logging and recovery 

policies, ERS is much more reliable and compatible than the buffer-based B-trees. In addition, 

flash memory cards are sensitive to electrostatic discharge (ESD) damage, which can occur when 

electronic cards or components are handled improperly, results in complete or intermittent 

failures. Therefore, deploying ERS will be good in practical systems. 

4. PERFORMANCE EVALUATION 

This section shows the experimental results achieved by applying the proposed ERS and 

compares its performance to that of the buffer-based B-trees. All variant B-trees were performed 

on a NAND flash simulator which might be able to count the internal flash operations 

(read/write/erase). This simulator was configured for 64MB SLC NAND flash memory with 528 

byte page size and 16 Kbyte block size. Every node of B-trees had 64 entries, each of which 

contained 4 byte integer key to search and a 4 byte pointer to point to the child node. The size 

index buffers are fixed as 64, and the index keys were unique integers in the range of 1 – 100,000. 

The performance of the buffer-based B-trees and ERS were assessed in terms of performance 

metrics: the average time to build B-trees and the recovery time. In order to control the key value 

distribution, a ratio called rs (ratio of the key sequence) was used. If the ratio was equal to 1, the 

key values were in ascending order. However, if the rs was equal to 0, the key values were 

randomly generated. 

4.1. Performance of the B-trees creation 

In this section, we assess the performance of ERS based on time consumption when building B-

trees. Figure 3 presents the consumed time when constructing the buffer-based B-trees by 

inserting 100000 records. Overall, ERS yields about 8.2-11.3%  overheads compared to those of 

the buffer-based B-trees on average. Concretely, ERS yields 8.19% overheads compared to that 

of BFTL, 10.56% overheads compared to that of IBSF and 11.32% overheads compared to that of 
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WOBF. The reason for these overheads is that ERS writes and manages the log record to the 

logger whenever a B-tree node is updated. However, the gap of their performance is smaller than 

we expected because the log records are sequentially written and does not yield the overwrite 

operation. Especially, the gap is about 9.23% when key values are fully sequential order. 

               (a) BFTL and BFLT with ERS                                     (b) IBSF and IBSF with ERS 

 
(c) WOBF and WOBF with ERS 

 

Figure 3. The Consumed time when inserting 100000 records 

 

4.2. Performance of Recovery 
 

Figure 4 presents the consumed time of recovery data when the systems reboot after crashes 

which randomly occurred. It can be seen that ERS quickly recover in all cases of rs. On average, 

it takes about 0.41 to 0.44 seconds to recover all the data which have not been written before the 

crashes occur. ERS consumes about 0.44 seconds for BFTL, 0.41 seconds for IBSF, and 0.42 

seconds for WOBF to recover the data loss. 

 

 
 

Figure 4. The recovery time 
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In fact, the consumed time for restoring the data does not depend on rs. Instead, it depends on the 

size of index buffer because ERS sets a commit record in the logger whenever the index buffer is 

successfully committed. This means if the size of index buffer is big, the number of records 

which needs to be recovered after a crash is large resulting in  lots of time consumed for restoring 

the data. 

Through these experiments, we can see that the performance of ERS is quite good. Besides that, it 

is much more reliable because it helps the buffer-based B-tree quickly recovers the data after a 

crash. Therefore, it will be good in practical systems. 

 

5. CONCLUSION 
 

Flash memory and B-tree index structure are widely used for embedded systems, personal 

computers, and large-scale server systems. Due to hardware restrictions, the performance of flash 

memory could significantly deteriorate when directly implementing B-tree. To solve this issue, 

many buffer-based B-tree index variants have been proposed for flash memory in order to reduce 

the number of flash operations. However, these B-tree indexes suffer from the risk of losing data 

when a sudden power-off occurs. In this study, we proposed a new recovery scheme for Buffer-

based B-tree indexes on flash memory. The proposed system can minimize the loss of data by 

deploying logging and recovery policies. The experimental results show that ERS yields a good 

performance and helps the buffer-based B-tree indexes improve the reliability. 
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