

David C. Wyld et al. (Eds) : CSEN, SIPR, NCWC - 2016

pp. 01–20, 2016. © CS & IT-CSCP 2016 DOI : 10.5121/csit.2016.61001

NOVEL LOGIC CIRCUITS DYNAMIC

PARAMETERS ANALYSIS

Nicolae Galupa

Higher Colleges of Technology – Ras al Khaimah, UAE
ngalupa@hct.ac.ae

Department of Computer Engineering, Technical University Iasi – Romania
nky@cs.tuiasi.ro

ABSTRACT

Combinational logic circuit timing analysis is an important issue that all designers need to

address. The present paper presents a simple and compact analysis procedure. We follow the

guidelines drawn by previous methods, but we shall define new time-dependent logic variables

that help us improve their efficiency. By using the methodology suggested, we shall replace a

very laborious technique (pure delay circuit + time constants method) with a simpler procedure

that can pinpoint the specific conditions for a logic circuit’s anomalous behaviour within a few

simple steps. Considering the logic function implemented the methodology presented will

require analysis of only a limited number of situations/combinations to determine the presence

of an anomalous behaviour. When anomalous behaviour is identified, the methodology provides

a clear timing description.

KEYWORDS

Logic Design, Timing, Time Dependant Logic Variables

1. INTRODUCTION

The present work focuses on issues regarding the anomalous functioning of logic circuits. We

shall address the static and dynamic hazards defined by J.Beister, E.J. McCluskey, R.F. Tinder

and J. Brzozowski [1-3].

At present, we distinguish two analysis methodologies to determine and eventually describe the

presence of a hazard in a logic circuit output. The first approach is a purely algebraic one that

considers the logic function implemented by a logic circuit and identifies specific algebraic

patterns that are responsible for the presence of a hazard. As presented by E.J. McCluskey and

R.F. Tinder [2-3], these are xx + , xx ⋅ for a static hazard and xxx ⋅+ , ()xxx + for a

dynamic hazard, where x is a component of the input vector driving the analysed logic function.

This method reaches its goal by algebraically manipulating the logic function and using binary

decision graphs, as presented by R. Bryant, S. Ackers, S.M. Nowick, C. Jeong, Berthomieu B.

and J. Brzozowski [4-12]. However, this method, will not describe the hazard’s evolution (at least

not completely), meaning that no timing information will be revealed. Additionally, one can

easily note that this method requires a high computational effort.

2 Computer Science & Information Technology (CS & IT)

This paper presents an improvement of the above mentioned method, improvement that allows

the designer to determine whether a hazard is present by simply analysing the individual terms

present in the logic function’s expression, either in SOP form (disjunctive form) or in POS form

(conjunctive form). It is my opinion that the improvement presented, if used in conjunction with

the classical method, will maintain reliability and will lower the computational effort required

The second approach considers the implementation of a logic function, so analysis will be

performed on a completely defined combinational logic circuit (CLC). Basically, we use a pure

delay circuit model plus individual in-out path definition, as presented by E.J. McCluskey [2].

Following this procedure, all distinct in → out paths are revealed, and we determine:

� a completely defined delay vector for the circuit,

� the association of each input variable to the path (paths) it crosses towards the output +

its specific delay, and

� the ideal logic circuit implementing the logic function.

The method has been described by J. Beister [1], developed by O. Maler and A. Martello [13-15]

and exceptionally applied by R.K Brayton [16]. An improvement that considers the inequality

between the specific delays for “1”↓”0”and “0”↑”1” transitions has been presented by N. Galupa

[17-18]. The rules applied for operating with the gate-specific delays have been presented by K.S.

Stevens, R.B. Salah and M. Bogza [19-21]. Please bear in mind that the method presented is not

confined only to acyclic combinational circuits, as proven by M. Riedel [22]. The method, also

known as the time constants method, allows us to determine the moment of time when the

circuit’s output has stabilized. However, it will not easily provide information on the behaviour

of the logic circuit output prior to stabilization. Should the analysed CLC be used to implement

an automaton, its dynamic parameters are critical.

The second section will present a methodology that allows us to easily determine (logic

computations only) the dynamic parameters of the circuit output (including active hazard).

Both procedures presented are based on describing the logic variables involved (and, of course,

the associated electric signals) with respect to two notions:

� Logic Value – the normal use of a logic variable

� Time – will express the evolution of the variable with respect to time. This is why we

shall refer to these variables as time-dependent logic variables (TDLVs).

The present paper is organized as follows:

� Definitions - in this section, we will define the TDLVs

� Properties – in this section, we present and prove the specific properties of TDLVs

showing why these variables are useful for the analysis of logic circuit behaviour.

Computer Science & Information Technology (CS & IT) 3

� Analysis procedure for a logic function. We prove, within this section, that the fulfilment

of a simple condition will pinpoint the presence of a hazard on the circuit output, thus

drastically reducing the computations required.

� Analysis methodology. This section will make use of the TDLVs to determine the hazard

generating patterns associated with the logic patterns described by E.J. McCluskey and

R.F. Tinder [2-3]

� Finally, a complete example using these methodologies.

2. DEFINITIONS

2.1. Time-Dependent Logic Variables (TDLVs)

Whenever a logic variable applied on a logic gate input changes value, it triggers a process that

can be observed on the gate’s output connection. However, the gate’s output will maintain its

previous level for a predetermined period of time – specifically, the gate’s propagation time.

This situation is bothersome when we expect the gate’s output to switch to its complementary

value as a result of the input change. Therefore, we shall define a logic variable, denoted τ, to be

used for describing the gate’s output level evolution as a result of an input variable change, with

respect to time.

One can easily note that τ will help us describe a specific moment of time that is generally

associated with a level transition in a signal. Obviously, we also need to be able to describe a

time interval, so we shall define the logic variable δ as follows. Let us consider two moments of

time ta and tb respecting ta<tb. Under these conditions, δ is defined as:

2.2. Term weight

The weight of a logic term (conjunctive or disjunctive form) is a vector w=(w1,w2,…wn-1,wn),

where wk {0,1}. If wk=0, then the k component of the term is complemented; otherwise, it is in its

direct form.

Example: w=0101 → the logic term is 4321 aaaa ⋅⋅⋅ (conjunctive form) or 4321 aaaa +++

(disjunctive form)

4 Computer Science & Information Technology (CS & IT)

3. PROPERTIES

3.1. Properties of τ and δ variables

Let us consider three ordered time stamps, t1, t2, and t3 respecting t1<t2<t3. We shall consider all

possible logic terms that can be defined using three independent logic variables (both conjunctive

and disjunctive forms) that have these three time stamps associated as switching moments. The

reduced terms that result when τ and δ logic variables are used to express logic terms are

presented in table 1. Proof has been provided by Galupa [18].

Table 1 τ,δ MINTERM AND MAXTERM PROPERTIES

Weight Term

000
1321 ττττ =⋅⋅

3321 ττττ =++

001 0321 =⋅⋅ τττ

3,2321 δτττ =++

010 0321 =⋅⋅ τττ

1321 =++ τττ

011 0321 =⋅⋅ τττ

2.1321 δτττ =++
100

2,1321 δτττ =⋅⋅

1321 =++ τττ

101 0321 =⋅⋅ τττ
1321 =++ τττ

110

3,2321 δτττ =⋅⋅

1321 =++ τττ
111

3321 ττττ =⋅⋅

1321 ττττ =++

Clearly, if we consider n distinct time stamps t1, t2,…, tn respecting t1<t2< …<tn-1<tn and

following the same logic path as above, we will reach the reduced expressions for the n-

component logic terms, as presented in table. II.

Table 2. GENERAL τ,δ MINTERM AND MAXTERM PROPERTIES

Weight

000…000 =⋅⋅⋅⋅⋅⋅ −− nnn ττττττ 12321 ...

=++++++ −− nnn ττττττ 12321 ...

1τ

nτ
000…001 =⋅⋅⋅⋅⋅⋅ −− nnn ττττττ 12321 ...

=++++++ −− nnn ττττττ 12321 ...

0

nn ,1−δ

000…010 =⋅⋅⋅⋅⋅⋅ −− nnn ττττττ 12321 ...

=++++++ −− nnn ττττττ 12321 ...

0

1

… … …

Computer Science & Information Technology (CS & IT) 5

00...01...11 =⋅⋅⋅⋅⋅ − nii ττττ 11

=+++++ − nii ττττ 11

0

ii ,1−δ

… … …

011…111 =⋅⋅⋅⋅⋅⋅ −− nnn ττττττ 12321 ...

=++++++ −− nnn ττττττ 12321 ...

0

2,1δ

100…000 =⋅⋅⋅⋅⋅⋅ −− nnn ττττττ 12321 ...

=++++++ −− nnn ττττττ 12321 ...

2,1δ

1

… … …

111…110 =⋅⋅⋅⋅⋅⋅ −− nnn ττττττ 12321 ...

=++++++ −− nnn ττττττ 12321 ...

nn ,1−δ

1

111…111 =⋅⋅⋅⋅⋅⋅ −− nnn ττττττ 12321 ...

=++++++ −− nnn ττττττ 12321 ...

nτ
1τ

Please observe that in table 2, only the extremities (meaning the border time stamps, expressed by

the terms associated with weights w=000…000 and w=111…111) are coherent when operating

with τ. Therefore, we can safely state that when operating the terms present in a function equation

with respect to time (meaning, using τ and δ), only τ1=τ(t-t1) and τn=τ(t-tn) will be present in the

final expression (according to the specific function’s equation).

On the other hand, whenever the term in question is characterized by an ordered weight (i.e.,

w=000…01…111 or w=111…10…000), that term will contribute to the final expression only by

pinpointing a time interval (tk-1, tk) by means of δ.

The other terms present in the analysed logic expression are either logic “1” (disjunctive) or “0”

(conjunctive).

4. ANALYSIS PROCEDURE

Let there be a logic function y=f(a,b,c,d,…). According to the time constants method (Beister[1],

McCluskey[2]), we define the individual in-out pathways by virtually replicating all gates

characterized by a fan-out larger than one, replace the gates with their equivalent ideal gates (zero

delay) plus their specific propagation time (delay operator) and propagate all delay operators

from output → input. Finally, we will reach a structure that will present all individual in-out

pathways and their specific delays followed by an ideal logic circuit.

Let us consider that logic variable a (input vector component) crosses n distinct paths towards the

output, so that primary input variable a generates n distinct secondary variables (a1,a2,…,an)

characterized by n distinct delays (t1, t2,…,tn). We assume that the secondary input vector has

been organized so all specific path delays respect t1<t2<…<tn-1<tn.

Therefore, a change in input variable a will generate a sequence of changes in the secondary input

variables (a1, a2,…,an) ordered and spaced in time according to (t1, t2,…,tn). Subsequently,

because the secondary input vector is driving an instantaneous ideal logic circuit, we shall

observe a sequence of transitions in the circuit’s output.

Considering the definition of τ, we can write:

6 Computer Science & Information Technology (CS & IT)

ax(t)=axinitial⊕τ(tx-t) (4.1.)

where axinitial is the initial value from which ax evolves. Note that ax(t) will maintain axinitial level

until we reach tx time stamp and switches to the complementary value afterwards.

The function’s expression becomes:

)](),...,(),([)](),...,(),([)(221121 ttattattaftatatafty nnn −⊕−⊕−⊕== τττ (4.2.)

Ultimately, a logic function can be expressed in a conjunctive or disjunctive form, therefore,

considering y(t) presented by eq. 4.2 and the properties presented in table 2, we conclude that

only a strictly limited and well determined number of terms will be present.

To present how this works, we shall first consider a particular case – only three secondary

variables for the primary input variable considered, a1, a2, and a3, characterized by t1, t2, and t3,

respecting t1< t2< t3. Afterwards, we shall generalize to n secondary variables.

The function’s expression becomes:

)()()(...)()()()()()()(321111321001321000 tatatatatatatatataty ⋅⋅++⋅⋅+⋅⋅= ααα (4.3.)

)]()()([...)]()()([])()()([)(321111321001321000 tatatatatatatatataty +++⋅⋅+++⋅+++= ααα (4.4.)

where, αw,y,z {0,1} and is defined as follows:

• αw,y,z= 0→term characterised by weight wyz is not present;

• αw,y,z=1→term characterised by weight wyz is present.

For further computations we’ll consider the function’s expression presented by eq. 4.3.

Computations for the other form (eq. 4.4.) are similar.

321111321001321000 ...)()(τττατττατττα ⊕⋅⊕⋅⊕++⊕⋅⊕⋅⊕+⊕⋅⊕⋅⊕= aaaaaataaaty (4.5.)

with a being the initial value for the variable switching during the process. Now, we shall operate

each term and reduce it according to the properties presented for τ.

w=000→
13321321332211321))()((τττττττττττττττττ aaaaaaaaaaaaa +=+=+++=⊕⋅⊕⋅⊕ (4.6.)

w=001→
3,23,2321321332211321 0))()((δδτττττττττττττττ aaaaaaaaaaaaaa =+=+=+++=⊕⋅⊕⋅⊕ (4.7.)

…………………………………………………………………………………………………..

w=111→
31321321332211321))()(()()()(τττττττττττττττττ aaaaaaaaaaaaa +=+=+++=⊕⋅⊕⋅⊕ (4.8.)

Computer Science & Information Technology (CS & IT) 7

Following the same procedure and using the properties listed above, we find:

Table 3. REDUCED TIME-DEPENDENT SECONDARY TERMS

weight

000 =+=⊕⋅⊕⋅⊕ 321321321 τττττττττ aaaaa 13 ττ aa +

001 =+=⊕⋅⊕⋅⊕ 32132121 τττττττττ aaaaa 3,2δa

010 =+==⊕⋅⊕⋅⊕ 321321321 τττττττττ aaaaa 0

011 =+=⊕⋅⊕⋅⊕ 321321321 τττττττττ aaaaa
2,1δa

100 =+=⊕⋅⊕⋅⊕ 321321321 τττττττττ aaaaa
2,1δa

101 =+=⊕⋅⊕⋅⊕ 321321321 τττττττττ aaaaa 0

110 =+=⊕⋅⊕⋅⊕ 321321321 τττττττττ aaaaa
3,2δa

111 =+=⊕⋅⊕⋅⊕ 321321321 τττττττττ aaaaa 31 ττ aa +

Therefore, the function’s expression becomes:

][][)(311113,21102,11002,10113,200113000 τταδαδαδαδαττα aaaaaaaaty +++++++= (4.9.)

Note that only the border terms influence the final expression (13 ττ ⋅+⋅ aa if α000=1, meaning a

term with weight w=000 - 321 aaa ⋅⋅ - is present, and / or 31 ττ ⋅+⋅ aa if α111=1, meaning a

term with weight w=111 - 321 aaa ⋅⋅ - is present).

Considering that the time stamps are ordered t1<t2<t3, the individual time intervals (t1,t2) and/or

(t2,t3) will be pinpointed by δ1,2 and δ2,3 if α011 and α001, respectively, are logic 1 and / or 2,1δ and

3,2δ if α011 and α001, respectively, are logic 1.

Please observe that in the final expression, we have succeeded in significantly decreasing the

number of terms involved. Also note that considering eq. 4.9, we can trace the output’s behaviour

with respect to time.

First, we identify the influence that each member of eq. 4.9. has on the overall output presented in

Table. 4.

Table. 4. OUTPUT TRACE FOR VARIABLE a

 tinit t1 t2 t3 tfinal

1. α000=1⇒y(t)= a

0 0 a

2. α001=1⇒y(t)= 0 0 a 0

3. α011=1⇒y(t)= 0 a 0 0

4. α100=1⇒y(t)= 0

0 0

5. α110=1⇒y(t)= 0 0

0

6. α111=1⇒y(t)= a 0 0

a

a

a

8 Computer Science & Information Technology (CS & IT)

• The border terms (w=111 and w=000 – lines 1 and 6) will never generate a hazard by

themselves, independent of variable a’s initial value.

 tinit t1 t2 t3 tfinal

α000=1and a=0⇒y(t)= 1 0 0 0

α000=1and a=1⇒y(t)= 0 0 0 1

α111=1and a=0⇒y(t)= 0 0 0 1

α111=1and a=1⇒y(t)= 1 0 0 0

• The terms characterized by a uniform ordered weight will generate a static hazard.

 tinit t1 t2 t3

α001=1and a=1⇒y(t)= 0 0 1 0 Static hazard for “1”↓”0”transition

α011=1and a=1⇒y(t)= 0 1 0 0 Static hazard for “1”↓”0”transition

α100=1and a=0⇒y(t)= 0 1 0 0 Static hazard for ”0”↑”1”transition

α110=1and a=0⇒y(t)= 0 0 1 0 Static hazard for ”0”↑”1”transition

• A dynamic hazard will be present if a combination of border terms and ordered weight

terms is encountered
 tinit t1 t2 t3

α000=1and a=0⇒y(t)= 1 0 0 0

α110=1and a=0⇒y(t)= 0 0 1 0

Overall behavior 1 0 1 0 Dynamic hazard for “0”↑”1” transition

α000=1and a=1⇒y(t)= 0 0 0 1

α011=1and a=1⇒y(t)= 0 1 0 0

Overall behavior 0 1 0 1 Dynamic hazard for “1”↓”0” transition

α111=1and a=0⇒y(t)= 0 0 0 1

α100=1and a=0⇒y(t)= 0 1 0 0

Overall behavior 0 1 0 1 Dynamic hazard for “0”↑”1” transition

α111=1and a=1⇒y(t)= 1 0 0 0

α001=1and a=1⇒y(t)= 0 0 1 0

Overall behavior 1 0 1 0 Dynamic hazard for “1”↓”0” transition

Additionally, please observe that the previous analysis presents us with a way to mask an existing

dynamic hazard. If we encounter such a situation, all we should do is activate the appropriate

term (if algebraically possible) that will fill in the glitch forming the dynamic hazard. Possible

cases are listed below:

Table. 5. HAZARD MASKING CASES

CASE 1 tinit t1 t2 t3

α000=1and a=0⇒y(t)= 1 0 0 0

α110=1and a=0⇒y(t)= 1 0 1 0 Dynamic hazard for a→”0”↑”1”

Initial behavior 1 0 1 0

α100=1and a=0⇒y(t)= 0 1 0 0 Added term (if possible)

Final overall behavior 1 1 1 0 Hazard masked

Computer Science & Information Technology (CS & IT) 9

CASE 2 tinit t1 t2 t3

α000=1and a=1⇒y(t)= 0 0 0 1

α011=1and a=1⇒y(t)= 0 1 0 0 Dynamic hazard for a→”1”↓ ”0”

Initial behavior 0 1 0 1

α001=1and a=1⇒y(t)= 0 0 1 0 Added term (if possible)

Final overall behavior 0 1 1 1 Hazard masked

CASE 3 tinit t1 t2 t3

α111=1and a=0⇒y(t)= 0 0 0 1

α100=1and a=0⇒y(t)= 0 1 0 0 Dynamic hazard for a→”0”↑”1”

Initial behavior 0 1 0 1

α110=1and a=0⇒y(t)= 0 0 1 0 Added term (if possible)

Final overall behavior 0 1 1 1 Hazard masked

CASE 4 tinit t1 t2 t3

α111=1and a=1⇒y(t)= 1 0 0 0

α001=1and a=1⇒y(t)= 0 0 1 0 Dynamic hazard for a→”1”↓ ”0”

Initial behavior 1 0 1 0

α011=1and a=1⇒y(t)= 0 1 0 0 Added term (if possible)

Final overall behavior 1 1 1 0 Hazard masked

The instrument presented above works when dealing with minterms / maxterms. Obviously, this

is not always the case. However, whenever we address a term that is not complete (meaning that

it lacks input components), we shall analyse whether its weight is ordered. If not, no further

inquiries are required, as the term will not generate anomalous behaviour. On the other hand, if

the weight is ordered, the term should be expanded to canonical form (without altering the

function’s truth value) and an analysis performed.

In case of an n-component secondary input vector (a1, a2,…,an) generated by primary input

variable a, characterized by t1, t2, …, tn ordered timestamps (t1<t2<…<tn), the function’s

expression becomes:

 +++++++= −− 2,1111...11...011,1111...01...000,1001...0001000...000][)(δαδαδαττα aaaaty iinnn

][...... 1110...111,1110...111,1000..10....1112,1000...100 nnnjj aaaaa τταδαδαδα +++++++ −− (4.10.)

Therefore, the function’s output trace is presented by Table.6.

Once again, note that we have succeeded in significantly decreasing the number of terms

involved. Just identifying the presence of specific terms (border and/or weight ordered) will be

enough to conclude whether anomalous behaviour is present. Furthermore, in particular

situations, we can also pinpoint the methodology for masking the anomalous behaviour, should

this be our goal.

10 Computer Science & Information Technology (CS & IT)

Table. 6. GENERAL OUTPUT TRACE FOR VARIABLE a

 tinit t1 t2 t3 … tn-2 tn-1 tn tfinal

α000…000=1→y(t)= a 0 0 0 … 0 0 a

α000…001=1→y(t)= 0 0 0 0 … 0 a 0

α000…011=1→y(t)= 0 0 0 0 … a 0 0

……………………………………………………

α001…111=1→y(t)= 0 0 a 0 … 0 0 0

α011…111=1→y(t)= 0 a 0 0 … 0 0 0

α100…000=1→y(t)= 0 a 0 0 … 0 0 0

α110…000=1→y(t)= 0 0 a 0 … 0 0 0

……………………………………………………

α111…100=1→y(t)= 0 0 0 0 … a 0 0

α111…110=1→y(t)= 0 0 0 0 … 0 a 0

α111…111=1→y(t)= a 0 0 0 … 0 0 a

The singular presence of a term with the weight ordered is a sufficient condition for the presence of a

static hazard.

5. CIRCUIT ANALYSIS METHODOLOGY

The previous paragraph presented how to determine whether a logic function output exhibits

anomalous behaviour. Another approach is required, if our goal is to determine the occurrence of

an anomalous pulse(s) on a logic circuit’s output and eventually determine its dynamic

parameters.

Basically, we shall determine the secondary input vector and its associated delays vector using

already established methods (J. Beister[1], McCluskey[2]). At this point, we will use the TDLVs

(τ and δ) to express all variables considering the time variable. We reduce the logic function’s

expression to a minimal one (Boolean rules), and we will attempt to identify the hazard

generating patterns (static or dynamic).

Notation rules:

� delay for NOT gate → tN / and associated τN=τ (tN-t)

� delay for AND gate → tA / and associated τA=τ (tA-t)

� delay for OR gate → tO / and associated τO=τ (tO-t)

� delay for NAND gate → tNA / and associated τNA=τ (tNA-t)

� delay for NOR logic gate → tNO / and associated τNO=τ (tNO-t)

� tN+tO = tN+O / and associated τN+O=τ (tN+O-t), so.on.

To determine the time-dependent hazard generating patterns, we shall start from the circuit

patterns as presented by E.J. McCluskey and R.F. Tinder [2-3].

Computer Science & Information Technology (CS & IT) 11

5.1. Static - Case 1 Algebraic description → xxy ⋅=

Fig.1.Hazard generating circuit – case 1

Delays: → path 1- tA / associated τA=τ(tA-t); non inverting

 → path 2- tN+tA=tN+A / associated τN+A=τ(tN+A -t); inverting

ANAANAANANAAANA xxxxxxxxty +++++ +=++=⊕⋅⊕= ττττττττττ))(()()()((5.1.)

Considering that tA<tN + tA=tN+A according to table 1, we know that 0=⋅ + ANA ττ and

ANAANA ++ =⋅ ,δττ , thus rendering the above equation as follows:

 ANAxty +⋅= ,)(δ (5.2.)

Eq. 5.2. provides us with the static “0” hazard pattern.

One can easily observe that x=0 → ANAty += ,)(δ and x=1 → y(t)=0, meaning that for transition

x “0”↑”1”, the circuit’s output will exhibit a pulse valued ”1” beginning at tA and ending tN+A,

while for transition x “1”↓”0”, the circuit’s output will maintain a constant ”0” value.

5.2. Static - Case 2 Algebraic description → xxy +=

Fig.2.Hazard generating circuit – case 2

Delays: →path 1- tO / associated τO=τ(tO-t); non inverting

 →path 2- tN + tO = tN+O / associated τN+O=τ(tN+O -t); inverting

)()()()()(ONOONOONONOOONO xxxxxxxxty +++++ +++=+++=++⊕= ττττττττττ (5.3.)

12 Computer Science & Information Technology (CS & IT)

Considering that tO<tN+tO=tN+O according to table 1, we know that
ONOONO ++ =+ ,δττ and

1=+ +ONO ττ , thus rendering the above equation as follows:

ONOxxty +⋅+= ,)(δ (5.4.)

Eq. 5.4. provides us with the static ”1” hazard pattern.

One can easily observe that x=0→y(t)=1 and x=1→ ONOty += ,)(δ , meaning that for transition

x “1”↓”0”, the circuit’s output will exhibit a pulse valued “0” beginning at tO and ending at tN+O,

while for transition x “0”↑”1”, the circuit’s output will maintain a constant ”1” value.

5.3. Dynamic - Case 3 Algebraic description → xxxy ⋅+=

 Fig.3.Hazard generating circuit – case 3

Delays: →path1– tB+tO / associated τB+O=τ(tB+O -t); non inverting

 →path2- tA+tO=tA+O / associated τA+O=τ(tA+O-t); non inverting

 →path3-tN+tA+tO=tN+A+O/associatedτN+A+O=τ(tN+A+O-t); inverting

=+⋅+++=+⋅⊕+⊕= ++++++++++++)()()()()()()(OANOANOAOAOBOBOANOAOB xxxxxxxxxty τττττττττ

)()(OANOAOBOANOAOB xx ++++++++ +++= ττττττ (5.5.)

Considering that tA+O<tN+tA+tO=tN+A+O according to table 1, we know that 0=+++ OANOA ττ and

OANOAOANOA ++++++ = ,δττ , rendering the above equation as follows:

)()(, OANOAOBOB xxty +++++ ++= δττ (5.6.)

Eq. 5.6. provides us with the dynamic “1” hazard pattern. One can easily observe that:

x=”1”→
OBty +=τ)(, meaning that for transition x”1”↓”0”, the circuit’s output will switch to

”1”↓”0” after tB+O, and no further transitions will occur afterwards (normal output transition – no

hazard present)

x=”0”→
OANOAOBty ++++ += ,)(δτ , meaning that for transition x”0”↑”1” and considering that

tB>tN+A (see the figure above), the circuit’s output will present a

� “0” until tA+O,

� ”1” from tA+O to tN+A+O (term δA+O,N+A+O),

� ”0” between tN+A+O → tB+O, and

� ”1” after tB+O(term τB+O).

Computer Science & Information Technology (CS & IT) 13

Please observe that if tB≤tN+A, the output will switch to “1” after tB+O (term τB+O)≤tN+A+O (term

δA+O,N+A+O), rendering the hazard invisible (masked but not non-existent).

5.4. Dynamic - Case 4 Algebraic description →)(xxxy +⋅=

 Fig.4.Hazard generating circuit – case 4

Delays: →path 1– tB+tA / associated τB+A=τ(tB+A -t); non inverting

 →path 2- tO+tA=tO+A / associated τO+A=τ(tO+A-t); non inverting

 →path3-tN+tO+tA=tN+O+A/associated τN+O+A=τ(tN+O+A-t); inverting

 =+++⋅+=⊕+⊕⋅⊕= ++++++++++++)()()()[()()(AONAONAOAOOBOBAONAOOB xxxxxxxxxty τττττττττ

)()(AONAOOBAONAOOB xx ++++++++ +++= ττττττ
 (5.7.)

Considering that tO+tA=tO+A<tN+tO+tA=tN+O+A according to table 1, we know that

AONAOAONAO ++++++ =+ ,δττ and 1=+ +++ AONAO ττ , thus rendering the above equation as follows:

OBAONAOOB xxty +++++ ⋅+⋅⋅= τδτ ,)((5.8.)

Eq. 5.8. provides us with the dynamic “1” hazard pattern. One can easily observe that:

x=”0”→y(t)=τB+O, meaning that for transition x “0”↑”1”, the circuit’s output will switch to

“0”↑”1” after tB+O, and no further transitions will occur afterwards (normal output transition – no

hazard present)

x=”1”→
AONAOOBxty ++++ ⋅⋅= ,)(δτ , meaning that for transition x “1”↓”0” and considering that

tB>tN+A (see fig. 5.4.), the circuit’s output will present a

� “1” until tO+A,

� “0” from tO+A to tN+O+A (term
AONAO +++ ,δ),

� “1” between tN+O+A → tB+O,

� “0” after tB+O (term τB+O).

Please observe that if tB≤tN+A, the output will switch to “0” after tB+O(term OB+τ)≤tN+A+O (term

AONAO +++ ,δ), rendering the hazard invisible (masked but not non-existent)

As a conclusion, we can state the following:

� Let t1,t2,…,tn, be n timestamps respecting t1< t2<…< tn,

14 Computer Science & Information Technology (CS & IT)

� Let there be a logic circuit implementing a logic function f(x,a0,a1,…,am-2), where

{x,a0,a1,…, am-2} is the logic function’s m-component input vector and x is the input

variable to be analysed.

� Let us assume that input variable x is characterized by n distinct in→out paths, therefore

generating an n-component secondary input vector {x1, x2,…, xn} with associated

specific propagation delays of {t1, t2, t3,…, tn}

� Rewrite the secondary logic function’s equation:

F= f(x1, x2,…, xn, a0, a1,…, am-2) (5.9.)

with respect to TDLV (τ,δ) using xk=x⊕τk, for k⋲{1,2,…, n}

F= f(x⊕τ1, x⊕τ2,…, x⊕τn, a0, a1,…, am-2) (5.10.)

and reduce its expression according to (τ,δ) properties:

F= f(x, τ1, τ2,…, τn, δ1,2,…, δi-1,i,…, δn-1,n, a0, a1,…, am-2)

where x is the initial value for input variable x.

By determining a specific combination for the remainder of the input vector {a0, a1,…, am-2} that

would render the logic function’s expression identical to one of the patterns presented above, we

can state that hazard exists and we can specify the moment of the time when it occurs.

Assuming that tinit<tα<tβ<tω<tfinal, the logic function’s expression is reduced to:

�
βαδ ,⋅= xF - static “0” beginning at tα and ending at tβ

�
βαδ ,⋅+= xxF - static “1” beginning at tα and ending at tβ

�)(,βαϖϖ δττ +⋅+⋅= xxF - dynamic “0” begins at tα and ends at tω

� ϖβαϖ τδτ ⋅+⋅⋅= xxF ,
 - dynamic “1” begins at tα and ends at tω

6. ANALYSIS EXAMPLE

6.1. Analysis example 1:

Fig.5. Analysis example – circuit 1

Computer Science & Information Technology (CS & IT) 15

Each component of the primary input vector is characterized by two distinct in→out paths.

However, analysis will be performed only for variables a and b. Variable c, although

characterized by two paths, does not exhibit a complementary relationship between them, so it

will not generate a hazard (E.B.EICHELBERGER [6]). We have computed for each path its

specific propagation delay time and defined the secondary input vector by associating with each

path a unique secondary variable derived from a primary one (as presented in fig.5.). For

presentation purposes we’ve considered the circuit to be implemented using classic logic gates.

The method works the same for any technology chosen to implement the circuit analysed.

Table. 7 CIRCUIT 1-PATH DELAYS FOR VARIABLE a and b

Path delay FAST Schottky LS TTL

ta1 13.2 ns 37 ns

ta2 18.2 ns 52 ns

tb1 18.2 ns 52 ns

tb2 19.8 ns 59 ns

Please note that ta1 < ta2 and tb1 < tb2.

6.1.1. Analysis for input (a) transition

Function’s expression considering the secondary inputs becomes:

 cbacbacbaaf ⋅⋅++⋅= 2121)(),,,((6.1.)

Function’s expression with respect to TDLV (τ,δ) is:

 =⋅⋅⊕++⋅⊕= cbacbacbaf aaaa)()()(),,,,(2121 ττττ

])[(])[(2121 aaaa cbcbacbcba ττττ ⋅⋅+⋅+⋅+⋅⋅+⋅+⋅= (6.2.)

Now, we can perform the analysis on variable a by assuming values for the (b+c) and cb ⋅

terms:

� 0)(=⋅=+ cbcb → f(a,τa1,τa2,b,c)=0; NO output anomalies present (output is a

 constant “0”)

� 1,0)(=⋅=+ cbcb → NO solution for the logic equations system → this situation

 will never occur

�
2121),,,,(0,1)(aaaa aacbafcbcb ττττ ⋅+⋅=→=⋅=+ → both transitions for a will

provide a singular transition on the output (τa1 respectively
1aτ) → NO output anomalies

present

() ()
212121),,,,(1)(aaaaaa aacbafcbcb ττττττ +⋅++⋅=→=⋅=+ → Considering ta1<ta2 and

the (τ,δ) properties, we know that
2,121 δττ =+ aa

and 121 =+ aa ττ , thus rendering the function’s

equation to be:

aaf +⋅= 2,1δ (6.3.)

16 Computer Science & Information Technology (CS & IT)

Eq. 6.3 presents a pattern identifying a static “1” hazard for input transition a “1”↓”0” and b=0,

c=1. By placing the time origin at the moment variable a switches, the output will evolve as

presented in fig.6.:

Fig.6. Output waveform for input a transition “1”↓”0”

The analysis for input b follows a similar path

6.2. Analysis example 2:

 Fig.7. Analysis example – circuit 2

Each component of the primary input vector is characterized by two distinct in → out paths.We

have computed a specific propagation delay time for each path and defined the secondary input

vector by associating with each path a unique secondary variable derived from a primary one (as

presented in fig.7.).

Table. VIII CIRCUIT 2-PATH DELAYS FOR VARIABLES a,b,c

Path delay FAST Schottky LS TTL

ta1 13.2 ns 30 ns

ta2 18.2 ns 52 ns

tb1 18.2 ns 30 ns

tb2 19.8 ns 52 ns

tc1 19.2 ns 52 ns

tc2 19.8 ns 52 ns

Please note that ta1<ta2 and tb1<tb2. However, we encounter a most interesting situation when we

consider variable c. In the case of LS TTL implementation, both paths are characterized by the

same propagation delay time, meaning that although this input variable respects all conditions

that would make it a candidate for hazard analysis, we do not need to analyse the circuit’s

behaviour when variable c switches because any complementary output switch should occur at

the same moment of time, therefore cancelling each other. In the case of FAST Schottky

implementation, tc1 < tc2, so analysis should be performed.

Computer Science & Information Technology (CS & IT) 17

6.2.1. Analysis for input (c) transition

Function’s expression considering the secondary inputs becomes:

 () () bcacbaccbaf ⋅+⋅+⋅= 1221),,,((6.4.)

Function’s expression with respect to TDLV (τ,δ) is:

() () () =⊕⋅⋅==⋅⊕+⋅⊕+⋅= 21221),,,,(ccccc cbabcacbacbaf τττττ

22 cc bacbac ττ ⋅⋅⋅+⋅⋅⋅= (6.5.)

In this case, only τc2 is present in the function’s expression, meaning that only one delay will be

visible at the circuit output (tc2) if the proper conditions are met (a=1, b=0)

→ No anomalous behaviour possible →

variable c switch will not generate an output anomalous behaviour under any circumstances.

6.2.2. Analysis for input (a) transition

Function’s expression with respect to the secondary input vector is:

 () () cbacbaabcacbacbaaf ⋅⋅+⋅⋅⋅=⋅+⋅+⋅= 1212121),,,((6.6.)

Function’s expression with respect to TDLV (τ,δ) is:

() () () =⋅⋅⊕+⋅⋅⊕⋅⊕= cbacbaacbaf aaaaa 12121),,,,(τττττ

() ()121121 aaaaaa cbcbacbcba ττττττ ⋅⋅+⋅⋅⋅⋅+⋅⋅+⋅⋅⋅⋅= (6.7.)

Now, we can perform the analysis on variable a by assuming values for cb ⋅ and cb ⋅ terms:

� 1=⋅=⋅ cbcb → NO solution for the logic equations system

� 0=⋅=⋅ cbcb → f(a,τa1,τa2,b,c)=0; NO output anomalies

� 1,0 =⋅=⋅ cbcb → both transitions for a will provide a singular transition on the output

(τa1 respectively 1aτ) → NO output anomalies present

� 0,1 =⋅=⋅ cbcb → Considering ta1<ta2 and the (τ,δ) properties, we know that

021 =⋅ aa ττ and
2,121 δττ =⋅ aa
, thus rendering the function’s equation to be:

 2,1δ⋅= af (6.8.)

Eq. 6.8. presents a pattern identifying a static “0” hazard for input transition a “0”↑”1” and b=1,

c=0. By placing the time origin at the moment variable a switches, the output will evolve as

presented in fig.8.:

Fig.8. Output waveform for input a transition “0”↑”1”

18 Computer Science & Information Technology (CS & IT)

7. CONCLUSION

Both approaches presented will either improve or ease the use of the classic methods while

maintaining their reliability. Please bear in mind that it is not our intention to state that the classic

techniques are failing, but we simply wish to demonstrate that the same results may be reached

using less computation, and if we use the second approach, the outcome will provide more

information as far as timing is concerned.

The first approach presented may be used when the behavior of a combinational logic circuit

needs to be analyzed. One can easily determine if the CLC’s output may present a hazard simply

by identifying specific terms in its expression. At this point, we may choose not to use that circuit

or perform structural changes (if possible) to mask the hazardous behavior. However, choosing

the second approach (masking anomalous behavior) comes with a cost, as masking is performed

by entering redundant terms into the logic function equation or by using dummy gates to equalize

the different path propagation delays. That means an increase in the implementation cost and a

decrease in speed.

The second approach, if used to analyze an already implemented CLC, will provide detailed

information on the output’s behavior with respect to the time axis. Having this information

available, we shall be able to design a hierarchically superior circuit that uses the present circuit’s

outputs in such a manner that the time frames, when the circuit output is malfunctioning, are not

to be considered.

The second approach also presents us with a possible development path in the area of

asynchronous automata. It is well known that the proper design and operation of these devices is

dependent on strict timing specifications. The proposed approach is to design the automaton as a

synchronous machine, use the methodology presented to map the outputs of the input group of

functions CLC (next state CLC – Mealy or Moore) and define and design a variable time pulse

generator to be used as a synchronizing signal (instead of a fixed parameter clock signal) that will

use the earliest mapped moment of time to change the state of the automation. Thus, the

automaton will not be an asynchronous one but rather a pseudo synchronous one. The advantages

would be the ease of design and less susceptibility to timing issues while retaining most of the

advantages of the asynchronous structure, such as high speed and fast response.

REFERENCES

[1] Beister J.: “A unified approach to combinational hazards”, IEEE Trans.Comp.VolC-23, pp. 566-575,

1974, 10.1109/T-C.1974.223996

[2] McCluskey E. J.:“Logic Design Principles”,Prentice-Hall, Englewood Cliffs, NJ, 1986.

[3] Tinder Richard F.: “Engineering Digital Design”, Second Edition, Elsevier - ACADEMIC PRESS,

2001

[4] Bryant R.:"Graph-based Algorithms for Boolean Function Manipulation," IEEE Trans.Comp., 677-

691 (1986), 10.1109/TC.1986.1676819

[5] Akers S.: "Binary Decision Diagrams," IEEE Trans.Comp., C-27, 509-516 (1978).

DOI:10.1109/TC.1978.1675141

Computer Science & Information Technology (CS & IT) 19

[6] Nowick S.M.,O’Donnell C.W.:“On the existence of hazard-free multi-level logic” Proceedings /

IEEE ASYNC 03, May12-16,2003, DOI: 10.1109/ASYNC.2003.1199171

[7] Jeong C., Nowick S.M.: “Fast hazard detection in combinational circuits” ACM DAC 04, June 7-11,

2004, 10.1109/DAC.2004.240453

[8] Berthomieu B., Diaz M.:”Modeling and Verification of Time Dependent Systems using Time Petri

Nets”, IEEE Transactions on Software Engineering 17,259-273, 1991DOI: 10.1109/32.75415

[9] J.A. Brzozowski and C.J.H. Seger: “Advances in Asynchronous circuit theory Part II - Bounded

Inertial Delay Model, MOS Circuits, Design Techniques”, EATCS Bulletin 43, 199-263, 1991

[10] J. Brzozowski, B. Li, Y. Ye: “On the Complexity of the Evaluation of Transient Extensions of

Boolean Functions”, 12th International Workshop on Descriptional Complexity of Formal Systems,

DCFS 2010,

[11] Y. Ye., J. Brzozowski: “Covering of Transient Simulation of Feedback-Free Circuits by Binary

Analysis”,Int. J.Found. Comput. Sci.17,949-973, 2006

[12] M. Gheorghiu, J. Brzozowski:“Simulation of Feedback-Free Circuits in the Algebra of

Transients”Internat. J.Found. Comput.Sc.,14,1033-1054, 2003.

[13] Oded Maler, Amir Pnueli: “Timing Analysis of Asynchronous Circuits using Timed Automata”,

Correct Hardware Design and Verification Methods, Volume 987, 1995,pp189-

205,Springer2005,DOI: 10.1007/3-540-60385-9_12

[14] Alan R. Martello, Steven P. Levitan: “Temporal analysis of time bounded digital systems”, Correct

Hardware Design and Verification Methods, Volume 683, Springer 1993, pp 27-38, DOI:

10.1007/BFb0021712

[15] Asarin A., Maler O. and Pnueli A.: “Symbolic Synthesis of Discrete and Timed Systems” in A.

Nerode (Ed), Hybrid Systems II, Springer LNCS, 1995, DOI: 10.1.1.43.5633 1995

[16] William K.C. Lam, Robert K. Brayton: “Timed Boolean Functions – A unified formalism for exact

timing analysis”, Kluwer Academic Publishers, 1994, ISBN 0-7923-9454-2

[17] Galupa N.: “Increase of Sequential Systems Performance Using Digital Hazard Analysis”,

ICCS/ISITA '92, 1096-1100, ISBN: 0-7803-0803-4, 10.1109/ICCS.1992.255092

[18] Galupa N.: “TIME/LOGIC VARIABLES USED FOR DIGITAL HAZARD SEARCH,”Proceedings

of IEEE CCECE 2008, DOI: 10.1109/CCECE.2008.4564553

[19] Stevens K.S., Ginosar R., and Rotem S.: Relative timing [asynchronous design], in IEEE

Transactions on VLSI Systems, pp. 129-140, ISSN 1063-8210, 2002, 1.1109/TVLSI.2002.801606

[20] R. Ben Salah, Bozga M. and Maler O.: “On Timing Analysis of Combinational Circuits,” In

FORMATS'03, LNCS 2791, pages 204-219. Springer (2003)

[21] R. Ben Salah, Bozga M. and Maler O.: “On Timed Components and their Abstraction,” In

SAVCBS'07 Workshop, ACM ISBN 978-1-59593-721-6/07/0009 (2007)

[22] Riedel M.D., Bruck J.: “Timing Analysis of Cyclic Combinational Circuits,” Technical Report,

Parallel and Distributed Systems Group, CaltechPARADISE:2004.ETR060, 25 Feb 2014

20 Computer Science & Information Technolo

AUTHORS

Nicolae Galupa (B.Sc and M.Sc. Hons 1988, PhD 2003) received his BSc and MSc

degree from Technical University Iasi, Faculty of Automatic Control and Computer

Engineering, Iasi, Romania in 1988 after a 5 years training programme and PhD

degree from the same University in

He has been with the Faculty of Automatic Control and Computer Engineering,

Technical University Iasi, Iasi, Romania since 1990. Also since 2006 he joined the

digital circuits design team of DICODE Ltd. and

circuits.

He joined IEEE in 2006 and has been a member of IEEE Region 8 ever since.

Computer Science & Information Technology (CS & IT)

(B.Sc and M.Sc. Hons 1988, PhD 2003) received his BSc and MSc

degree from Technical University Iasi, Faculty of Automatic Control and Computer

Engineering, Iasi, Romania in 1988 after a 5 years training programme and PhD

 2003 after a 6 years training programme.

He has been with the Faculty of Automatic Control and Computer Engineering,

Technical University Iasi, Iasi, Romania since 1990. Also since 2006 he joined the

digital circuits design team of DICODE Ltd. and focused on timing issues in digital

He joined IEEE in 2006 and has been a member of IEEE Region 8 ever since.

