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ABSTRACT 

 
In computer vision, the estimation of the fundamental matrix is a basic problem that has been 

extensively studied. The accuracy of the estimation imposes a significant influence on  

subsequent tasks such as the camera trajectory determination and 3D reconstruction. In this 

paper we propose a new method for fundamental matrix estimation that makes use of  clustering 

a group of 4D vectors. The key insight is the observation that among the 4D vectors constructed 

from matching pairs of points obtained from the SIFT algorithm, well-defined cluster points 

tend to be reliable inliers suitable for fundamental matrix estimation. Based on this, we utilizes 

a recently proposed efficient clustering method through density peaks seeking and propose a 

new clustering assisted method.  Experimental results show that the proposed algorithm is 

faster and more accurate than currently commonly used methods. 

 

KEYWORDS 

 
Fundamental Matrix, Clustering, Density Peaks   

 

 

1. INTRODUCTION 

 
Fundamental matrix (F-matrix) is an important tool often used in many computer vision tasks. It 

reflects the corresponding relationship between two pictures shot at the same scene but taken 

from different viewpoints. It is widely used in tasks such as camera tracking, image rectification, 

and 3D reconstruction (e.g., [1], [2]). The fundamental matrix constrains the coordinates between 

two 2D images from two different viewpoints. It contains information about the cameras’ focal 

lengths, the positions of optical centers, and the rotation and translation between the two cameras 

[1]. 

 

In order to calculate the F-matrix, using the fact that it contains 7 free variables, Hartley used 7 

pairs of corresponding points, calculated 3 possible F-matrices, and called it 7-Point algorithm 

[2]. Tsai and Huang proposed a linear algorithm [3], called the 8-Point algorithm for computing 

the F-matrix. It uses 8 pairs of matching points and estimates the F-matrix by solving a set of 

linear equations and making the F-matrix subject to a rank-2 constraint. There are also some other 

nonlinear methods. For example, Mohr and others assumed that the errors of different 

corresponding points are mutually independent and have the same standard deviation. They 

calculated the spatial position of the 3D points and the F-matrix by minimizing the error between 

the observed values and the fitted values of projected 2D coordinates from the 3D points [4].  

 

A problem with current methods is that there are usually noise (error of 1 or 2 pixels) and point 

pairs that are wrongly matched. But all the algorithms mentioned above need to be calculated by 
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the least square method, which requires that the noise mean is 0, and that all matched data points 

are correct when estimating the F-matrix. Thus the above mentioned algorithms are susceptible to 

noise and incorrectly matched point pairs. 

 

Some robust algorithms have been proposed to solve these problems. Zhang put forward an 

algorithm called M-Estimators that can distinguish inliers from outliers. This algorithm could 

adapt to noise but not the wrongly-matched points [5]. Rousseeuw and Leroy proposed a Least 

Median of Squares (LMeDS) algorithm. It randomly selects 7 pairs of corresponding points to 

calculate the fundamental matrix and the error function, then uses an adaptive threshold related to 

error function to find the outliers. The result is shown to be quite encouraging [6]. 

 

2. PROPOSED ALGORITHM 

 
In this section we propose a new F-matrix computation method. We briefly review some 

preliminary topics in the first three subsections for completeness, then uses another three 

subsections to present  the proposed algorithm. 

 

2.1. Epipolar Geometry and Fundamental Matrix 

 
Epipolar geometry describes the relationship between two images taken by two cameras C and 

'C pointing at the same scene. It is independent of the structure of the scene and is only related to 

the intrinsic and extrinsic parameters of the cameras. 

 

As illustrated in Fig. 1, I and 'I are the image planes of camera C and 'C respectively. Their 

coordinate systems are set up as is commonly done. Specifically, origin point is located at the top-

left of the image while the x-axis points to the right and the y-axis points to the bottom. The 

points ( , ,1)T
m x y= and ( , ,1)Tm x y′ ′ ′= are the image points in plane I and 'I of the same 3D point 

M . Because C , M and m  are on a line while C' , M , 'm are on another line, the six points are on 

a plane π , which is commonly called the epipolar plane. The image point of C  on the plane 'I  is 

called the epipole 'e  while e  is the image point of 'C  on the plane I . e  and 'e  are also on the 

plane π . The line : 0l ax by c+ + = which crosses m , e and the line ' : ' ' ' 0l a x b y c+ + = are called the 

epipolar lines. 

 

The fundamental matrix F is a 3*3 matrix with rank 2. It satisfies the following constraint [1] 

 

 0,
T

m Fm′ =                                                                                    (1) 

which means the point 'm lies on the epipolar line 'l Fm= while the point m lies on the epipolar 

line 'T
l F m= as well. 
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Figure 1.  Illustration of the epipolar geometry.  

 

2.2. Review of the 8-Point Algorithm 
 

Suppose the F-matrix takes the form of 
 

          
00 01 02

10 11 12

20 21 22

.

f f f

F f f f

f f f

 
 

=  
 
 

                                                                                           (2) 

 

Also suppose that at least eight pairs of points ( , ,1)T

n n nm x y= and ( )' ' , ' ,1 , 1,2,...,n n nm x y n N= =  

with 8N ≥ are given. 
 

Then from (1), we obtain the following set of linear equations 

 

              1 2( ... ) 0,T

NAf a a a f= =                                                                                            (3) 
 

In which 
 

               ( , , , , , , , ,1) ,T

n n n n n n n n n n n n na x x y x x x y y y y x y′ ′ ′ ′ ′ ′=                                                             (4) 

               

              
00 01 02 10 11 12 20 21 22( , , , , , , , , ) .T

f f f f f f f f f f=                                                                  (5) 

 

Without regard to the rank 2 constraint tentatively. When the F-matrix is multiplied by a scalar, it 

still satisfies (1). Now the F-matrix has 8 independent variables. We can utilize the constraint [3] 

 

            2 2 2

00 01 22( ) ( ) ... ( ) 1.f f f+ + + =                                                                                    (6) 

 

After solving the Eq. 2, the F-matrix still does not yield to the rank 2 constraint, so we can use the 

SVD decomposition [3] 

 

          
0
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Since F is of rank 2, we have 
2 0σ = . Then the final estimate 'F of the 8-point algorithm is given 

as 

               
0

1

0 0

0 0

0 0 0

.T
F U V

σ

σ

 
 ′ =  
 
 

                                                                                         (8) 

 

2.3. Review of RANSAC 

 
Given any statistical model, Random Sample Consensus (RANSAC) distinguishes the outliers 

from a data set by using a threshold of error and then finds the best parameters which describes 

the data set well. 

 

Before running RANSAC to estimate the F-matrix, we need a given th threshold  (which is the 

distance between a point and its epipolar line) and the confidence p of the model. Then the 

number of iterations k and the number of inliers d must satisfy 81 (1 ( / ) )k
p d N− = − [9]. The 

process is shown in Fig. 2. 

 

 

Figure 2.  Flowchart of the general RANSAC algorithm 
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2.4. The 4D Space of Matching Points 

 

For any pair of feature points ( , ,1)T
m x y= and ( , ,1)T

m x y′ ′ ′= , the coordinates of the points 

describe the positions of the points in the image planes I and I ′ . The difference between the two 

points describes the transformation between the two viewpoints. Generally, in an image, the 

feature rich areas tends to have more concentrated feature points to form the matching pairs for F-

matrix estimation. In order to study the distribution and transformation of the matching points, we 

construct a 4D space in which the vectors are of the form ( , , , )T

n n n n n
q x y x y′ ′= . The 4D space 

contains the information about both the 2D feature point distribution and the transformation 

between the matching points. It can help find useful characteristics of the matching points to 

estimate the F-matrix. 

 

 

Figure 3.  Feature point distribution illustration. The feature points are found by SIFT. Areas with more 

concentrated features points are marked out in the boxes.  

 

Fig. 3 shows an example of the distribution of the feature points in a general natural image. After 

using SIFT to find the feature points in a real image pair, we get 411N =  pairs of matching 

points. We can see from the Fig. 3 that most of the feature points locate in some small areas 

shown in the boxes. This observation provides us with the hint that by doing a cluster analysis on 

this 4D vectors, we may be able to identify those feature point pairs that are more reliable than 

those isolated ones. In the next subsection we describe a practically efficient clustering method. 

 

2.5. Cluster Analysis 

 
Clustering analysis that classifies the data is a common method used to analyze multidimensional 

data. Data points that are dense in a multidimensional area and far from other dense area tend to 

belong to the same cluster. The clustering result describes the distribution of the data in 

multidimensional space. When clustering, we commonly treat the point that is closest to the 

center of an area as the center of the cluster. The center point of a cluster decides the basic 

property of the cluster. These ideas are recently used by Rodriguez and Laio in their paper 

''Clustering by fast search and find of density peaks''. The key  steps are described as follows. 
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(1) Computation of the local density 
iρ . 

          ( ),i ij c

j

d dρ χ= −∑                                                                                              (9) 

 

          
1, 0

( )
0, 0

x
x

x
χ

<
= 

≥
                                                                                             (10) 

 
where 

ijd  is the Euclidean distance of data point i and j , 
cd is a parameter which makes the 

mean value of 
iρ equal to 2%N . N is the total number of data points. Larger 

iρ means the point 

i is more likely to be the center of a cluster. 

 

(2) Computation of iδ . 

 

               
:
max ( )

j i

i ij
j

d
ρ ρ

δ
>

=                                                                    (11) 

 

If 
iρ is a global max, let max( )i ij

j
dδ = .

iδ is the minimum distance between the points which 

have bigger ρ than iρ and the point i , a large value of iδ means the point i is far away 

from other dense area. 

 
(3) Drawing the decision figure. 

 

Using ρ  as the horizontal axis and δ  as the vertical axis, a decision figure of all the data points 

can be drawn. Then those points with large product values of *ρ δ  will be the cluster centers. 

 

2.6. The Complete Proposed F-matrix Estimation Algorithm 

 
Given any image pair, we can use the SIFT algorithm to first find the N pairs of corresponding 

feature points ( , ,1)T

n n nm x y= and ( , ,1) , ( 1,2,..., )T

n n nm x y n N′ ′= = . Then the complete F-matrix 

estimation algorithm can be summarized  as follows: 

 

(Step 1) Use the N pairs of points to construct the 4D vectors ( , , , )T

n n n n nq x y x y′ ′= . 

(Step 2) Compute of the local density iρ using (9) and (10), 

where ijd  is now the Euclidean distance between vectors 
iq  and jq . 

(Step 3) Compute  the distance 
iδ  using (9) and (11). 

(Step 4) Obtain the decision figure and find the cluster centers, which are treated as inliers. 

(Step 5) Use RANSAC on the inliers of step 4, the F-matrix of the randomly chosen points is 

computed by the 8-Point method. 

 

As will be shown later, because the clustering step can generally produce more reliable inliers 

than the traditional methods, the final estimate of the F-matrix will be more accurate. In addition, 

because of the same reason, less iterations are needed, which means faster running time. We pick 

the point whose *i iδ ρ  is lower than 
max max* *α δ ρ as an outlier. Point i  whose *i iδ ρ  is higher 

than that is decided as a clustering center in [7]. It represents the basic transformation of the local 

area. α affects the total number of outliers which are picked out that larger α will result in more 

outliers. Meanwhile, α  also influences the reliability of the inliers. With a large amount of points 
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and g  vectors located among an inlier 
iq , it usually indicates that 

ig  is quite close to the local 

mean value and represents the actual transformation between two images at the point i . 

 

As is described above, feature points often lie in areas that have obvious characteristics. In a static 

scene, we consider that these dense points are often eliminated from false matching and are more 

reliable than the points that are isolated when being used in estimating the F-matrix because of 

the presence of noise. Besides, the coordinates of the matching points which are corresponding to 

the same object in 3D space and are located in the same area in the image plane, often change 

slowly along with the position in image plane. If there is noise whose mean value is 0, we can 

refer to the other points in the same area to decrease the influence of noise. 

 

In the decision figure, a false corresponding pair iq  has big iδ  and small iρ  in common. 

 

The center of a cluster of q has big δ and ρ . The points in a cluster excluding its center have 

small 
iδ  but big 

iρ . 

 

As is described in [8], inliers that all come from a small area make no sense because they can 

hardly represent the transformation between the image pairs in the whole range of the image. 

However, our optimization method easily overcomes this by choosing the inlier point with a large 

δ . 

 

3. EXPERIMENTS 

 
Ten pairs of images (5 pairs of real images and 5 pairs of synthetic images) captured from ten 

scenes are used. Then the F-matrix is estimated utilizing the proposed method. We compare the 

proposed method with the classical methods which are completed by directly calling the functions 

in OpenCV. We only show the results of the estimation of F-matrix of one pair of real images and 

one pair of synthetic images here. While the results of the proposed method in the ten pairs of 

images are all encouraging. 

 

3.1. Real Images 

 
When 2.2th = , experimental results of the two images captured by a camera are shown in Fig. 4 

which is the decision figure in which the curve represents 0.011α = and the bigger circles are 

outliers found by the conventional RANSAC method. Besides, Fig. 5 shows the matching pairs 

which are inliers found by the proposed method. 



36 Computer Science & Information Technology (CS & IT) 

 

 

 

Figure 4.  Decision figure of the pair of real images.  

 

 

Figure 5.  Matching points of the pair of real images.  

 

As is seen in Fig. 4, most of the outliers in RANSAC (displayed by bigger circles) are under the 

curve, it proves the reliability of the search of density peaks. 
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Using different values of th , we compare the proposed method with RANSAC whose result is 

shown in Table 1. 

 
Table 1.  Comparison with RANSAC. 

 
th(pixel) Method Time(ms) Mean Error(pixel) 

2.2 RANSAC 4.7 0.841559 

Proposed,  α= 0.011 9.9 0.744619 

1 RANSAC 10.3 0.438181 

Proposed,  α= 0.02 13.3 0.412330 

0.8 RANSAC 33.3 0.370029 

Proposed,  α= 0.025 14.3 0.357731 

0.5 RANSAC 126 0.241158 

Proposed,  α= 0.04 17.2 0.224982 

 

When th decreases, the time RANSAC consumes increases rapidly because Ransac picks up data 

points randomly and iterates until a fine F-matrix is found. However, the proposed method has a 

prior analysis on the characteristics of the data points using a simple algorithm. Beyond that, the 

mean error in pixel of the proposed method is smaller. 

 

Comparison results with other methods are show in Table 2. 

 
Table 2.  Comparison with other methods. 

 

Method Time(ms) Mean Error(pixel) 

8-POINT 1.3 1.064726 

7-POINT 23.6 1.706590 

LMeDS 18.2 0.833023 

Proposed 9.9 0.744619 

 

3.2. Synthetic Images 
 
To compare the methods from another point of view deeply, we use OpenGL to generate 2 

images I  and I ′  which have a known F-matrix 
0F . So 

0F  is the ground truth F-matrix. Then we 

utilize the evaluation method in section 4.1 of [8] proposed by Zhang to evaluate the F-matrix 

estimated by the methods described above. The evaluation method is computed following the 

steps (see Fig. 6): 

 

(1) Compute the fundamental matrix 
1F  the proposed method. 

(2) Choose a point 
im  from image I  and compute the following epipolar lines: 

 

     
0 0i il F m=                                                                                                           (12) 

      1 1i il F m=                                                                                                           (13) 

 

(4) Choose a point im′  on the epipolar line 0il  and compute the following epipolar lines: 

 

      
0 0

T

i il F m′ ′=                                                                                                              (14) 

       
1 1

T

i il F m′ ′=                                                                                                           (15) 
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(4) If the epipolar lines do not intersect the image plane, go back to step 2. 

(5) Compute the distance 
1id ′  from the point 

im′  to the line 
1il  (c.f. Fig. 6). 

(6) Compute the distance 
1id  from the point 

im  to the line 
1il  (c.f. Fig. 6). 

 

Figure 6.  Illustration of the evaluation method [8]. 

 

(7) Repeat step 2 to step 6 for N  times. 

(8) Compute the mean value 
1d  of all the 

1id  and 
1id ′ . 

 

Then the results that the proposed method compares with other methods are shown in Fig. 7, Fig. 

8 and Table 3. The numbers in Table 3 represent the difference between the F-matrix estimated 

by the methods above and the ground truth 
0F  while 2.2, 0.011th α= = . 

 
Table 3.  F-matrix estimation error comparison with ground truth. 

 

 8-POINT 7-POINT LMeDS RANSAC Rroposed 

Error 83.875023    42.706934 1.300233  1.330434 1.077631 

 

 

Figure 7.  Decision figure of the pair of real images. 
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Figure 8.  Matching points of the pair of real images.  

 

4. CONCLUSION 

 
The paper proposes the utilization of clustering to optimize the corresponding pairs of points for 

accurate estimation of the fundamental matrix. This approach chooses the point pairs which are 

likely to represent the true relationship between image pairs and suffer less from noise. As the 

threshold decreases, the method we use is better than the conventional RANSAC both in 

processing speed and accuracy. Besides, our optimization based on search of density peaks has a 

lower level of the error between the estimated F-matrix and the ground truth. 

 

REFERENCES 

 
[1] R. Hartley and A. Zisserman, (2000) Multiple View Geometry in Computer Vision. Cambridge. 

[2] R. Hartley, (1994) Projective reconstruction and invariants from multiple images, IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 16(10), pp1036-1040. 

[3] H. Longuet-Higgins, (1981) A computer algorithm for reconstructing a scene from two projections, 

Nature 293, pp133-135. 

[4] R. Mohr, F. Veillon, and L. Quan, (1993) Relative 3d reconstruction using multiple uncalibrated 

images, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp543-

548. 

[5] Z. Zhang, (1995) Parameter estimation techniques: A tutorial with application to conic fitting, Image 

and  Vision Computing. In Press. Also INRIA Research Report No.2676. 

[6] P. Rousseeuw, and A. Leroy, (1987) Robust Regression and Outlier Detection, John Wiley & Sons, 

New  York. 

[7] A. Rodriguez and A. Laio, (2014) Clustering by fast search and find of density peaks, Science 344, 

pp1492-1496. 

[8] Z. Zhang, (1998) Determining the Epipolar Geometry and its Uncertainty: A Review, International 

Journal of Computer Vision, 27(2), pp161-198. 

[9] M.A. Fischler and R.C. Bolles, (1981) Random Sample Consensus: A Paradigm for Model Fitting 

with Applications to Image Analysis and Automated Cartography Comm. ACM, Vol. 24, No. 6, 

pp381-395. 

[10] J. Lim and N. Barnes, (2010) Estimation of the Epipole Using Optical Flow at Antipodal Points, 

Computer Vision and Image Understanding, Vol. 114, No. 2, pp245-253. 



40 Computer Science & Information Technology (CS & IT) 

 

[11] J. Oliensis, (2002) Exact Two-Image Structure from Motion, IEEE Trans. Pattern Analysis and 

Machine Intelligence, Vol. 24, No. 12, pp1618-1633. 

[12] D. Nister, (2004) An Efficient Solution to the Five-Point Relative Pose Problem, IEEE Trans. Pattern 

Analysis and Machine Intelligence, Vol. 26, No. 6, pp756-770. 

 

AUTHORS 
 

Hao Wu was born on Oct. 16, 1988, in Baoji, China. He got bachelor’s degree of electronic 

information technology and instrument in Zhejiang University in 2007. He is studying for a 

master’s degree in Lanzhou University. His interest of research is compute vision. 

 

 

 

Yi Wan received his Ph.D degree from the Rice University in 2002 and is currently a 

faculty member at the school of information science and engineering, Lanzhou University, 

China. 


