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ABSTRACT 

 

In this paper, the sampling theorem for bandlimited functions over ������ domains is 

generalized to one over ∏�	
� ������ domains. The generalized theorem is applicable to the 

experimental design model in which each factor has a different number of levels and enables us 

to estimate the parameters in the model by using Fourier transforms. Moreover, the relationship 

between the proposed sampling theorem and orthogonal arrays is also provided.  
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1. INTRODUCTION 

 
In digital signal processing [3], the sampling theorem states that any real valued function � can be 
reconstructed from a sequence of values of � that are discretely sampled with a frequency at least 
twice as high as the maximum frequency of the spectrum of �. This theorem can also be applied 
to functions over finite domain [4] [8]. For example, Ukita et al. obtained a sampling theorem 
over ������ domains [8], which is applicable to the experimental design model in which all 
factors have the same number of levels. However, this sampling theorem is not applicable to the 
model in which each factor has a different number of levels, even though they often do [2], [7]. 
Moreover, a sampling theorem for such a model has not been provided so far. In this paper, the 
sampling theorem for bandlimited functions over ������ domains is generalized to one over ∏�	
� ������ domains. The generalized theorem is applicable to the experimental design model in 
which each factor has a different number of levels and enables us to estimate the parameters in 
the model using Fourier transforms. In addition, recently, the volume of the data has grown up 
rapidly in the field of Big Data and Cloud Computing [11] [12], and the generalized theorem can 
also be used to estimate the parameters for Big Data efficiently. Moreover, the relationship 
between the proposed sampling theorem and orthogonal arrays [1] is provided. 
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2. PRELIMINARIES 

 

2.1 Fourier Analysis on Finite Abelian Groups 

 
Here, a brief explanation of Fourier analysis on finite Abelian groups is provided. Characters are 
important in the context of finite Fourier series. 
 
2.1.1 Characters [5] 

 

Let � be a finite Abelian group (with the additive notation), and let �
 be the unit circle in the 

complex plane. A character on � is a complex-valued function 
: � → �
 that satisfies the 
condition 

            
�� +  �′� =  
���
��′�     ∀�, �′ ∈  �.                                   (1) 

 
In other words, a character is a homomorphism from � to the circle group. 
 

2.1.2 Fourier Transform [4] 

Let �� , � = 1,2, ⋯ , �, be Abelian groups of respective orders |��| =  �, � = 1,2, ⋯ �,  
 ≤   " ≤⋯ ≤   �,  and 

� =×�	
� ��    $�%     = &  �
�

�	
 .                                               �2� 

 
Since the character group of � is isomorphic to �, we can index the characters by the elements of �, that is, ' 
(���|( ∈ �} are the characters of �. Note that 
*���  is the principal character, and 
it is identically equal to 1. The characters' 
(���|( ∈ �} form an orthonormal system: 

 1  + 
(���
,∗����∈. = /1, ( = ,,0, ( ≠ ,,2                                        �3� 

 
where 
,∗��� is the complex conjugate of 
,���. 
 
Any function �: � →  ℂ, where ℂ is the field of complex numbers, can be uniquely expressed as a 
linear combination of the following characters: 
 ���� = + �(( ∈. 
(���,                                                                  �4�  
where the complex number �( = 1 + ����� ∈. 
(∗ ���,                                                               �5� 

is the (-th Fourier coefficient of �. 
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2.2 Fourier Analysis on ∏7	89 :;�<7� 

Assume that ��, � = 1,2, ⋯ �, are prime powers. Let ������, � = 1,2, ⋯ �, be a Galois fields of 
respective orders ��, � = 1,2, ⋯ �, which contain finite numbers of elements. We also use ∏�	
� ������ to denote the set of all �-tuples with entries from ������, � = 1,2, ⋯ �. The 

elements of ∏�	
� ������ are expressed as vectors. 
 
Example 1: Consider ���2� = '0,1} and ���3� = '0,1,2}. Then, if � = 3 and �
 = 2, �" =2, �= = 3, 
 

& ������=
�	
 = '000,001,002,010,011,012,100,101,102,110,111,112}.               

 
Specifying the group � in Sect. 2.1.2 to be the group of ∏�	
� ������ and  = ∏�	
� ��, the 

relations (3),(4) and (5) also hold over the ∏�	
� ������ domain. 
 
Then, the characters ' 
(���|( ∈ ∏�	
� ������} form an orthonormal system: 1∏�	
� ��  + 
(���
,∗����∈∏>?@A .B�C>� = /1, ( = ,,0, ( ≠ ,,2                                    �6� 

Any function �: ∏�	
� ������ →  ℂ, can be uniquely expressed as a linear combination of the 
following characters: ���� = + �(( ∈∏>?@A .B�C>� 
(���,                                                               �7�  
where the complex number 
 �( = 1∏�	
� �� + ����� ∈∏>?@A .B�C>� 
(∗ ���,                                                �8� 

 
is the (-th Fourier coefficient of �. 
 

3. EXPERIMENTAL DESIGN 

 
In this section, a short introduction to experimental design [2], [7] is provided. 
 

3.1 Experimental Design Model 
 
Let �
, �", ⋯ , �� denote the � factors to be included in an experiment. The levels of  factor �� can 
be represented by ������, and the level combinations can be represented by the �-tuples  
 � = �G
, G", ⋯ , G�� ∈ ∏�	
� ������. 
 
Example 2:  

Let Machine (�
) and Worker (�") be factors that might influence the quantity of a product.  �
 : new machine (level 0), old machine (level 1), 



240 Computer Science & Information Technology (CS & IT) 

 

�": highly skilled worker (level 0), average skilled worker (level 1), unskilled worker (level 2). 
 

For example, � = 01 represents a combination of new machine and average skilled worker. 
Then, the effect of the machine, averaged over all workers, is referred to as the effect of main 
factor �
. Similarly, the effect of the worker, averaged over both machines, is referred to as the 
effect of main factor �". The contrast between the effect of the machine for a highly skilled 
worker, the effect of the machine for an average skilled worker, and the effect of the machine for 
an unskilled worker is referred to as the effect of the interaction of �
 and �".  
 
Next, an explanation of the model in the context of experimental design is given. In previous 
works [8], [9], [10], all factors were restricted to have the same number of levels. In this paper, I 
give the definition of the generalized model in which each factor has a different number of levels 
as follows. 
 
Definition 1: Generalized Model 

 

y(x) is used to denote the response of the experiment with level combination x and assume the 
model H��� = + �(
(���(∈IJ

+ K�,                                                                       �9� 
where MN = ' �b
a
, b"a", … , bRaR�|S ∈ T, bU ∈  ������}.                               �10� 
 
The set T ⊆  '  0,1 }R represents the general mean, main factors, and interactive factors included 
in the model.  
 
(For example, consider T ⊆  '  000,100,010,001,110 }.Then, 000,100,010,001,110 indicate the 
general mean, main factor of �
, main factor of �", main factor of �=, and interactive factor of �
 
and �", respectively.) The model includes a random error  
 K� satisfying the expected value W�K�� = 0 and constant variance X". 
 
In addition, it is usually assumed that the set T satisfies the following monotonicity condition [2]. 
 
Definition 2: Monotonicity 

 S ∈  T →  S′ ∈  T     ∀ S′  �S′ ⊑  S�,                                                    �11� 
 
where S = �$
, $", ⋯ , $��, S′ = �$′
, $′", ⋯ , $′�� and S′ ⊑  S means that if  $� = 0  then $′� = 0, � = 1,2, ⋯ , �.      
 
Example 3:  

 

Consider T = ' 00000,10000,01000,00100,00010,00001,11000,10100,10010 }. 
Since the set T satisfies (11), T is monotonic.    
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Next, let ( = �[
, [", ⋯ , [��. The main effect of �� is represented by ' �(| [� ≠ 0 $�% [\ =0 �]^ _ ≠ �}.  The interaction of �� and �̀  is represented by ' �(| [� ≠ 0 $�% [̀ ≠ 0 $�% [\ =0 �]^ _ ≠ �, a} 
 
Example 4:  

 

Consider T given in Example 3 and �
 = 2, �� = 3, � = 2, … , 5. Then, MN is given by  
 MN = '00000,10000,01000,02000,00100,00200,00010,00020, 00001,00002,11000,12000}.       

 
For example, the main effect of �
 is represented by �
bbbb, and the interaction of �
 and �" is 
represented by �

bbb and �
"bbb. 

  
In experimental design, we are given a model of the experiment. In other words, we are given a 
set T ⊆  ' 0,1 }�. Then, we determine a set of level combinations G ∈ c, c ⊆  ∏�	
� ������. The 

set c is called a design. Next, we perform a set of experiments according to the design c and 
estimate the effects from the result, ' ��, H����|� ∈  c }. 
 
An important standard for evaluating designs is the maximum of the variances of the unbiased 
estimators of effects calculated from the result of the experiments. It is known that, for a given 
number of experiments, this criterion is minimized in an orthogonal design [6]. 
 

3.2 Orthogonal Designs 

In this subsection, a definition of Orthogonal Designs for the generalized model is provided. 

Definition 3: Orthogonal Designs 

 

At first, define d�S� =  '� |$� ≠  0, 1 ≤  � ≤  � }.  
 
For S8 = �$

, $
", … , $
��, Se = �$"
, $"", … , $"�� ∈ '0,1 }�, the addition of vectors S8 and Se is defined by S8 + Se =  �$

 ⊕  $"
, $
" ⊕  $"", … , $
� ⊕ $"��, where ⊕ is the exclusive 

or operation. 
 

 An orthogonal design gh for T ⊆  '0,1 }� is satisfies the condition that for any S, S′ ∈ T, 
 ig�@,…,�jh �k
, … , kl�i = |gh|��@��m … ��j , k
 ∈ �����@�, … , kl ∈ �����j�                                                      (12) 

 

where �
, … , �l are defined by d�S + Sn� = '�
, … , �l},  and g�@,…,�jh �k
, … , kl� = '�|G�@ =k
, … , G�j = kl, � ∈ gh}. 
 
Example 5:  

Consider T given in Example 3 and �
 = 2, �� = 3, � = 2, … , 5.  

Then, an orthogonal design gh for T is given as follows. 
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Table 1.  Example of orthogonal design gh. 

 G
   G"   G=   Go   Gp 
1 0     0     0     0     0 

2 0     0     1     1     1 

3 0     0     2     2     2 

4 0     1     0     0     1 

5 0     1     1     1     2 

6 0     1     2     2     0 

7 0     2     0     1     0 

8 0     2     1     2     1 

9 0     2     2     0     2 

10 1     0     0     2     2 

11 1     0     1     0     0 

12 1     0     2     1     1 

13 1     1     0     1     2 

14 1     1     1     2     0 

15 1     1     2     0     1 

16 1     2     0     2     1 

17 1     2     1     0     2 

18 1     2     2     1     0 

 
The Hamming weight q[�S� of a vector S = �$
, $", ⋯ , $�� is defined as the number of nonzero 

components. As a special case, if T = 'S|q[�S� ≤ r, S ∈ '0,1 }�}. gh corresponds to the set of 

rows of a subarray in a mixed level orthogonal array of strength 2r [1]. Hence, gh can be easily 
obtained by using the results of orthogonal arrays. 
 
However, because it is generally not easy to construct an orthogonal design for T, it is important 
to consider efficiency in making the algorithm to produce the design. However, because the main 
purpose of this paper is not to construct the orthogonal design, the algorithm is not included in 
this paper. 
 

4. SAMPLING THEOREM FOR FUNCTIONS OVER GALOIS FIELD 

DOMAINS FOR EXPERIMENTAL DESIGN 
 
In this section, I provide a sampling theorem for bandlimited functions over Galois field domains, 
which is applicable to the experimental design model in which each factor has a different number 
of levels. 
 

4.1 Bandlimited Functions 

The range of frequencies of � is defined by a bounded set  M ⊂  ∏�	
� ������. Then, �( = 0 for all ( ∈  ∏�	
� ������ ∖  M. Any function whose range of frequencies is confined to a bounded set M is 

referred to as bandlimited to M. 
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4.2 A Sampling Theorem for Bandlimited Functions over ∏7	89 :;�<7� Domains 

Theorem 1:  

 

Suppose a set T is monotonic and  ���� is expressed as 

���� = + �(( ∈ IJ

(���,                                                                       �13�  

 

where MN = ' �b
a
, b"a", … , bRaR�|S ∈ T, bU ∈  ������}. Then, the Fourier coefficients can be 
computed by 

�( = 1|gh| + ����� ∈uv 
(∗ ���,                                                                �14� 

where gh is an orthogonal design for T. 

The proof of Theorem 1 requires the following three lemmas. 

Lemma 1:  

 

For any non principal character 
 of q, 

+ 
�w�w ∈x = 0,                                                                                  �15� 

Proof: This follows immediately [5, Lemma 2.4]. 

Lemma 2:  

 

Suppose a set T is monotonic, and gh is an orthogonal design for T.   

Then, for (, , ∈ MN,  

ig�@,…,�jh �k
, … , kl�i = |gh|��@��m … ��j , k
 ∈ �����@�, … , kl ∈ �����j�  
(16) 

where �
, … , �lare defined by d�, − [� = '�
, … , �l}. 

Proof: Let �N =  ' d�S + Sn�|S, Sn ∈ T }. Because a set T is monotonic, d�, − [� ∈ �N holds for (, , ∈ MN. Hence, by the definition of gh, equation (16) holds. 

Lemma 3:  

 

Suppose a set T is monotonic, and gh is an orthogonal design for T. Then, 
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+ 
,���
(∗ ����∈uv = z |gh|, ( = ,;  0, ]rℎ}^[�~},2                                              �17� 

for all , ∈ MN. 

Proof: If  ( = ,, then 
,���
(∗ ��� = 
*���=1 for any �. Hence, ∑ 
,���
(∗ ����∈uv = |gh|.  
 Next, consider the case that ( ≠ ,. Define � = , − ( and let d��� = '�
, … , �l}. Then,  

+ 
,���
(∗ ���      �∈uv =  + 
�����∈uv                                                           �18� 

=  + 
�>@,…,�>j�G�
, … , G�l��∈uv                             �19� 

= |gh|��@��m … ��j  � + 
�>@,…,�>j�w�w∈∏�?@j .B�C>�� �    �20� 

where 
�>� �G�`� = 1 for ��` = 0, was used for the transformation from (18) to (19), and Lemma 

2 was used for the transformation from (19) to (20). Then, by (20) and Lemma 1, ∑ 
,���
(∗ ����∈uv = 0 is obtained. 

Proof of Theorem 1: The right hand side of Equation (14) is given by 

1|gh| + ����� ∈uv 
(∗ ��� =  1|gh| + � + �,, ∈ IJ

,����� ∈uv 
(∗ ��� 

=  1|gh| + �, � + 
,���� ∈uv 
(∗ ����, ∈IJ
                         �21� 

=  �(                                                                                   �22� 

where Lemma 3 was used for the transformation from (21) to (22). Hence, Theorem 1 is 
obtained. 

Theorem 1 is applicable to the generalized model given in Definition 1. When we experiment 

according to an orthogonal design gh, we can obtain unbiased estimators of the �( in (9) using 
Theorem 1 and the assumption that ϵ� is a random error with zero mean, 

��( = 1|gh| + ����� ∈uv 
(∗ ���,                                                          �23� 
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Hence, the parameters can be estimated by using Fourier transforms. 

5. RELATIONSHIP BETWEEN THE SAMPLING THEOREM AND 

ORTHOGONAL ARRAYS 

Experiments are frequently conducted according to an orthogonal array. Here, the relationship 
between the proposed sampling theorem and orthogonal arrays will be provided. 
At first, mixed level orthogonal arrays of strength r are defined as follows.  
 
Definition 4: Orthogonal Arrays of strength r [1] 
 
An Orthogonal Array of strength r is � ×  � matrix whose �-th column contains �� different 
factor-levels in such a way that, for any $t$ columns, every $t$-tuple of levels appears equally 
often in the matrix. 
 
The � rows specify the different experiments to be performed. 
 
Next, the definition of orthogonal arrays of strength r can be generalized by using a bounded set T instead of the strength r. The definition of the generalized mixed level orthogonal arrays is 
provided as follows. 
 
Definition 5: Orthogonal Arrays for T 
 
An orthogonal array for T is an � ×  � matrix whose �-th column contains �� different factor-
levels in such a way that, for any S, S′ ∈ T, and for any � columns which are �
-th column, …, �l-th column, where �
, … , �l are defined by d�S + Sn� = '�
, … , �l}, every �-tuple of levels 
appears equally often in the matrix. 
 
If T = 'S|q[�S� ≤ r, S ∈ '0,1}�}, an orthogonal array for T is identical to a mixed level 
orthogonal array of strength 2r. In other words, Definition 4 is a special case of Definition 5. 
 
Moreover, by Definition 3 and Definition 5, it is clear that the set of rows of an orthogonal array 

for T is an orthogonal design gh for T. Hence the following Corollary is obtained from Theorem 
1 immediately. 
 
Corollary 1: 

  
Suppose a set T is monotonic and ���� is expressed as 

 ���� = + �(( ∈ IJ

(���,                                                                    �24� 

 
where MN = ' �b
a
, b"a", … , bRaR�|S ∈ T, bU ∈  ������}. Then, the Fourier coefficients can be 
computed by �( = 1|gh| + ����� ∈uv 
(∗ ���,                                                         �25� 
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where gh is the set of rows of an orthogonal array for T defined in Definition 5 and |gh| = �. 
 
This corollary shows the relationship between the proposed sampling theorem and orthogonal 
arrays. 
 

6. CONCLUSIONS 

 
In this paper, I have generalized the sampling theorem for bandlimited functions over ������  

domains to one over ∏�	
� ������ domains. The generalized theorem is applicable to the 
experimental design model in which each factor has a different number of levels and enables us 
to estimate the parameters in the model by using Fourier transforms. I have also provided the 
relationship between the proposed sampling theorem and orthogonal arrays. 
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