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ABSTRACT 

 
Self-propagating malware (e.g., an Internet worm) exploits security loopholes in software to 

infect servers and then use them to scan the Internet for more vulnerable servers. While the 

mechanisms of worm infection and their propagation models are well understood, defense 

against worms remains an open problem. One branch of defense research investigates the 

behavioral difference between worm-infected hosts and normal hosts to set them apart. One 

particular observation is that a worm-infected host, which scans the Internet with randomly 

selected addresses, has a much higher connection-failure rate than a normal host. Rate-limit 

algorithms have been proposed to control the spread of worms by traffic shaping based on 

connection failure rate. However, these rate-limit algorithms can work properly only if it is 

possible to measure failure rates of individual hosts efficiently and accurately. This paper points 

out a serious problem in the prior method and proposes a new solution based on a highly 

efficient double-bitmap data structure, which places only a small memory footprint on the 

routers, while providing good measurement of connection failure rates whose accuracy can be 

tuned by system parameters. 
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1. INTRODUCTION  
 

Self-propagating malware (e.g., an Internet worm) exploits security loopholes in server software. 

It infects vulnerable servers and then uses them to scan the Internet for more vulnerable servers [1 

- 3]. In the past two decades, we have witnessed a continuous stream of new worms raging across 

the Internet [4 - 7], sometimes infecting tens of thousands or even millions of computers and 

causing widespread service disruption or network congestion. The mechanisms of worm 

propagation have been well understood [8 - 11], and various propagation models were developed 

[12 - 15] to demonstrate analytically the properties of how worms spread among hosts across 
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networks. Significant efforts have also been made to mitigate worms, with varying degrees of 

success and limitations. Worms remain a serious threat to the Internet. 

Patching defects in software is the most common defense measure, not only to worms but also to 

other types of malware. However, it is a race for who (good guys or bad guys) will find the 

security defects first. Software is vulnerable and its hosts are subject to infection before the 

security problems are identified and patched. Moreover, not all users will patch their systems 

timely, leaving a window of vulnerability to the adversary that will try to exploit every 

opportunity. Moore et al. investigated worm containment technologies such as address 

blacklisting and content filtering, and such systems must interdict nearly all Internet paths in 

order to be successful [13]. Williamson proposed to modify the network stack to bound the rate 

of connection requests made to distinct destinations [16]. To be effective, it requires a majority of 

all Internet hosts are upgraded to the new network stack, which is difficult to realize. Similar 

Internet-wide upgrades are assumed by other host-based solutions in the literature, each 

employing intrusion detection and automatic control techniques whose supporting models must 

be calibrated for the specific machine that they will reside upon [17 - 20]. 

Avoiding the requirement of coordinated effort across the whole Internet, the distributed anti-

worm architecture (DAW) [21] was designed for deployment on the edge routers of an Internet 

service provider (ISP) under a single administrative control. DAW observes a behavioral 

difference between worm-infected hosts and normal hosts: as an infected host scans random 

addresses for vulnerable hosts, it makes connection attempts but most will fail, whereas normal 

users's connection attempts to their familiar servers are mostly successful. By observing the failed 

connections made by the hosts, the edge routers are able to separate out hosts with large failure 

rates and contain the propagation of the worms. With a basic rate-limit algorithm, a temporal 

rate-limit algorithm and a spatial rate-limit algorithm, DAW offers the flexibility of tightly 

restricting the worm's scanning activity, while allowing the normal hosts to make successful 

connections at any rate. 

However, for rate limit to work properly, we must be able to measure the connection failure rates 

of individual hosts accurately and efficiently. This paper points out that using Internet Control 

Message Protocol (ICMP) messages for this purpose [21] is flawed as they are widely blocked on 

today's Internet, and the total number of message packets in this big data [22] [23] [30] [31] and 

cloud computing [36 - 39] era is enormous. This paper designs a new measurement method that 

solves the problem with a highly efficient data structure based on bitmaps, which keeps record of 

connection attempts and results (success or fail) in bits, from which we can recover the 

connection failure rates, while removing the duplicate connection failures (which may cause bias 

against normal hosts). Our double-bitmap solution is highly efficient for online per-packet 

operations, and the simulation results show that not only does the data structure place a small 

memory footprint on the routers, but also it provides good measurement of connection failure 

rates whose accuracy can be tuned by system parameters. 

The rest of the paper is organized as follows: Section 2 gives the propagation model of random-

scanning worms and reviews the rate-limit algorithms based on connection failure rates. Section 

3 explains the problem causing inaccurate failure rate measurement and provides a novel solution 

with double bitmaps. Section 4 presents simulation results. Section 5 draws the conclusion. 
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2. BACKGROUND 
 

2.1 Propagation of Random-scanning Worms 

 
This paper considers a type of common worms that replicates through random scanning of the 

Internet for vulnerable hosts. Their propagation can be roughly characterized by the classical 

simple epidemic model [26 - 28]: 

 
( )

( )(1 ( )),
( )

di t
i t i t

d t
β= −   (1) 

where ( )i t  is the percentage of vulnerable hosts that are infected with respect to time t , and β  is 

the rate at which a worm-infected host detects other vulnerable hosts. More specifically, it has 

been derived [27] that the derivative formula of worm propagation is 
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r i t i t
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= −   (2) 

where r  is the rate at which an infected host scans the address space, N  is the size of the 

address space, and V  is the total number of vulnerable hosts. 

Solving the equation, the percentage of vulnerable hosts that are infected over time is 
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Let v  be the number of initially infected hosts at time 0. Because (0) /i v V= , ln
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. 

Solving this logistic growth equation for t , we know the time it takes for a percentage 

( / )v Vα ≥  of all vulnerable hosts to be infected is 

 ( ) (ln ln( )).
1

N v
t

r V V v

α
α

α
= −

⋅ − −
  (3) 

It is clear that ( )t α  is inversely proportional to the scanning rate r , which is the number of 

random addresses that an infected host attempts to contact (for finding and then infecting 

vulnerable hosts) in a certain measurement period. If we can limit the rate of worm scanning, we 

can slow down their propagation, buying time for system administrators across the Internet to 

take actions. 

2.2. Behavior-based Rate-Limit Algorithms 

In order to perform rate-limit, we need to identify hosts that are likely to be worm-infected. One 

way to do so is observing different behaviors exhibited from infected hosts and normal hosts. 

One important behavioral observation was made by [21], which argues that infected hosts have 
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much larger failure rates in their initiated Transfer Contorl Protocol (TCP) connections than 

normal hosts. We can then apply rate limits to hosts with connection failure rates beyond a 

threshold and thus restrict the speed at which worms are spread to other vulnerable hosts. (Same 

as our work, the paper [21] studies worms that spread via TCP, which accounts for the majority 

of Internet traffic.) Below we briefly describe the host behavior difference in connection failure 

rate, which is defined as the number of failed TCP connection attempts made by a source host 

during a certain measurement period, where each attempt corresponds to a SYN packet and each 

SYN-ACK signals a successful attempt, while the absence of a SYN-ACK means a failure. 

• Suppose a worm is designed to attack a software vulnerability in a certain version of web 

servers from a certain vendor. Consider an arbitrary infected host. Let N  be the total 

number of possible IP addresses and N ′  be the number of addresses held by web servers, 

which listen to port 80. N N′ =  because web servers only account for a small fraction 

of the accessible Internet. As the infected host picks a random IP address and sends a 

SYN packet to initiate a TCP connection to port 80 of that address, the connection only 

has a chance of /N N′  to be successful. It has a chance of 1 / 1N N− ′ ≈  to fail. The 

experiment in [21] shows that only 0.4% of all connections made to random addresses at 

TCP port 80 are successful. Together with a high scanning rate, the connection failure 

rate of an infect host will be high. Moreover, the measured connection failure rate is an 

approximation of the host's scanning rate. 

• The connection failure rate of a normal host is generally low because a typical user 

accesses pre-configured servers (such as mail server and DNS server) that are known to 

be up for most of the time. An exception is web browsing, where the domain names of 

web servers are used, which again lead to successful connections for most of the time 

according to our experiences. Cases when the domain names are mistyped, it result in 

DNS lookup failure and no connection attempts will be made --- consequently no 

connection failure will occur. 

By measuring the connection failure rates of individual hosts, the paper [21] proposes to limit the 

rate at which connection attempts are made by any host whose failure rate exceeds a certain 

threshold. By limiting the rate of connection attempts, it reduces the host's connection failure rate 

back under the threshold. An array of rate-limit algorithms were proposed. The basic algorithm 

rate-limits individual hosts with excessive failure rates. The temporal rate-limit algorithm can 

tolerate temporary high failure rates of normal hosts but make sure the long-term average failure 

rates are kept low. The spatial rate-limit algorithm can tolerate some hosts' high failure rates but 

make sure that the average failure rates in a network are kept low. 

An important component that complements the rate-limit algorithms is the measurement of 

connection failure rates of individual hosts. This component is however not adequately addressed 

by [21]. As we will point out in the next section, its simple method does not provide accurate 

measurement on today's Internet. We will provide a new method that can efficiently solve this 

important problem with a novel data structure of double bitmaps. 
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3. A DOUBLE-BITMAP SOLUTION FOR LIMITING WORM 

PROPAGATION 

 
In this section, we explain the problem that causes inaccurate measurement of connection failure 

rates and provide a new measurement solution that can work with existing rate-limit algorithms 

to limit worm propagation. 

 

3.1. Failure Replies and the Problem of Blocked ICMP Messages 

We first review the method of measuring the connection failure rates in [21]. After a source host 

sends a SYN packet to a destination host, the connection request fails if the destination host does 

not exist or does not listen on the port that the SYN is sent to. In the former case, an ICMP host-

unreachable packet is returned to the source host; in the latter case, a TCP RESET packet is 

returned. The ICMP host-unreachable or TCP RESET packet is defined as a failure reply. The 

connection failure rate of a host s  is measured as the rate of failure replies that are sent to s . The 

rationale behind this method [21] is that the rate of failure replies sent back to the source host 

should be close to the rate of failed connections initiated by the host. The underlying assumption 

is that, for each failed connection, a failure reply (either an ICMP host-unreachable packet or a 

TCP RESET packet) is for sure to be sent back to the source host. 

 

However, this assumption may not be realistic. Today, many firewalls and domain gateways are 

configured to suppress failure replies. In particular, many organizations block outbound ICMP 

host-unreachable packets because attacks routinely use ICMP as a reconnaissance tool. When the 

ICMP host-unreachable packets are blocked, the rate of failure replies sent back to a source host 

will be essentially much lower than the rate of failed connections that the host has initiated. In 

other words, a potential worm-affected host may initiate many failed connections, but only a 

handful of failure replies will be sent back to it. Under these circumstances, the connection failure 

rate measured by failure replies will be far lower than the actual failure rate, which in turn 

misleads the rate-limit algorithms and makes them less effective. 

 

To make the problem more complicated, when we measure the connection failure rates of 

individual hosts, all failed connections made from the same source host to the same destination 

host in each measurement period should be treated as duplicates and thus counted only once. We 

use an example to illustrate the reason: Suppose the mail server of a host is down and the email 

reader is configured to automatically attempt to connect to the server after each timeout period 

(e.g., one minute). In this case, a normal host will generate a lot of failed connections to the same 

destination, pushing its connection failure rate much higher than the usual value (when the server 

is not down) and falsely triggering the rate-limit algorithms to restrict the host's access to the 

Internet. Therefore, when we measure the connection failure rate of a source host, we want to 

remove the duplicates to the same destination and measure the rate of failed connections to 

distinct destinations. 

 

3.2 SYN/SYN-ACK Solution and Problems of Duplicate Failures and Memory  

Consumption 

We cannot use failure replies to measure the connection failure rates. Another simple solution is 

to use SYN and SYN-ACK packets. Each TCP connection begins with a SYN packet from the 

source host. If a SYN-ACK packet is received, we count the connection as a successful one; 

otherwise, we count it as a failed connection. (Technically speaking, a third packet of ACK from 
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the source to the destination completes the establishing of the connection. For our anti-worm 

purpose, however, the returned SYN-ACK already shows that the destination host is reachable 

and listens to the port, which thus does not signal worm behavior --- random scanning likely hits 

unreachable hosts or hosts not listening to the port.) 

Using SYN and SYN-ACK packets, a naive solution is for each edge router to maintain two 

counters, sk  and rk , for each encountered source address, where sk  is the rate of SYN packets 

sent by the source (i.e., the number of SYN packets sent during a measurement period), and rk  is 

the rate of SYN-ACK packets received by the source (i.e., the number of SYN-ACKs received 

during a measurement period). The connection failure rate k  is simply s rk k− . 

This simple solution is memory efficient, as it only requires 64 bits per source host for failure rate 

measurement, assuming each counter takes 32 bits. However, this solution cannot address the 

problem of duplicate failures. As discussed in Section 3.1, when we measure the connection 

failure rate of a source host, we want to remove the duplicates to the same destination in the same 

measurement period, because measuring duplicate failures may cause bias against normal hosts. 

Maintaining two counters alone cannot achieve the goal of removing duplicate failures. 

An alternative solution is to have the edge router store a list of distinct destination addresses for 

each source host. However, such per-source information consumes a large amount of memory. 

Suppose each address costs 32 bits. The memory required to store each source host's address list 

will grow linearly with the rate of distinct destination hosts that the source host initiates 

connection requests to. For example, the main gateway at our campus observes an average of 

more than 10 million distinct source-destination pairs per day. If the edge router keeps per-source 

address list, it will cost more than 320 megabits of memory, which soon exhausts the small on-

die SRAM memory space of the edge router. Therefore, this solution is not feasible either. 

The major goal of this paper is to accurately measure the connection failure rates with a small 

memory. However, tradeoffs must be made between measurement accuracy and memory 

consumption under the requirement of duplicate failure removal. Existing research uncovered the 

advantages of using Bloom filters [28] [29] or bitmaps [24] [25] [32 - 35] [40] to compress the 

connection information in limited memory space and automatically filter duplicates, which can be 

adopted to measure the connection failure rates. For example, the edge router can maintain two 

bitmaps for each source host, and map each SYN/SYN-ACK packet of the host into a bit in the 

host's corresponding bitmap, from which the rate of SYN/SYN-ACK packets of each host can be 

recovered. However, the measurement accuracy depends on setting the bitmap size for each 

source host properly in advance. In practice, it is difficult to pre-determine the values as different 

source hosts may initiate connection requests at unpredictable and different rates, which limits 

the practicability of this solution as well. 

3.3. Double Bitmaps 

In order to address the problems of duplicate failures and memory consumption, instead of using 

per-source address lists or bitmaps, we incorporate two shared bitmaps to store the SYN/SYN-

ACK information of all source hosts. Our double-bitmap solution includes two phases: in the first 

phase, the edge router keeps recoding the SYN/SYN-ACK packets of all source hosts through 

setting bits in the bitmaps; in the second phase, the network management center will recover the 

connection failure rates from the two bitmaps based on maximum likelihood estimation (MLE), 
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and notify the edge router to apply rate limit algorithms to limit the connection attempts made by 

any host whose failure rate exceeds some threshold. Below we will explain the two phases, and 

then mathematically derive an estimator to calculate the connection failure rate. 

3.3.1. Phase I: SYN / SYN-ACK Encoding 

In our solution, each edge router maintains two bitmaps 
s

B  and 
r

B , which encode the distinct 

SYN packets and SYN-ACK packets of all source hosts within its network, respectively. Let 
s

m  

and 
r

m  be the number of bits in 
s

B  and 
r

B  correspondingly. Below we will explain how an 

edge router encodes the distinct SYN packet information into 
s

B , which can later be used to 

estimate the SYN sending rate 
s

k  for each source host. The way for the edge router to encode the 

distinct SYN-ACK packet information into 
r

B  is quite similar, which we omit. 

For each source host src , the edge router randomly selects 
s

l  (
s

m= ) bits from the bitmap 
s

B  

to form a logical bitmap src , which is denoted as ( )LB src . The indices of the selected bits are 

( [0])H src R⊕ , ( [1])H src R⊕ , L , ( [ 1])
s

H src R l⊕ − , where ⊕  is bitwise XOR, ( )H L  is 

a hash function whose range is [0, )
s

m , and R  is an integer array storing randomly chosen 

constants to arbitrarily alter the hash result. Similarly, the logical bitmap can be constructed from 

s
B  for any other hosts. Essentially, we embed the bitmaps of all possible hosts in 

s
B . The bit-

sharing relationship is dynamically determined on the fly as each new host src′ will be allocated 

a logical bitmap ( )LB src′  from 
s

B  to store its SYN packet information. 

Given above notations and data structures, the online coding works as follows. At the beginning 

of each measurement period, all bits in 
s

B  are reset to zeros. Suppose a SYN packet signatured 

with a ,src dst  host address pair is routed by the edge router. The router will randomly select a 

bit from the logical bitmap ( )LB src  based on src  and dst , and set this bit in 
s

B  to be one. The 

index of the bit to be set for this SYN packet is given as follows: 

( [ ( ) mod ]).
s

H src R H dst K l⊕ ⊕   

The second hash, ( )H dst K⊕ , ensures that the bit is pseudo-randomly selected from ( )LB src , 

and the private key K  is introduced to prevent the hash collision attacks. Therefore, the overall 

effect to store the SYN packet information is : 

[ ( [ ( ) mod ])] 1.
s

B H src R H dst K l⊕ ⊕ =  

Similarly, the edge router only needs to set a bit in the bitmap 
r

B  to be one for each SYN-ACK 

packet using the same mechanism. Note that in our solution, to store a SYN/SYN-ACK packet, 

the router only performs two hash operations and sets a single bit in its bitmap, which is quite 

efficient. In addition, duplicates of SYN and SYN-ACK information with same ,src dst  
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signature will mark the same bit in the shared bitmaps such that the duplicate information is 

filtered as desired. 

3.3.2. Phase II: Failure Rate Measurement 

At the end of each measurement period, the edge router will send the two bitmaps 
s

B  and 
r

B  to 

the network management center (NMC), which will estimate connection failure rate k  for each 

source host src  based on 
s

B  and 
r

B , and notify the edge router to apply rate limit algorithms to 

limit the connection attempts made by any host whose failure rate exceeds some threshold. Since 

rate-limit algorithms have been fully studied in [21], we will focus on the measurement of 

connection failure rates based on the bitmaps. The measurement process is described in the 

following. 

First, the NMC extracts the logical bitmaps ( )LB src  and ( )LB src′  of each source host src  

from the two bitmaps 
s

B  and 
r

B , respectively. Second, the NMC counts the number of zeros in 

( )LB src , ( )LB src′ , 
s

B  and 
r

B , which are denoted by 
l

sU , 
l

rU , 
m

sU , and 
m

rU , respectively. 

Then the NMC divides them by the corresponding bitmap size 
s

l , 
r

l , 
s

m , and 
r

m , and calculates 

the fraction of bits whose values are zeros in ( )LB src , ( )LB src′ , 
s

B  and 
r

B  correspondingly. 

That is, /l l

s s sV U l= , /l l

r r rV U l= , /m m

s s sV U m= , and /m m

r r rV U m= . Finally, the NMC uses 

the following formula to estimate connection failure rate k  for source host src : 

 
ln ln ln lnˆ

1 1 1 1
ln(1 ) ln(1 ) ln(1 ) ln(1 )

l m l m

s s r r

s s r r

V V V V
k

l m l m

− −
= −

− − − − − −

  (4) 

3.3.3. Derivation of the MLE estimator 

Now we follow the standard MLE method to get the MLE estimators ˆ
sk  and ˆ

rk  of 
s

k  and 
r

k , 

respectively, and then derive k̂  given by (4). Since the way to derive the MLE estimator for 
s

k  

and 
r

k  is quite similar, we will only derive the MLE estimator formula for ˆ
sk , and directly give 

the result for ˆ
rk . To derive ˆ

sk , we first analyze the probability ( )
s

q k  for an arbitrary bit in 

( )LB src  to be '0', and use ( )
s

q k  to establish the likelihood function L  to observer 
l

sU  '0' bits 

in ( )LB src . Finally, maximizing L  with respect to 
s

k  will lead to the MLE estimator, ˆ
sk . 

Note that 
s

k  is the actual rate of distinct SYN packets sent by a source host src , and 
s

n  is the 

rate of distinct SYN packets sent by all hosts within the router's network. Consider an arbitrary 

bit b  in ( )LB src . A SYN packet sent by src  has a probability of 1/
s

l  to set b  to '1', and a 

SYN packet sent by any other host has a probability of 1/
s

m  to set b  to '1'. Hence, the 

probability ( )
s

q k  for bit b  to remain '0' at the end of the measurement period is 
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1 1

( ) 1 1 .

s s sn k k

s

s s

q k
m l

−
   

= − −   
   

  (5) 

Because the bits in any logical bit array are randomly selected from the bitmap 
s

B , each of the 

s
n  SYN packets has about the same probability of 1/

s
m  to choose any bit in 

s
B . So for an 

arbitrary bit in 
s

B , the probability for it to be '0' after storing all 
s

n  distinct SYN packets is 

 
1

( ) 1 .

sn

s

s

q n
m

 
= − 
 

  (6) 

In this sense, the number of zero bits in 
s

B  follows a binomial distribution ( , ( ))m

s s sU B m q n:  

( , (1 1/ ) )sn

s sB m m= − . Therefore, the expected value for 
m

sV  is 

 

1
(1 )

( ) ( ).

sn

sm
m s s

s s

s s

m
U m

E V E q n
m m

−
 

= = = 
 

  (7) 

Substituting (7) to (5), and replacing ( )m

sE V  by its instance value 
m

sV , we have the following 

instance value for ( )
s

q k : 

 
1 1/

( ) .
1 1/

sk

m s
s s

s

l
q k V

m

 −
= ×  

− 
  (8) 

Given the probability for each bit in ( )LB src  to be '0' as ( )
s

q k , we can establish the likelihood 

function to observe 
l

sU  '0' bits in ( )LB src  as follows: 

 ( ) (1 ( )) .
l l
s s sU l U

s s
L q k q k

−= −   (9) 

The MLE estimator of 
s

k  is the value of 
s

k  that maximizes the above likelihood function. 

Namely, 

{ }ˆ arg max .
s

s
k

k L=   (10) 

To find ˆ
sk , we take logarithm on both sides, and then perform the first order derivative to obtain 

 
ln( )

( ),
( ) 1 ( )

l l

s s s

s

s s s

U l UL
k

k q k q k
q

 −∂
′= − × 

∂ − 
  (11) 

where ( )
s

q k′  is computed as 



108 Computer Science & Information Technology (CS & IT) 

 

 
1 1/

( ) ( ) ln .
1 1/

s

s s

s

l
k q kq

m

 −
′ = ×  

− 
  (12) 

Since 1
s s

m l> ≥  and 0
s

n > ,  ( )
s

q k  and ( )
s

q k′  cannot be 0. Setting the right side of (11) be 

zero, we have 

 ( ) .
l

ls

s s

s

U
q k V

l
= =   (13) 

Substituting above equation to (8) and solving for 
s

k , we get the MLE estimator of 
s

k : 

 
ln lnˆ .

1 1
ln(1 ) ln(1 )

l m

s s

s

s s

V V
k

l m

−
=

− − −

  (14) 

Similarly, we can derive the MLE estimator of 
r

k : 

 
ln lnˆ .

1 1
ln(1 ) ln(1 )

l m

r r
r

r r

V V
k

l m

−
=

− − −

  (15) 

Since 
s r

k k k= − , given the MLE estimators ˆ
s

k  and ˆ
r

k  of 
s

k  and 
r

k , we can easily derive the 

estimator of k  as 

 ˆ ˆ ˆ .
s r

k k k= −   (16)   

Substituting (14) and (15) to the above equation, we derive the estimator k̂  as described in (4). 

Note that if the two bitmaps 
s

B  and 
r

B  have the same size, and the two logical bitmaps for each 

source host also have the same size, i.e., 
s r

m m m= =  and 
s r

l l l= = , then the estimator for the 

connection failure rate k  will be in a more compact form: 

ln ln ln lnˆ .
1 1

ln(1 ) ln(1 )

l m l m

s s r r
V V V V

k

l m

− − +
=

− − −

                                        (17) 

4. SIMULATION 

We evaluate the measurement accuracy of our estimator for the connection failure rate through 

simulations. Recall that the major goal of this paper is to provide a good estimator for measuring 

the connection failure rates of individual hosts that can work well in a small memory. Hence, in 
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our simulations, we purposely allocate memory with small sizes to encode the information of 

distinct SYN and SYN-ACK packets for all source hosts, such that the average memory size for 

each source host will be ranging from 10 bits to 40 bits only. As we explained in Section 3.2, the 

solution with per-source address lists or bitmaps will not work with this small memory size. 

Therefore, our solution outperforms in the aspect of greatly reducing the required online memory 

footprint for connection failure rate measurement while achieving duplicate failure removal. 

 

4.1. Simulation Setup 

Our simulations are conducted under the following setups. We simulate 50,000 distinct source 

hosts as normal hosts, and 100 distinct source hosts as worm-affected hosts. For the normal hosts, 

they will send distinct SYN packets to different destination hosts, with a rate following an 

exponential distribution whose mean is 5 distinct SYN packets per minute. For each distinct SYN 

packet that a normal host sends out, a corresponding SYN-ACK packet will be sent back to the 

host with a probability, which follows a uniform distribution in the range of [0.8, 1.0]. As for the 

worm-affected hosts, we simulate their aggressive scanning behavior by having them send 

distinct SYN packets to different destination hosts with a higher rate, which follows another 

exponential distribution whose mean is 10 distinct SYN packets per second. Since the worm-

affected hosts will randomly scan the whole destination space, their failure rate is expected to be 

very high as we explained earlier. Therefore, in our simulations, no SYN-ACK packets will be 

sent back to them. Suppose each measurement period is 1 minute. Then each normal host will 

send 5 distinct SYN packets and receive 4.5 distinct SYN-ACK packets on average, and each 

worm-affected host will send 600 distinct SYN packets and 0 SYN-ACK packet on average, 

during each measurement period. 

In our simulations, all the SYN and SYN-ACK packets are processed by a single simulated edge 

router and a simulated network management center according to our two-phase measurement 

scheme. First of all, the SYN and SYN-ACK packets are encoded into two m-bit bitmaps 
s

B  and 

r
B  of the edge router, respectively, as described in Section 3.3.1 (Phase I: SYN/SYN-ACK 

Encoding). After all packets are encoded into the two bitmaps 
s

B  and 
r

B , the edge router will 

send 
s

B  and 
r

B  to the network management center, which will estimate the connection failure 

rate of each source host based on 
s

B  and 
r

B  offline, as described in Section 3.3.2 (Phase II: 

Failure Rate Measurement).  

4.2. Simulation Results 

We conduct three sets of simulations with three different sizes of memory allocated for the 

bitmaps 
s

B  and 
r

B , 
s r

m m m= = = 0.5Mb, 1Mb, and 2Mb, to observe the measurement 

accuracy under different memory constraints. The sizes of the logical bitmaps for each host is set 

to be 300
s r

l l l= = = . Figure. 1-3 present the simulation results when the allocated memory m 

equals 2Mb, 1Mb, and 0.5Mb, respectively. Since there are a total of 50,100 source hosts, the 

average memory consumption per source host will be about 40 bits, 20 bits, and 10 bits, 

accordingly. In each figure, each point represents a source host, with its x-coordinate showing the 

actual connection failure rate k  (per minute) and y-coordinate showing the estimated connection 

failure rate k̂  (per minute) measured by our scheme. The equality line y = x is also drawn for 

reference. Clearly, the closer a point is to the quality line, the better the measurement result. 
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Figure 1. Measurement accuracy of                                         Figure 2. Measurement accuracy of 

connection failure rate per minute.                                           connection failure rate per minute. 

m = 2Mb, l = 300.                                                                     m = 1Mb, l = 300. 

 

 

Figure 3. Measurement accuracy of connection failure rate per minute. m = 0.5Mb, l = 300. 

 
From the three figures, one can observe that the measurement result for the connection failure 

rates of our scheme is quite accurate under all three different memory constraints. For almost 

every source host, the measured failure rate closely follows its real failure rate as shown in the 

figures. There is a tendency for the measurement result to be slightly more accurate with a larger 

memory size (compare Figure. 1 and Figure. 3). However, for our scheme, a small memory of 

size m = 0.5Mb (equivalent to 10 bits per source host on average) is adequate enough to generate 

sound measurement results as shown in Figure. 3. Recall that for the solution storing per-source 

address list, the destination address of every SYN packet must be stored for every source host. So 

for that solution, a normal source host initiating 5 connection requests (5 distinct SYN packets) 

per minute will require at least 32 × 5 = 160  bits to record its SYN packets, and a worm-affected 

host sending 10 SYN packets per second will require at least 32 × 600 = 19200 bits, for each 

measurement period of one minute. Clearly, through utilizing double bitmaps, our scheme 
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outperforms the solution storing address lists, because it can work well with a much more strict 

memory constraint.  

 

5. CONCLUSION 

 
This paper proposes a new method of measuring connection failure rates of individual hosts, 

using a novel data structure based on double bitmaps. It addresses an important problem in rate-

limiting worm propagation, where inaccurate failure rates will affect the performance of rate-

limit algorithms. The past method relies on ICMP host-unreachable messages, which are however 

widely blocked on today's Internet. The new method makes the measurement based on SYN and 

SYN-ACK packets, which is more reliable and accurate. Its bitmap design helps significantly to 

reduce the memory footprint on the routers and eliminates the duplicate connection failures 

(another problem of the previous method). 
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