
Dhinaharan Nagamalai et al. (Eds) : ACITY, WiMoN, CSIA, AIAA, DPPR, NECO, InWeS - 2014 
pp. 273–290, 2014. © CS & IT-CSCP 2014                                                       DOI : 10.5121/csit.2014.4528 

 

FUZZY LOGIC MULTI-AGENT SYSTEM 

 
Atef GHARBI1 and Samir BEN AHMED2 

 

1Department of Computer Engineering, INSAT, Tunis, Tunisia 
atef.elgharbi@gmail.com 

2 Department of Computer Engineering, FST, Tunis, Tunisia 
samir.benahmed@fst.rnu.tn 

 

ABSTRACT 

 
The paper deals with distributed planning in a Multi-Agent System (MAS) constituted by several 

intelligent agents each one has to interact with the other autonomous agents. The problem faced 

is how to ensure a distributed planning through the cooperation in our multi-agent system. 

 
To do so, we propose the use of fuzzy logic to represent the response of the agent in case of 

interaction with the other.  Finally, we use JADE platform to create agents and ensure the 

communication between them. 

 

A Benchmark Production System is used as a running example to explain our contribution. 

 

KEYWORDS 
 
Multi-Agent System, Distributed Planning, Fuzzy Logic, JADE   

 
 

1. INTRODUCTION 
 
While  Multi-Agent System (MAS) is a concept mainly used in research [23], by adapting it we 
must face various problems, some of which are serious enough  to place the utility of MAS in the 
doubt. Since we wish to use the MAS in  large scales, concurrent systems, and since we wish to 
address not very frequent, but demanding problems [24], MAS can become arbitrarily complex if 
MAS can not  provide guarantees  which help to order the system and ensure the progression of 
the total application. 
 
We can not pretend the unicity nor the exactitude of an agent definition, however the most 
adapted one presented by [1]  where an agent is defined as a physical or virtual entity (i) which is 
capable of acting in an environment; (ii) which can communicate directly with other agents; (iii) 
which is driven by a set of tendencies (in the form of individual objectives or of a 
satisfaction/survival function which it tries to optimize); (iv) which possesses resources of its 
own; (v) which is capable of perceiving its environment (but to a limited extent); (vi) which has 
only a partial representation of its environment (and perhaps none at all); (vii) which possesses 
skills and can offer services; (iix) which may be able to reproduce itself; (ix) whose behaviour 
tends towards satisfying its objectives, taking account of the resources and skills available to it 
and depending on its perception, its representation and the communications it receives. 
 
In MAS, distributed planning is considered as a very complex task [3], [18]. In fact, distributed 
planning ensures how the agents should plan to work together,  to decompose the problems into 



274 Computer Science & Information Technology (CS & IT) 

subproblems, to assign these subproblems,  to exchange the solutions of subproblem, and to 
synthesize the whole  solution  which itself is a problem that the agents must solve  [19, 20, 4].  
The actions of the other agents can induce a combinatorial explosion in the number of 
possibilities which the planner will have to consider, returning the space of research and the size 
of solution exponentially larger. 
 
There are several techniques to reduce data-processing complexity  of  planning interactions with 
other agents including [22]:  (i) dividing states in the classes of equivalence, (ii)  reducing   search 
space into states which are really required. (iii) planning on line, i.e., eliminating the possibilities 
which do not emerge during the execution of plan. 
 
Our contribution in this research work is the use of another solution what is Fuzzy Logic Control. 
The Fuzzy Logic Control is a methodology considered as  a bridge  on the artificial intelligence 
and the traditional control theory [17].  This methodology is usually applied in the only cases 
when exactitude  is not of the need or high importance [16]. Fuzzy Logic is a methodology  for 
expressing operational laws of a system in linguistic  terms instead of mathematical equations. 
Wide spread of the fuzzy control and high effectiveness of its applications in a great extend is 
determined by formalization  opportunities of necessary behavior of a controller as a ”fuzzy” 
(flexible) representation [14]. This representation usually is formulated in the form of logical 
(fuzzy) rules under linguistic variables of a type ”If A then B” [12]. The Fuzzy Logic 
methodology  comprises three phases: Fuzzyfication, Rule engine, Defuzzyfication [13]. 
 
This article is concerned with two important matters: how to define the MAS in a manner such 
that it has more utility to deploy it, and how  to use such a MAS for the advanced software. The 
MAS must discover the action to be taken by supervising the application and its environment and 
analyzing the data  obtained.   
 
With MAS, we face two important matters: (i) the detection of a need for action.  the need for 
action must be discovered by supervising the application and its environment and analyzing data  
obtained. (ii) the planning of the action.  It consists to envisage the action (by proposing which 
modifications need to be made) and by programming it.  In  practice, the opposite dependency 
also requires  consideration:  Only those situations which can be repaired by an action taken 
which can really be planned should be considered during the analysis. 
 
This paper introduces a simple Benchmark Production System that will be used  throughout this 
article to illustrate our contribution which is developped as agent-based application. We 
implement the Benchmark Production System in a free platform which is JADE (JavaTM Agent 
DEvelopment) Framework.  JADE is a platform to develop multi-agent systems in compliance 
with the FIPA specifications [5, 6, 2]. 
 
In the next section, we present the  Benchmark Production System. The third section introduces 
the Fuzzy Multi-Agent System. We present in section 4 the creation of JADE agents. 
 

2. BENCHMARK PRODUCTION SYSTEM 

 
As much as possible, we will illustrate our contribution with a simple current example called 
RARM  [11]. We begin with the description of it  informally, but it will serve as an example for 
various  formalism presented in  this article. The benchmark production system  RARM 
represented in the figure 1 is composed of two input and  one output conveyors, a servicing robot  
and a processing-assembling center. Workpieces to be treated come irregularly  one by one. The 
workpieces of  type A  are delivered via  conveyor C1 and workpieces of the type B via the  
conveyor C2. Only one workpiece can   be on the input conveyor. A robot R transfers workpieces 



Computer Science & Information Technology (CS & IT)                                 275 

 

one after another to the processing center. The next workpiece can be put on the input conveyor  
when it has been emptied by the robot. The technology of production requires that first one  A-
workpiece is inserted into the center M and treated,  then a B-workpiece is added in the center,  
and  last the two workpieces are assembled. Afterwards, the assembled  product is taken by the 
robot and put above the C3 conveyer of output.  the assembled product can be transferred on C3 
only when the output conveyor  is empty and ready to receive the next one produced. 

A

Conveyor C1

AB
C
on
ve
yo
r C
3

B

Conveyor C2

Position p1

Position p2

Position p3 Position p4

Po
si
tio
n 
p5

P
os
iti
on
 p
6

Robot r

Processing unit 

M  

Figure 1. The benchmark production system RARM 
 

Traditionally, the RARM systems are directly controlled by a central server. The server proposes 
the schedule for the system as a whole and dispatches commands to the robots. This results is 
reliable and predicable solutions. The central point of control also allows an easier diagnosis of 
the errors. However, a variation in user's needs leads to change the centralized architecture. 
Customers ask more and more for self-management system, i.e., systems that can adapt their 
behavior with changing circumstances  in an autonomous way. Self-management with regard to 
the dynamics of system needs two specific quality requirements: flexibility and openess.  
 
Flexibility refers to the capacity of the system to treat dynamic operating conditions. The openess 
refers to the capacity of the system to  treat robots leaving and entering system.To treat these new  
quality requirements, a radically new architecture was conceived based on multi-agent systems 
(Figure 2).  
 
Applying a situated multi-agent  system opens perspective to improve the flexibility and the 
openess from the system: the robots can adapt to the current situation in their vicinity,  order 
assignment is dynamic, the system can therefore treat in an autonomous way  the robots leaving 
and reentring the system, etc.  
 
However,  a decentralized architecture can lead to a certain number of implications, in particular 
distributed planning can  have an impact on the total efficiency of the system. In fact, this critical 
topic must be considered during the design and development of multi-agent system. 
 



276 Computer Science & Information Technology (CS & IT) 

Parts bin Parts bin
Assembly 

area

ComputerComputer

Network connection  

Figure 2. The distributed Production system  
  

3. FUZZY MULTI-AGENT SYSTEM 
 
Multi-agent planning problems can sometimes be translated into non deterministic single-agent 
planning problems by modifying the plan-execution agent's actions to incorporate the effects of 
the other agents' possible responses to those actions. For example, suppose an agent RARM1 is 
going to reduce the production. 
 
The another agent RARM2 may either decrease the production (in which case the agents can 
cooperate together) or increase the production (in which case neither agent can cooperate).  As 
shown in Figure 3, this two possible actions can be modeled as nondeterministic outcomes. 
 

 

Figure 3. Nondeterministic planning problem 
 
The basic form of a fuzzy logic agent consists of:  Input fuzzification, Fuzzy rule base,  Inference 
engine and  Output defuzzification (Figure 4). 



Computer Science & Information Technology (CS & IT)                                 277 

 

 
Figure 4. The Agent structure  

 

3.1 Fuzzification 

 
In the classical logic set, its characteristic function assigns a value of either 1 or 0 to each 
individual in the universal set, there by discriminating between members and non-members of the 
crisp set under consideration. However, a fuzzy set is a set containing elements that have varied 
degrees of membership in the set. The fuzzification  can be defined as a conversion of a precise 
quantity to a fuzzy quantity. 
 
Running example 

 
The number of defected pieces is measured through a sensor related to the system. The range of 
number of defected pieces varies between 0 to 40, where zero indicates the rate of defected pieces 
of A  that is null (each piece is well) and 40 indicates the rate of defected pieces of A is very high.   
Now assume that the following domain meta-data values for these  variable, VF = very few, F = 
few, Md = medium, Mc = much,  VMc = very much. Assume that the linguistic terms describing 
the meta-data for the attributes of entities are: VF = [0,..,10], F = [5,..,15], Md = [10,..,20], Mc = 
[15,..,25] and VMc = [20,..,40].   
 
Based on the metadata value for each attribute the membership of that attribute to each data 
classification can be calculated. In the Figure 5 and 6, triangular and trapezoidal fuzzy set was 
used to represent the state of defected pieces from A classifications (i.e. state of defected pieces 
from A classification levels: VF , F,  Md, Mc, VMc whereas state of defected pieces from B 
classification levels:  F, Md, Mc). 
 
In the figure 7, state of production system classification levels: Null, Low, Medium and High. 
 



278 Computer Science & Information Technology (CS & IT) 

 

Figure 5. Fuzzy State of defected pieces from A 
 

 

Figure 6. Fuzzy State of defected pieces from B 
 

 

Figure 7. Fuzzy Production  system 
 
The membership value  based on its meta-data can be calculated for all these classification using  
the formulas: 
 
Formulas for calculation triangular fuzzy memberships 
 

(1) 

( )

( )

( )

( )

A 1

1
A 1 2

2 1

3
A 2 3

3 2

A 3

m x   0 if  x  a ,

m x      if  a   x  a ,

m x      if  a   x  a ,

m x   0 if  x  a

x a

a a

a x

a a

= <


− = ≤ ≤
 −


− = ≤ ≤
 −


= >

 



Computer Science & Information Technology (CS & IT)                                 279 

 

Formulas for calculation trapezoidal fuzzy memberships 
 

(2) 

( )

( )

( )

( )

( )

A 1

1
A 1 2

2 1

A 2 3

4
A 3 4

4 3

A 4

m x   0 if  x  a ,

m x      if  a   x  a ,

m x   1 if a   x  a ,

m x      if  a   x  a ,

m x   0 if  x  a

x a

a a

a x

a a

 = <


− = ≤ ≤
 −


= ≤ ≤


− = ≤ ≤
−


= >

 

 
Running example 

 
As an example, we consider the membership functions for the fuzzy variable defected pieces from 
A.  Figure 5 shows various shapes on the universe of defected pieces from A. Each curve is a 
membership function corresponding to various fuzzy variables, such as very few, few, medium, 
much and very much (Figure 8). 
 

 

Figure 8. Membership function representing imprecision in number of defected pieces from A 

 

3.2 Rule Engine 

 
In the inference method we use knowledge to perform deductive reasoning. That is, we wish to 
deduce or infer a conclusion, given a body of facts and knowledge. Now that the data can be 
classified and categorized into fuzzy sets (with membership value), a process for determining 
precise actions to be applied must be developed. This task involves writing a rule set that provides 
an action for any data classification that could possibly exist. The formation of the rule set is 
comparable to that of an expert system. Thus, behaviors is synthesized as fuzzy rule base i.e. a 
collection of fuzzy if-then rules. 
 
Each behavior is encoded with a distinct control policy goverened by fuzzy inference.  We write 
fuzzy rules as antecedent-consequent pairs of If-Then statements (Figure 9). 
 



280 Computer Science & Information Technology (CS & IT) 

 

Figure 9. Fuzzy Rules of Production  system 
 

Running example 

 
We take as example, the first column from the Table 1: 
 
IF  number of defected pieces from A is Very Few and number of defected pieces from B is Few 
Then Production is High.   
IF  number of defected pieces from A is  Few and number of defected pieces from B is Few Then 
Production is High. 
IF  number of defected pieces from A is Medium and number of defected pieces from B is Few 
Then Production is High. 
IF  number of defected pieces from A is Much and number of defected pieces from B is Few 
Then Production is Medium. 
IF  number of defected pieces from A is Very Much and number of defected pieces from B is Few 
Then Production is Medium. 
 

Table 1. Fuzzy Control rules for the Agent 
 

 

 
 
 
 
 



Computer Science & Information Technology (CS & IT)                                 281 

 

Table 2. Selection-based rules for the Agent 
 

 

Table 3. Final fuzzy values for the Agent 
 

 

FzSet  AddLeftShoulderSet(std::string name, 
                            double      minBound, 
                            double      peak, 
                            double      maxBound);   
 
FzSet  AddRightShoulderSet(std::string name, 
                             double      minBound, 
                             double      peak, 
                             double      maxBound);   
 
FzSet  AddTriangularSet(std::string name, 
                          double      minBound, 
                          double      peak, 
                          double      maxBound);   
 
 FzSet  AddSingletonSet(std::string name, 
                         double      minBound, 
                         double      peak, 
                         double      maxBound);   
  
 //fuzzify a value by calculating its DOM in each of this variable's subsets   
  void        Fuzzify(double val);   
   
//defuzzify the variable using the MaxAv method   
  double       DeFuzzifyMaxAv()const;   
   
//defuzzify the variable using the centroid method   
  double       DeFuzzifyCentroid(int NumSamples)const;   



282 Computer Science & Information Technology (CS & IT) 

Running example 

 
  /* Add the rule set */   
  fm.AddRule(FzAND(A_VF, B_F), High);   
 fm.AddRule(FzAND(A_VF, B_Md), High);   
 fm.AddRule(FzAND(A_VF, B_Mc), Medium);   
 fm.AddRule(FzAND(A_F, B_F), High);   
  fm.AddRule(FzAND(A_F, B_Md), Medium);   
 fm.AddRule(FzAND(A_F, B_Mc), Medium);   
 fm.AddRule(FzAND(A_Md, B_F), High);   
 fm.AddRule(FzAND(A_Md, B_Md), Medium);   
  fm.AddRule(FzAND(A_Md, B_Mc), Low);   
 fm.AddRule(FzAND(A_Mc, B_F), Medium);   
 fm.AddRule(FzAND(A_Mc, B_Md), Low);   
 fm.AddRule(FzAND(A_Mc, B_Mc), Null);   
  fm.AddRule(FzAND(A_VMc, B_VF), Medium);   
 fm.AddRule(FzAND(A_VMc, B_VF), Low);   
 fm.AddRule(FzAND(A_VMc, B_VF), Null);   
  

3.3 Defuzzification 

 
Fuzzy set is mapped to a real membered value in the interval 0 to 1. 
 
If an element of universe, say x,  is a member of fuzzy set A, then the mapping is given by $\mu 
A \in [0,1]  
 
The output of a fuzzy process needs to be a single scalar quantity as opposed to a fuzzy set. 
Defuzzification is the conversion of a fuzzy quantity to a precise quantity. There are many 
methods to calculate it such as Max membership, Centroid method, Weighted average method, 
Mean max membership, Center of sums, Center of largest area and First (or last) of maxima. 
Obviously, the best defuzzification method is context-dependant [13]. 
 

4. CREATING JADE AGENTS 
 
JADE is a Java tool and therefore creating a JADE-based multi-agent system requires creating 
Java classes. For more details, we refer to [7, 8, 9, 10]. 
 
Creating a JADE agent is very easy through  defining a class that extends the jade.core.Agent 
class and implementing the setup() method. Each class  introduced in the Figure 10 will be 
presented  in the following paragraphs. 



Computer Science & Information Technology (CS & IT)                                 283 

 

 

Figure 10. JADE agent 
 
Running example 

 
The  setup() method is invoked when agent starts running and  permits to initialize instance 
variables, register agent and attach one or more behaviors to the agent. 
 
import jade.core.Agent;   
public class Robot extends Agent {   

      protected void setup() {   
    System.out.println("Hello everybody! I am an agent");     

 }   
}   
 

4.1 Agent Identifier 

 
Each agent is identified by an “agent identifier” represented as an instance of the jade.core.AID 
class. The getAID() method of the Agent class allows retrieving the agent identifier.  An AID 
object includes a globally unique name plus a number of addresses.  The name in JADE has the 



284 Computer Science & Information Technology (CS & IT) 

form <nickname>@<platform-name> so that an agent called Robot1  living on a platform called 
RARM will have Robot1@RARM as globally unique name.  The addresses included in the AID 
are the addresses of the platform the agent lives in.  These addresses are only used when an agent 
needs to communicate with another agent living on a different platform. 
 

4.2 Agent discovery 

 
The JADE platfrom allows the possibility to discover dynamically the available agents. To do so, 
a yellow pages service permits agents to describe one or more services they provide. An agent can 
register (publish) services and search to discover services. 
 
Running example 

 
In order to publish a service, an agent must create a proper description which is an instance of 
DFAgentDescription class and call the register() method of DFService class.   
 
  /// Register the Robot  in DFService 
    DFAgentDescription dfd = new DFAgentDescription();   
    dfd.setName(getAID());   
    ServiceDescription sd = new ServiceDescription();   
    sd.setType("Robot");   
    sd.setName("Robot-executing");   
    dfd.addServices(sd);   
    try {   
       DFService.register(this, dfd);   
    }   
    catch (FIPAException fe) {   
       fe.printStackTrace();   
    }   
 
 
It is possible to search some agents, if the agent provides  the DF with a template description. The 
result of the research is a list of all the descriptions matching the template.  
 
Running example 

 
The search() method of the DFService class ensures the result.   
DFAgentDescription template = new DFAgentDescription();   
        ServiceDescription   sd = new ServiceDescription();   
          sd.setType("Robot");   
          template.addServices(sd);   
   DFAgentDescription[] result ;   
          try {   
    do   
    {   
           result = DFService.search(myAgent, template);    
           robotAgents = new AID[result.length];   
            for (int i = 0; i < result.length; i++) {   
              robotAgents[i] = result[i].getName();   
          }   
     }   
   while (result.length <= 0);   



Computer Science & Information Technology (CS & IT)                                 285 

 

           }   
          catch (FIPAException fe) {   
            fe.printStackTrace();   
          }   
nbRobots=robotAgents.length;    
 

4.3 Message exchanged between JADE Agents 

 
Agents never interact through method calls but by exchanging asynchronous messages. 
Obviously, inter-agent interaction will be very difficult until all agents adopt the same  
communication  language, and fortunately ACL standards ensure this requirement. All JADE 
agents communicate using messages that obey the FIPA ACL specification, which is described in 
: http//www.fipa.org.    
 
This format comprises a number of fields and in particular:  (1) the sender of the message, (2) the 
list of receivers,  (3) the communicative intention (also called “performative”) indicating what the 
sender intends to achieve by sending the message (for example the performative can be 
REQUEST,  INFORM,  QUERY_IF, CFP (call for proposal), PROPOSE, 
ACCEPT_PROPOSAL,  REJECT_PROPOSAL,  and so on). (4) The content i.e. the actual 
information included in the message which may be string in simple cases; otherwise we need a 
content language, a corresponding ontology, and a protocol. (5) The ontology i.e. the vocabulary 
of the symbols used in the content  and their meaning (both the sender and the receiver must be 
able to encode expressions using the same symbols  to be sure that the communication is 
effective) 
 
4.3.1. Sending a message 

 

Sending a message to another agent is as simple as filling the fields of an ACLMessage object 
and then call the send() method of the Agent class. The code below informs an agent whose 
nickname is Robot1 that the production must be decreased. 
 
Running example 

 
ACLMessage msg = new ACLMessage(ACLMessage.INFORM);   
msg.addReceiver(new AID("Robot1", AID.ISLOCALNAME));   
msg.setOntology("Production");   
msg.setContent("We must decrease in the production");   
send(msg); 
 

4.3.2. Receiving a message 

 
As mentioned above the JADE runtime automatically posts messages in the receiver’s private 
message queue  as soon as they arrive. An agent can pick up messages from its message queue by 
means of the receive() method.  
 
This method returns the first message in the message queue (removing it) or null if the message 
queue is empty and immediately returns. 
 
Running example 

 
ACLMessage msg = receive();   
if (msg != null) {   



286 Computer Science & Information Technology (CS & IT) 

// Process the message   
} 
 
4.3.3. Blocking behavior waiting a message 

 
Some behaviors must be continuously running and at each execution  of their action() method, 
must check if a message is recceived and perform some action. 
 
Running example 

 

public void action() {   
ACLMessage msg = myAgent.receive();   
if (msg != null) {   
// Message received. Process it   
… 
}   
else {   
block();   
}   
}   
 
4.3.4. Selecting a message 

 

When a template is specified, the receive() method returns the first message (if any) matching it, 
while ignores all non-matching messages.  Such templates are implemented as instances of the 
jade.lang.acl.MessageTemplate class  that provides a number of factory methods to create 
templates in a very simple and flexible way. 
 
Running example 

 

The action() method  is modified so that the call to myAgent.receive() ignores all messages 
except those whose performative is REQUEST:   
 
  public void action() {   
MessageTemplate mt = MessageTemplate.MatchPerformative(ACLMessage.REQUEST);   
ACLMessage msg = myAgent.receive(mt);   
if (msg != null) {   
// REQUEST Message received. Process it   
...   
}   
else {   
block();   
}   
}   
 

4.4 Agent Behavior in JADE 

 
A behavior is a kind of control thread for the agent where the method action() is similar to 
Thread.run(). New beahviors can be added at any time during the agent life. A behavior 
represents a task that an agent can carry out and is implemented as an object of a class that 
extends jade.core.behaviours.Behaviour. To make an agent execute the task implemeted by a 



Computer Science & Information Technology (CS & IT)                                 287 

 

behavior object, the behavior should be added to the agent by means of the addBehavior() method 
of the Agent class in the setup() method or inside other behavior (Figure 11). 
 

 

Figure 11. Behaviour class hierarchy in JADE 
 

� class Behaviour : Each class extending the abstract class Behavior must implement two 
abstract methods. The action() method defines the operation to be performed when the 
behavior is in execution. The done() method returns a boolean value to indicate whether 
or not a behavior has completed. The Behaviour class also provides two  methods, named 
onStart() and onEnd(). These methods can be overridden by user defined subclasses when 
some actions are to be executed before and after running behaviour execution. onEnd() 
returns an integer that represents a termination value for the behaviour. It should be noted 
that onEnd() is called after the behaviour has completed and has been removed from the 
pool of agent behaviours. 

� class SimpleBehaviour: The SimpleBehaviour class is an abstract class modeling simple 
atomic behaviours. Its reset() method does nothing by default, but it can be overridden by 
user defined subclasses. 

� class OneShotBehaviour: The OneShotBehaviour class models atomic behaviours that 
must be executed only once and cannot be blocked. So, its done() method always returns 
true.  The class WakerBehaviour implements a one-shot task that must be executed only 



288 Computer Science & Information Technology (CS & IT) 

once just after a given timeout is elapsed.  The class TickerBehaviour  implements a 
cyclic task that must be executed periodically. 

� class CyclicBehaviour: The CyclicBehaviour class  models atomic behaviours that must 
be executed forever. So its done() method always returns false.  “Cyclic” behaviours that 
never complete and whose action() method executes the same operations each time it is 
called.  

� class CompositeBehaviour: This abstract class models behaviours that are made up by 
composing a number of other behaviours (children). So the actual operations performed 
by executing this behaviour are not defined in the behaviour itself, but inside its children 
while the composite behaviour takes only care of children scheduling according to a 
given policy  (sequentially for SequentialBehaviour class, concurrently for 
ParallelBehaviour class and finite state machine for FSMBehaviour class). 

 
 
Running example 

 
int   nbPositive = 0;   
                                                  
   protected void setup()   
   {   
   ACLMessage msg = newMsg( ACLMessage.QUERY\_REF );   
 
    MessageTemplate template = MessageTemplate.and(   
    MessageTemplate.MatchPerformative( ACLMessage.INFORM ),   
    MessageTemplate.MatchConversationId( msg.getConversationId() ));   
         
    SequentialBehaviour seq = new SequentialBehaviour();   
    addBehaviour( seq );   
          
    ParallelBehaviour par = new \textbf{ParallelBehaviour}( ParallelBehaviour.WHEN_ALL );   
   seq.addSubBehaviour( par );   
       
   for (int i = 1; i<= nbRobots; i++)   
    {   

      msg.addReceiver( new AID( "Robot" + i,  AID.ISLOCALNAME ));   
              
      par.addSubBehaviour( new myReceiver( this, 1000, template)   
        {   
         public void handle( ACLMessage msg)   
         {     
            if (msg != null){   
  if (msg.getPerformative() == ACLMessage.ACCEPT) {   
        nbPositive = nbPositive+1;   
             } }  }   

                  });   
      }   
      seq.addSubBehaviour( new OneShotBehaviour()   
        {   

        public void action()   
        {     
        if (nbPositive = nbRobots)   
            System.out.println("All agents accept to change the production");   
          else    



Computer Science & Information Technology (CS & IT)                                 289 

 

             System.out.println("Some agents refuse to change the production");    
           }   
});   

 

5. CONCLUSION 
 
Distributed planning is narrowly interlaced with the distributed resolution of the problems, being 
a problem in itself and means to solve a problem. The main aim of this paper is how to ensure a 
distributed planning in Multi-Agent System (MAS) composed of several intelligent autonomous 
agents able to take the initiative instead of simply reacting in response to its environment. Our 
solution to this problem is the use of fuzzy logic which is based on three steps: fuzzyfication, rule 
engine and defuzzyfication. We create the MAS through JADE platform and show the interaction 
between the different agents through exchanging messages. All our contributions are applied on 
the benchmark production system (RARM system). 
 

REFERENCES 

 
[1] Jacques Ferber, Multi-Agent System: An Introduction to Distributed Artificial, Intelligence, Harlow: 

Addison Wesley Longman, 1999, Paper: ISBN 0-201-36048-9. 
[2] Bordini, R.H., and all.  A Survey of Programming Languages and Platforms for Multi-agent Systems. 

Informatica, 30(1): pp. 33–44, 2006. 
[3] David Jung, Alexander Zelinsky, An architecture for distributed cooperative planning in a behaviour-

based multi-robot system Robotics and Autonomous Systems, Volume 26, Issues 2–3, 28 February 
1999, Pages 149-174. 

[4] Malik Ghallab, Dana Nau, Paolo Traverso, The actorʼs view of automated planning and acting: A 
position paper  Artificial Intelligence, Volume 208, March 2014, Pages 1-17. 

[5] Salvatore Vitabile, Vincenzo Conti, Carmelo Militello, Filippo Sorbello, An extended JADE-S based 
framework for developing secure Multi-Agent Systems Computer Standards \& Interfaces, Volume 
31, Issue 5, September 2009, Pages 913-930. 

[6] Chuan-Jun Su, Chia-Ying Wu, JADE implemented mobile multi-agent based, distributed information 
platform for pervasive health care monitoring,  Applied Soft Computing, Volume 11, Issue 1, January 
2011, Pages 315-325 

 [7] Fabio Bellifemine, Giovanni Caire, Tiziana Trucco,  Giovanni Rimassa, Roland Mungenast, JADE 
ADMINISTRATOR’S GUIDE, 2010 

 [8] Giovanni Caire,  JADE TUTORIAL : JADE PROGRAMMING FOR BEGINNERS , 2009 
 [9] Fabio Bellifemine, Giovanni Caire, Tiziana Trucco, Giovanni Rimassa, JADE PROGRAMMER’S 

GUIDE, 2010.  
 [10] Fabio Bellifemine, Giovanni Caire, Dominic Greenwood, Developing Multi-Agent Systems with 

JADE, 2004 
 [11] Branislav Hrúz, MengChu Zhou Modeling and Control of Discrete-event Dynamic Systems with Petri 

Nets and Other Tools   2007 p67) 
 [12] Kazem Sadegh-Zadeh, Advances in fuzzy theory,  Artificial Intelligence in Medicine, Volume 15, 

Issue 3, March 1999, Pages 309-323 
 [13] Lotfi A. Zadeh, Is there a need for fuzzy logic? Information Sciences, Volume 178, Issue 13, 1 July 

2008, Pages 2751-2779 
 [14] Belohlavek, R., Klir, G., Lewis, H., and Way, E. (2002) On the capability of fuzzy set theory to 

represent concepts. Int. J. Gen. Syst., 31, 569–585. 
 [15] Marijana Gorjanac Ranitović, Aleksandar Petojević, Lattice representations of interval-valued fuzzy 

sets, Fuzzy Sets and Systems, Volume 236, 1 February 2014, Pages 50-57. 
 [16] Jianhua Dai, Haowei Tian, Fuzzy rough set model for set-valued data,  Fuzzy Sets and Systems, 

Volume 229, 16 October 2013, Pages 54-68 
 [17] Mária Kuková, Mirko Navara, Principles of inclusion and exclusion for fuzzy sets, Fuzzy Sets and 

Systems, Volume 232, 1 December 2013, Pages 98-109 



290 Computer Science & Information Technology (CS & IT) 

 [18] Oscar Sapena, Eva Onaindia, Antonio Garrido, Marlene Arangu, A distributed CSP approach for 
collaborative planning systems, Engineering Applications of Artificial Intelligence, Volume 21, Issue 
5, August 2008, Pages 698-709 

 [19] Sergio Pajares Ferrando, Eva Onaindia, Context-Aware Multi-Agent Planning in intelligent 
environments, Information Sciences, Volume 227, 1 April 2013, Pages 22-42 

 [20] Pascal Forget, Sophie D’Amours, Jean-Marc Frayret, Multi-behavior agent model for planning in 
supply chains: An application to the lumber industry, Robotics and Computer-Integrated 
Manufacturing, Volume 24, Issue 5, October 2008, Pages 664-679 

 [21] Malik Ghallab, Dana Nau, Paolo Traverso, Automated Planning, 2004 
 [22] Tsz-Chiu Au, Ugur Kuter, and Dana Nau, Planning for Interactions among Autonomous Agents 
 [23] Chun-xia Dou, Da-wei Hao, Bao Jin, Wei-qian Wang, Na An, Multi-agent-system-based 

decentralized coordinated control for large power systems  International Journal of Electrical Power 
& Energy Systems, Volume 58, June 2014, Pages 130-139 

 [24] Bo Liu, Housheng Su, Rong Li, Dehui Sun, Weina Hu, Switching controllability of discrete-time 
multi-agent systems with multiple leaders and time-delays, Applied Mathematics and Computation, 
Volume 228, 1 February 2014, Pages 571-588 

 

AUTHORS  

Atef Gharbi received his computer engineering Diploma from the National School in 
Computer Science (ENSI) of Tunisia, in 2005. After that, he received the Master degree 
from the National Institute of Applied Sciences and Technology (INSAT) of Tunisia in 
2007. He obtained his Phd in 2013. He is currently related to LISI Research Laboratory in 
Tunisia. His research interests include specification of model, verification of properties 
related to functional safety, implementation of software solutions to ensure functional 
safety.  
 

Samir Ben Ahmed is a Full Professor in Computer Science at Tunis-El Manar University, 
President of National Institute of Applied Sciences and Technology (INSAT), and Head of 
MOSIC Research Unit in Tunisia. He was Founder of ISI Institute of Computer Science, 
and Head of IT Department of Faculty of Science at Tunis-El Manar University in Tunisia. 
Prof. Ben Ahmed obtained his PhD Thesis in Automation and Computer Science at Paul 
Sabatier University in France. The Engineering Diploma was obtained before from 
National School of Electrical Engineering, Electronic, Computer Science and Hydraulic in 
Toulouse (ENSEEIHT). Prof. Ben Ahmed is strongly active in several National and International Projects 
and Collaborations. 

 

 

 

 

 

 

  

 


