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ABSTRACT 

 
The Elliptic Curve Digital Signature Algorithm (ECDSA) is an elliptic curve variant of the 

Digital Signature Algorithm (DSA). It gives cryptographically strong digital signatures making 

use of Elliptic curve discrete logarithmic problem. It uses arithmetic with much smaller 

numbers 160/256 bits instead of 1024/2048 bits in RSA and DSA and provides the same level of 

security. The ECDSA was accepted in 1999 as an ANSI standard, and was accepted in 2000 as 

IEEE and NIST standards. It was also accepted in 1998 as an ISO standard. Many cryptologist 

have studied security aspects of ECDSA and proposed different variants. In this paper, we 

discuss a detailed analysis of the original ECDSA and all its available variants in terms of the 

security level and execution time of all the phases. To the best of our knowledge, this is a unique 

attempt to juxtapose and compare the ECDSA with all of its variants. 
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1. INTRODUCTION 

 
ECC is one of the most advanced and promising techniques in the field of Public key 

cryptography. It offers many advantages over other cryptographic techniques which uses Integer 

factorization or discrete logarithmic approach. The hardest problem in which ECC is built upon is 

Elliptic Curve Discrete Logarithmic Problem (ECDLP). ECDLP is based on the infeasibility in 

computing discrete logarithms on elliptic curves over finite fields. It gives Elliptic curve 

cryptography a greater strength-per-key-bit. It uses arithmetic with much shorter numbers 

160,256 bits instead of 1024,2048 bits and provides same level of security. Elliptic Curve Digital 

Signature Algorithm was first proposed in 1992 by Scott Vanstone in response to NIST’s 

proposal of DSS [1][2]. It was later accepted in 1998 as an ISO standard (ISO 14888-3), as an 

ANSI standard (ANSI X9.62) in 1999, and as an IEEE standard (IEEE 1363-2000) and as a NIST 

standard (FIPS 186-2) in 2000. 

 

However, it has disadvantages too. It is conceptually more difficult to understand and finding 

secure curves in set up phase is more difficult. ECDSA based on elliptic curve discrete 

logarithmic problem and is the most secure digital signatures scheme [4]. Many researches are 

developing different variants of ECDSA each having its own advantages and disadvantages and 

many cryptologist are trying to find weaknesses in ECDSA variants. This paper analyzes and 
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describes different variants of ECDSA, their pros and cons and the attacks possible on each of the 

variants. 

 

This section gives a brief introduction about the paper. Section 2, elaborates elliptic curve 

arithmetic operations and Elliptic curve discrete logarithmic problem. Section 3 gives a detailed 

description of original ECDSA scheme, its security proofs and an attack possible on original 

ECDSA scheme. Section 4 describes a variant of ECDSA suitable for signer with limited 

computation capability and Section 5 a variant suitable for a verifier with limited computation 

capability and its security proofs. Section 6 explains a two level digital signature scheme by using 

two different secrets. Section 7 describes Elliptic curve German digital signature scheme with 

inverse calculation in key generation phase. Section 8 describes a variant of ECDSA and a 

forging possible on it and section 9 details its improved version. Section 10 gives a brief 

description of two other variants to make ECDSA secure against adaptive chosen message attack 

and to avoid duplicate signatures. Section 11 elaborates Elliptic curve korean certificate based 

digital signature algorithm.. Section 12 discusses the implications, performance results and 

comparison of all ECDSA variants. 

 

2. ELLIPTIC CURVE ARITHMETIC 

 
Elliptic curve cryptography is based on the arithmetic of points on an elliptic curve[12][13]. 

Elliptic curves are represented by cubic equations similar to those used for calculating the 

circumference of an ellipse. An elliptic curve E over a field K is defined by a equation [3]: 

 

�: �� + ��	� + �
� =  	
 +  ��	� + ��	 +  � … … … … … ….                 (1) 
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Set of all points (x, y) which satisfies the above equation along with ∞, a point at infinity, are the 

points on the elliptic curve. 

   
            Figure 1. Point Addition                  Figure 2. Point Doubling 
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The number of points on an elliptic curve, n, is the order of elliptic curve, (#(E(Fp)). The set of 

points of E (Fp) together with addition operation forms an abelian group with point at infinity, ∞ 

serving as the identity element. The Equation 1 is called weierstrass equation. The condition 

∆ ≠ 0 ensures that the elliptic curve is smooth, that is, there are no points at which the curve has 

two or more distinct tangent lines. If the field characteristic P is not equal to 2 or 3, that is prime 

field, and then the admissible change of Variables  

 

$	, �% → '()
*+,)��-,

 , .)
-+ (

�� −  *+/0�-+-,)��-/

 1 transform E to the curve, 

 

�� = 	
 + ax + b; where a, b ∈ K … … … … … … . $2% 

 

The ∆ :; 16$4�
 + 27b�%. 
 

2.1. Point Addition 

 
Addition of points on an elliptic curve is defined by Chord and Tangent rule. Let P = (x1, y1) and 

Q = (x2, y2) be two distinct points on an elliptic curve E. Then the sum R, of P and Q, is defined 

as follows: Draw a line connecting P and Q extend it to intersect the elliptic curve at a third point. 

Then the sum, R is the negative of the third point. Negative of a point is defined by reflection of 

the point about the x-axis. 

 

The double R, of P, is defined as follows: Draw the tangent line to the elliptic curve at P. Let it 

intersects the elliptic curve at a second point. Then the double R is the reflection of this point 

about the x-axis. 

 

2.2. Point Multiplication 

 
Point Multiplication (Scalar multiplication) is the arithmetic operation which computes kp where 

k is an integer and p is a point on elliptic curve. It is done by repeated addition. For example Q = 

kp means Q is obtained by adding p k times to itself (p + p + p....k times). Cryptanalysis involves 

determining k given P and Q. This operation dominates the execution time of elliptic curve 

cryptographic schemes. 

 

2.3. Operations defined for E(Fp): y
2
 = x

3
+ax +b 

 
(1) Identity: P + ∞ = ∞ + P = P for all  > ∈ E(Fp) 

 

(2) Negatives: If P = (x,y) ∈ E(FP), then (x,y) + (x, -y) = ∞. The point (x, -y) is denoted by –P and 

is called negative of P. Note that P indeed is a point in E(FP). 

 

(3) Point Addition: Let P=(x1,y1) ∈ E(K) and Q=(x2,y2) ∈ E(K) ; where P≠ +Q, then P+Q = (x3,y3)  

 

where, 
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(3) Point Doubling: Let P=(x1,y1) ∈ E(K), then 2P = (x3,y3) where, 
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2.4. Elliptic Curve Discrete logarithm problem: 

 
The elliptic curve discrete logarithm problem (ECDLP) is defined as follows: Given the elliptic 

curve domain parameters and a point P ∈ E(Fp), find the unique integer k, 0 ≤ k≤  n1, such that 

P=kG, where n1 is order of E. 

 

ECDLP is similar to the Discrete Logarithm Problem and is the elliptic curve analogue of DLP. In 

the ECDLP, the subgroup Zp* is replaced by the group of points on an elliptic curve over a finite 

field. In addition, unlike the DLP and the integer factorization problem, no sub exponential-time 

algorithm is known for the ECDLP. ECDLP is considered to be significantly harder than DLP, 

thus giving elliptic curve cryptosystems a greater strength-per-key-bit than their discrete 

logarithmic counterparts. 

 

3. ECDSA 

 
Elliptic Curve Digital Signature Algorithm [6] was first proposed in 1992 by Scott Vanstone in 

response to NISTs proposal of DSS. It was later accepted in 1998 as an ISO standard (ISO 14888-

3), as an ANSI standard (ANSI X9.62) in 1999, and as an IEEE standard (IEEE 1363-2000) and 

as a NIST standard (FIPS 186-2) in 2000. 

 

Elliptic curve digital signature algorithm consists of 3 phases: 1. Key generation, 2. Signature 

generation, 3.Signature verification. A setup phase has to execute before the key generation phase 

to generate the domain parameters. Domain parameters for an elliptic curve describe an elliptic 

curve E defined over a finite field Fp, a base point g ∈E (Fp) (generator) with order n. The 

parameters should be chosen carefully so that ECDLP is resistant to all known attacks. The 

elliptic curve is chosen by choosing (a,b) ∈  (1, P) and substituting in equation. So the domain 

parameters can be defined as p, E (a, b), g, n. 

 

3.1. Key pair generation using ECDSA: 

 
Let A be the signatory for a message M. Entity A performs the following steps to generate a 

public and private key: 

 

(1) Select a unique and unpredictable integer, d, in the interval [1, n-1] 

(2) Compute Q = dg 

(3) Sender A’s private key is d 

(4) Sender A’s public key is the combination (E, g, n, Q) 

 

3.2. Signature Generation Using ECDSA 

 
Using A’s private key, A generates the signature for message M using the following steps: 

 

(1) Select a unique and unpredictable integer k in the interval [1,n-1] 

(2) Compute kg = (x1,y1), where x1 is an integer 

(3) Compute r = x1 mod n; If r = 0, then go to step 1 

(4) Compute h = H(M), where H is the SHA-512[10] 

(5) Compute s = k
-1

(h + dr)mod n; If s = 0, then go to step1 

(6) The signature of A for message M is the integer pair (r, s) 
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3.3. Signature Verification Using ECDSA 

 
The receiver B can verify the authenticity of A’s signature (r, s) for message M by performing the 

following: 

 

(1) Obtain signatory A’s public key (E, q, n, Q) 

(2) Verify that values r and s are in the interval [1,n-1] 

(3) Compute w = s
-1

 mod n. 

(4) Compute h = H(M), where H is the same secure hash algorithm used by A. 

(5) Compute u1 = hw mod n 

(6) Compute u2 = rw mod n 

(7) Compute u1g + u2Q = (x0,y0) 

(8) Compute v = x0 mod n 

(9) The signature for message M is verified only if v = r 

 

3.4. Security of ECDSA 

 
Public key is generated by computing the point Q, where Q = dg. In order to crack the elliptic 

curve key, adversary Eve would have to discover the secret key d when Q and g are provided. 

The order of the Elliptic curve, E is a prime number n, then computing d given dg and g would 

take roughly 2n=2 operations [7] . For example, if the key length n is 192 bits (the smallest key 

size that NIST recommends for curves defined over GF(p)), then Eve will be required to compute 

about 296 operations. If Eve had a super computer and could perform one billion operations per 

second, it would take her around two and a half trillion years to find the secret key. This is the 

elliptic curve discrete logarithm problem behind ECDSA. The curve parameter should be chosen 

so carefully to secure Elliptic curve from well known attacks like Pollard’s rho[1] and Pohlig-

Hellman. 

 

3.5. Proof of ECDSA signature Scheme 

 
Signature send by A to B is (r, s) and s can be generated only by A because only A knows its 

private key d. s = k-1(h + dr) mod n on rearranging 

 

• K = s-1 (h + dr) 

• Kg = s
-1

 (h + dr)g 

• Kg = s-1hg + s-1drg 

• r = hwg + rwdg 

• r = u1g + u2Q 

 

3.6. A Possible Attack on ECDSA 

 
The secret k used for signing two or more messages should be generated independent of each 

other. In particular, a different secret k should be used for signing different messages otherwise 

the private key d can be recovered. However if a secure random or pseudo-random number 

generator is used, then the chance of generating a repeated k value is negligible. If same secret k 

is used to generate signature of two different messages m1 and m2 then it will result in two 

signatures (r,s1) and (r, s2). 

 

• s1 = k-1(h1 + dr) 

• s2 = k
-1

(h2 + dr) ;  where h1 = SHA512 (m1) and h2 = SHA512 (m2). 

• ks1- ks2 = h1+dr-h2-dr 
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• k = (h1-h2)/(s1-s2) 

• d =(ks-h)/r 

 

4. VARIANT 1 
 

The scheme [5] is suitable for a signer who has limited computing capability like, a signer using 

his Smart Card which stores his secret key and signs a message on a terminal. 

 

Key pair phase of this scheme is same as the ECDSA scheme. 

 

4.1. Signature Generation 

 
(1) Select a unique and unpredictable integer k in the interval [1,n-1] 

(2) kg ← (x1,y1), where x1 is an integer. 

(3) r  ←  x1 mod n; If r = 0, then go to step 1 

(4) h ← H(M), where H is the SHA-512 

(5) s ←  d
-1

(rk - h) mod n; If s = 0, then go to step1 

(6) The signature of A for message M is the integer pair (r,s) 

 

Here the advantage is that there is no need of calculating inverse of d in each individual signing 

operation. d is the private key of the signer which will remain stable for a period of time, it can be 

precomputed and stored in the key generation phase itself. 

 

4.2. Signature Verification 

 
The receiver B can verify the authenticity of A’s signature (r, s) for message M by performing the 

following: 

 

(1) Obtain signatory A’s public key (E, q, n, Q) 

(2) Verify that values r and s are in the interval [1,n-1] 

(3) w← r
-1

 mod n 

(4) h← H(M), where H is the same secure hash algorithm used by A 

(5) u1←  hw mod n 

(6) u2← sw mod n 

(7) (x0,y0) ← u1g + u2Q 

(8) v ←  x0 mod n 

(9) The signature for message M is verified only if v = r 

 

4.3. Proof of the Scheme 

 
Signature send by A to B is (r, s) and s can be generated only by A because only A knows its 

private key d. s = d-1(rk - e) mod n on rearranging, 

 

• sd = (rk - e) 

• dsr
-1

 = r
-1

(rk - e) 

• dsgr-1 = gk – egr-1 

• kg = egw + Qws 

• r = u1g + u2Q. 

 

Attack on same k can be implemented successfully on this method as well. 
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5. VARIANT 2 

 
The scheme [5] is suitable for the verifier who has limited compute apparatus. That is in this  

scheme the complexity of verification operation is less compared to that of the above schemes. 

Key pair generation phase of this scheme is same as the ECDSA scheme. 

 

5.1. Signature Generation 

 
(1) Select a unique and unpredictable integer k in the interval [1,n-1] 

(2) kg  ← (x1,y1), where x1 is an integer 

(3) r ←  x1 mod n; If r = 0, then go to step 1 

(4) h ← H(M), where H is the SHA-512 

(5) s  ← k(h + rd)
-1

 mod n; If s = 0, then go to step1 

(6) The signature of A for message M is the integer pair (r,s). 

 

5.2. Signature Verification 

 
The receiver B can verify the authenticity of A’s signature (r, s) for message M by performing the 

following: 

 

(1) Obtain signatory A’s public key (E, q, n, Q) 

(2) Verify that values r and s are in the interval [1,n-1] 

(3) h ←  H(M), where H is the same secure hash algorithm used by A 

(4) u1 ←  hs mod n 

(5) u2  ← rs mod n 

(6) (x0,y0)  ← u1g + u2Q  

(7) v ← x0 mod n 

(8) The signature for message M is verified only if v = r 

 

In this scheme, k
-1

 is no longer be calculated, but we must calculate (h + rd)
-1

 in the signing phase. 

But there is no need of calculating inverse in verification phase which is one of the most costlier 

operation in modular arithmetic. So the complexity of the verification operation is less in this 

scheme. Since r and k are functions, pre-calculating couldn’t be used to reduce the operation 

amount. If an attacker want to forge a signature, he must decide a pair of (r, s) too, which must fit 

for the equation R = (xR ,yR) = u1g+ u2Q = hsg+ rsQ. So he encounters the same difficulty as 

attacking original algorithm. 

 

5.3. Proof of the Scheme 
 

Signature send by A to B is (r, s) and s can be generated only by A because only A knows its 

private key d. s  ← k(h + rd)-1 mod n on rearranging, 

 

• s(h + rd) = k. 

• s(h + rd)g = kg 

• shg + rdsg = kg 

• u1g + u2dg = kg 

• u1g + u2Q = kg.  

 

Attack on same k can be implemented successfully on this method as well. 
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6. VARIANT 3 

 
In this scheme [6], [7] two levels of digital signature are implemented by using two secrets k1 and 

k2. Here d cannot be determined even if the same secret (k1, k2) is repeated. The processes are 

more complex than original ECDSA scheme and it increases the security level. Key pair 

generation phase of this scheme is same as the ECDSA scheme. 

 

6.1. Signature Generation 

 
(1) SELECT Select two integers k1 and k2 such that 1 ≤ k1,k2 ≤  n-1 

(2) k1g ←  (x1, y1), k2g  ← (x2,y2) where x1,x2,y1,y2 are integers 

(3) r 1  ← x1 mod n; r2  ←  x2 mod n If r1,r2 = 0, then go to step 1 

(4) h ←  H(M), where H is the SHA-512 

(5) s ←  k1
-1

(hk2 + d(r1 + r2)) mod n; If s = 0, then go to step1 

(6) The signature of A for message M is the integer pair (r1, r2, s) 

 

6.2. Signature Verification 

 
(1) Obtain signatory’s public key (E, q, n, Q) 

(2) Verify that values r1,r2 and s are in the interval [1,n-1] 

(3) w  ← s-1 mod n 

(4) h ←  H(M), where H is the same secure hash algorithm used by A 

(5) u1←  hwk2 mod n 

(6) u2 ←   (r1+r2) w mod n 

(7) (x0,y0)  ← u1g + u2Q 

(8) v ←  x0 mod n 

(9) The signature for message M is verified only if v = r1. 

 

6.3. Proof of the Scheme 
 

Signature send by A to B is (r, s) and s can be generated only by A because only A knows its 

private key d. s = k1-1(hk2 + d(r1 + r2)) mod n on rearranging, 

 

• k1 = s-1(hk2 + d(r1 + r2)). 

• k1g = s
-1

(hk2 + d(r1 + r2))g. 

• k1g = s
-1

hk2g + s
-1

d(r1 + r2)g. 

• r = hwk2g + (r1 + r2)wdg. 

• r = u1g + u2Q 

 

If same secret (k1,k2) is used for signing two different messages, It will generate two different 

signatures (r1,s1) and (r1,s2) 

 

• s1 = k1-1(h1k2 + d(r1 + r2)) 

• s2 = k1
-1

(h2k2 + d(r1 + r2)) Where h1 = SHA512(m1) and h2 = SHA512(m2) 

• k1s1 - k1s2 = h1k2 + dr - h2k2 - dr 

• k1(s1 - s2) = k2(h1 - h2) 

 

We cannot obtain k1, k2 from this equation and so this scheme is more secure than original 

ECDSA scheme. 
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7. VARIANT 4 

 
This scheme is also called Elliptic Curve German Digital Signature Algorithm[8]. One of the 

disadvantages of ECDSA scheme is the calculation of inverse in signing phase. Calculation of 

inverse is one of the expensive operations in Modular Arithmetic, so avoiding it will reduce the 

cost and time. In ECGDSA inverse calculation is done in the key pair generation phase and not in 

Signing phase. A key will remain constant for a stable amount of time so signing is done more 

frequently than key generation. ECGDSA will save time and cost than ECDSA. 

 

7.1. Key pair generation using ECGDSA 

 
Let A be the signatory for a message M. Entity A performs the following steps to generate a 

public and private key  

 

(1) Select a unique and unpredictable integer, d, in the interval [1,n-1] 

(2) Q ←  (d-1 mod n)g 

(3) Sender A’s private key is d 

(4) Sender A’s public key is the combination (E, g, n, Q) 

 

7.2. Signature Generation using ECGDSA 

 
Using A’s private key, A generates the signature for message M using the following steps: 

 

(1) Select a unique and unpredictable integer k in the interval [1,n-1] 

(2) kg ←  (x1,y1), where x1 is an integer 

(3) r  ← x1 mod n; If r = 0, then go to step 1 

(4) h ←  H(M), where H is the SHA-512 

(5) s ←  (kr-h) d mod n; If s = 0, then go to step1 

(6) The signature of A for message M is the integer pair (r,s) 

 

7.3. Signature Verification using ECGDSA 

 
The receiver B can verify the authenticity of A’s signature (r, s) for message M by performing the 

following: 

 

(1) Obtain signatory A’s public key (E, q, n, Q) 

(2) Verify that values r and s are in the interval [1,n-1] 

(3) w ← r-1 mod n 

(4) h ←  H(M), where H is the same secure hash algorithm used by A 

(5) u1←  hw mod n 

(6) u2 ←   sw mod n 

(7) (x0,y0) ←  u1g + u2Q  

(8) v ←  x0 mod n 

(9) The signature for message M is verified only if v = r 
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7.4. Proof of the Scheme 
 

Signature send by A to B is (r, s) and s can be generated only by A because only A knows its 

private key d. s = (kr-h) d mod n. 

 

• s = (kr-h) d 

• s * r
-1

d
-1

 = (kh * r
-1

) 

• sw*d
-1

g = kg – hw* g 

• kg = hw*g + sw*Q 

• r = u1g+u2Q 

 

If same secret (k) is used for signing two different messages, It will generate two different 

signatures (r,s1) and (r,s2). 

 

• s1 = (kr-h1) d 

• s2 = (kr-h2) d, Where h1 = SHA512 (m1) and h2 = SHA512 (m2) 

• s1-s2= h2-h1 

 

K cannot be determined even though same secret is used to sign two different messages. So this 

scheme is not vulnerable to attack on same secret. 

 

8. VARIANT 5 

 
In ECGDSA (Variant 4) there is no need of finding inverse in signing phase but there is a need in 

key generation phase. In this variant[9] there is no need in finding inverse in both key generation 

and signing phase. This scheme embeds the information of signature into a point on the ellipse. 

 

8.1. Key pair generation 

 
Let A be the signatory for a message M. Entity A performs the following steps to generate a 

public and private key: 

 

(1) Select a unique and unpredictable integer, d, in the interval [1,n-1] 

(2) Q  ←  (dg mod n) 

(3) Sender A’s private key is d 

(4) Sender A’s public key is the combination (E, g, n, Q) 

 

8.2. Signature Generation 
 

Using As private key, A generates the signature for message M using the following steps: 

 

(1) Select a unique and unpredictable integer k in the interval [1,n-1] 

(2) kg ←  (x1,y1), where x1 is an integer 

(3) r ←  x1 mod n; If r = 0, then go to step 1 

(4) h ←  H(M), where H is the SHA-512 

(5) s ←  (kh + (r xor h)d)g  mod n 

(6) If s = 0, then go to step1 

(7) The signature of A for message M is the pair (r, s) 
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8.3. Signature Verification 

 
The receiver B can verify the authenticity of A’s signature (r, s) for message M by performing the 

following: 

 

(1) Obtain signatory A’s public key (E, q, n, Q) 

(2) Verify that values r and s are in the interval [1,n-1] 

(3) h  ← H(M), where H is the same secure hash algorithm used by A 

(4) w ←   h
-1 

mod n 

(5) u ←  (r xor h) mod n 

(6) (x0, y0) ←  w(s - uQ) 

(7) v ←  x0 mod n 

(8) The signature for message M is verified only if v = r 

 

8.4. Proof of the scheme 

 
Signature send by A to B is (r, s) and s can be generated only by because only A knows its private 

key d. s = (kh + (r xor h)d) g mod n 

 

• s = (kh + (r xor h)d)g modn 

• s = (kh +ud) g 

• sw = kg +uwQ 

• kg = sw - uwQ 

• r = w (s-uQ) 

 

8.5. A Forging possible on variant 5 

 
An attacker T can forge the signature with the knowledge of public parameters (E, g, n, Q) 

 

(1) Select an integer k in the interval [1,n-1] 

(2) kg = (x1,y1), where x1 is an integer 

(3) r = x1 mod n; If r = 0, then go to step 1 

(4) h = H(M), where H is the SHA-512 

(5) s = (khg + (r xor h)Q) mod n 

(6) The Forged signature of A for message M is the pair (r, s) 

 

On receipt on signature B will verify the signature as normal verification procedure of variant 4 

 

V = w(s - uQ) 

    = w(s(r xor h)Q) 

    = w((khg + (r xor h)Q)(r xor h)Q) 

    = w(khg) 

    = kg 

 

Then the forged signature validated, the attacker can successfully attack. Therefore this digital 

signature scheme is not secure. Anyone can use legitimate user’s public-key to forge the signature 

of any information. 
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9. AN IMPROVED VARIANT 5 

 
Variant 5 can be made secured by adding one more step in both the signing and verification 

phase[9]. 

 

9.1. Signature Generation 

 
Using A’s private key, A generates the signature for message M using the following steps 

 

(1) Select a unique and unpredictable integer k in the interval [1,n-1] 

(2) kg ←   (x1,y1), where x1 is an integer 

(3) r ←   x1 mod n; If r = 0, then go to step 1 

(4) h ←  H(M), where H is the SHA-512 

(5) s1 ←   (kh + (r xor h)d) g mod n; If s1 = 0, then go to step1 

(6) s2 ←   s1d; If s2 = 0, then go to step1 

(7) The signature of A for message M is the integer pair (r,s) 

 

9.2. Signature Verification 

 
The receiver B can verify the authenticity of A’s signature (r, s) for message M by performing the 

following: 

 

(1) Obtain signatory A’s public key (E, q, n, Q) 

(2) Verify that values r and s are in the interval [1,n-1] 

(3) Verify the equation s2g = s1Q If the equation was established continue with the 

verification process else refuse the signature 

(4) h  ← H(M), where H is the same secure hash algorithm used by A 

(5) w ←  h 
-1

modn 

(6) u ←  (r xor h) mod n 

(7) (x0, y0) ←  w(s - uQ) 

(8) v ←  x0 mod n 

(9) The signature for message M is verified only if v = r 

 

In this scheme after generating the signature s1, which is a point on the ellipse, it is encrypted 

with the private key of the signer. Firstly verifier verifies the encrypted result s2 before verifying 

the signature. As d, private key is known only to the signer and the encryption scheme s2 = s1d is 

guaranteed by elliptic curve discrete logarithm problem the improved scheme is secure. Attacker 

attempting to forge the signature by replacing the message cannot encrypt the signature so the 

improved scheme can prevent forgery. The signature generation and validation phase involves 

more elliptic curve point multiplication operation and hence is more complex and will take more 

time and cost. But as the complexity is increasing security level provided by the algorithm also 

increases. 

 

10. OTHER VARIANTS 

 
In order to make ECDSA secure against existential forgery by adaptive chosen message attack 

authors of [11] proposed a new variant of ECDSA named as ECDSAII. In ECDSAII instead of 

calculating the hash of the message they are calculating hash of, the message appended with r 

wher er = X-Coordinate of kg(mod n). Even if same message is signing hash generated will differ 

with high probability since k is randomly generated number. 
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Authors of the same paper improved ECDSAII so that it avoids the notion of duplicate signatures. 

They name this algorithm as ECDSAIII The alteration is to replace r=X-Coordinate of kg(mod n) 

with r = X-Coordinate of kg(mod n) + Y-Coordinate of kg(mod n). Since it is hard to find two 

elliptic curve points Q1 = (x1, y1) and Q2 = (x2, y2) such that one knows the respective discrete 

logarithms Qi =kiP and such that x1 + y1 = x2 + y2. It avoids duplicate signatures to an extent. 

This can only happen when the line L(t) : X + Y = t for some constant t is geometrically related to 

the group law linking Q1 and Q2. If L(t) is a tangent at Q1 and we know the discrete logarithm k1 

then we know that L(t) intersects the curve in one other point, say Q2 = k2P, of the required form 

and that k2 = (2k1) (modn). Hence we need to avoid points where L(t) is a tangent. But for all 

possible values of t the line L(t) is only a tangent for atmost four points on any given elliptic 

curve.  

 

11. ECKCDSA 

 
A group of Korean cryptographers, in association with government-supported agencies, had 

developed a candidate algorithm for Korean digital signature standard, which is named KCDSA, 

Korean Certificate Based Digital Signature Algorithm, is a signature algorithm in which the 

public key is validated by means of a certificate issued by some trusted authority. The X.509-

based certificate may be used for this purpose. In this case, the Cert Data can be simply the 

formatted certification data defined by X.509.An elliptic curve variant of KCDSA is EC-KCDSA 

Elliptic curve Korean Certificate Based Digital Signature Algorithm. The algorithm uses the 

public key PA := [d1 mod n]g and z is a hash-value of Cert Data. Cert Data denotes the signer’s 

certification data, which should contain at least signer’s distinguished identifier, public key Q and 

the domain parameters. 

 

11.1. Signature Generation 

 
(1) Select a unique and unpredictable integer k in the interval [1,n-1] 

(2) kg  ← (x1,y1), where x1 is an integer 

(3) r ←   x1 mod n; If r = 0, then go to step 1 

(4) h ←  H(z || M), where H is the SHA-512 

(5) s ←   d(k - r xor h) mod n; If s = 0, then go to step1 

(6) The signature of A for message M is the integer pair (r,s) 

 

Here the advantage is that there is no need of calculating inverse of d in each individual signing 

operation. d is the private key of the signer which will remain stable for a period of time, it can be 

precomputed and stored in the key generation phase itself. 

 

11.2. Signature Verification 

 
The receiver B can verify the authenticity of A’s signature (r, s) for message M by performing the 

following: 

 

(1) Obtain signatory A’s public key (E, q, n, Q) 

(2) check the validity of the signer’s certificate, extracts the signer’s certification data Cert 

Data from the certificate and computes the hash value z = h(Cert Data) 

(3) Verify that values r and s are in the interval [1,n-1] 

(4) h ←  H(z || M), where H is the same secure hash algorithm used by A 

(5) w  ←  r
-1

modn 

(6) u1 ←   r xor h mod n 

(7) u2 ←  s 
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(8) (x0,y0)  ← u1g + u2Q 

(9) v ←  x0 mod n 

(10) The signature for message M is verified only if v = r 

 

11.3. Proof of the Scheme 

 
Signature send by A to B is (r, s) and s can be generated only by A because only A knows its 

private key d. u1g + u2Q on rearranging, 

 

• r xor hg + sQ 

• r xor hg +d(k – r xor h)d
-1

g 

• r xor hg +(k – r xor h)g 

• kg 

 

12. COMPARISON AMONG THE VARIANTS 

 
Table 1.  Comparison of ECDSA Variants 

 
Comparing all the variants Original ECDSA is vulnerable to attack on same secret. Variant 1 is 

suitable for signer with limited compute apparatus and variant 2 for a verifier with limited 

compute apparatus. Variant 3 requires the use of 2 variables and time taken for signature 

generation and verification is also more. In variant 4 it requires no inverse calculation in signing 

phase and time taken is less for signing phase but it takes more time in key generation phase as it 

needs to calculate inverse in key generation phase. In case of variant 5 there is no inverse 

calculation in both key generation and signing phase but it is more complex and it takes more 

time as it needs more point multiplication operation. As the complexity increases the security 
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level also increases. Table I shows the comparison of operations and possible attacks on all the 

variants. 

 

Time taken for key generation signature generation and verification of all the variants are 

measured and detailed in Table II. Here the key size used is 192 bits and the processor used for 

implementation is Pentium(R) Dual-Core CPU 2.30 GHz and platform used is java. 

 
Table 2. Time taken for ECDSA Variants in Milliseconds 

 

Algorithm Key 

Generation 

Signature 

Generation 

Verification 

ECDSA 78 93 125 

Variant 1 82 78 125 

Variant 2 78 98 120 

Variant 3 78 153 131 

Variant 4 83 78 125 

Variant 5 78 141 218 

 

13. CONCLUSION 

 
Performance and Security of ECDSA and its variants is compared and listed. Algorithm to be 

used can be determined according to the application and compute apparatus available for the 

application. Improved variant 5 uses more elliptic curve operations and the time taken in each of 

the phases is large compared to the other schemes. For applications which need more security and 

is having enough resources improved variant 5 can be used as the signature scheme. Variant 1 and 

variant 4 can be used for applications with signer having limited resources. Among them variant 4 

is more efficient as it does not need pre computing and storage of an extra value d
-1

.Variant 3 is 

resistant to attack on same k by usage of two secrets k1 and k2 but variant 4 is also vulnerable to 

same attack even without using a second secret.  
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