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ABSTRACT 

 

This work presents the development of Bayesian techniques for the assessment of groundwater 

quality. Its primary aim is to develop a predictive model and a computer system to assess and 

predict the impact of pollutants on the water column. The process of the analysis begins by 

postulating a model in light of all available knowledge taken from relevant phenomenon. The 

previous knowledge as represented by the prior distribution of the model parameters is then 

combined with the new data through Bayes’ theorem to yield the current knowledge represented 

by the posterior distribution of model parameters. This process of updating information about 

the unknown model parameters is then repeated in a sequential manner as more and more new 

information becomes available. 
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1. INTRODUCTION 

 
Water is an essential requirement for irrigated agriculture, domestic uses, including drinking, 

cooking and sanitation. Declining surface and groundwater quality is regarded as the most serious 

and persistent issue and has become as a global issue effecting the people and the ecosystem. 

Anthropogenic sources of pollution such as agriculture, industry, and municipal waste, contribute 

to the degradation of groundwater quality, which may limit the use of these resources and lead to 

health-risk consequences. For these reasons, the need for intensive groundwater resources 

management has become more urgent.  

 

In this work, we studied the Salalah area of Oman because the groundwater has been an important 

natural resource and the only available water source other than the seasonal rainfall.  

 

Groundwater quality and pollution are determined and measured by comparing physical, 

chemical, biological, microbiological, and radiological quantities and parameters to a set of 

standards and criteria. A criterion is basically a scientific quantity upon which a judgment can be 

based [1]. In this work, however, we considered only the chemical parameters: total dissolved 

solids (TDS), electrical conductivity (EC) and water pH.   
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2. UNCERTAINTY ANALYSIS 
 

The Ministry of Water Resources (MWR) maintains data on the concentration of the harmful 

substances in the groundwater at Taqah monitoring sites, which are located to the south of the 

Sultanate of Oman, in the Salalah plain [2, 3]. We observed that good quality data were obtained 

from several monitoring wells in this region. Because of the lack of monitoring wells in certain 

areas in that region, we filled in the missing measurements with data obtained from Oman Mining 

Company (OMCO) and Ministry of Environmental and Regional Municipalities (MRME) [4]. 

Data for water quality assessment are normally collected from various monitoring wells and then 

analyzed in environmental laboratories in order to measure the concentration of a number of 

water quality constituents. We realized that the methods used by these laboratories do not 

emphasize accuracy. There is a lack of awareness among both laboratory and validation personnel 

regarding the possibility of false positives in environmental data. In order to overcome this 

problem and to have representative data, we, therefore, used the following modified Bayesian 

model to that developed by Banerjee, Planting and Ramirez [6], to preprocessing the datasets 

used for the development of the Bayesian Networks. 

 

2.1. Bayesian Models 

 
The formulation of the model is as follows: 

  

Let S denote a particular hazardous constituent of interest. Since the concentration of the 

substance may vary from well to another, it is necessary to consider each well separately. Let xt= 

(xt1, xt2, xt3, xtm) be the vector of m measurements of the concentration of S in m distinct water 

samples from a given well at a given sampling occasion where (m>=1) and (t=1, 2, . . .). Each 

measurement consists of the true concentration of S plus an error. 

  

Let Xt be the true concentration of S in the groundwater at sampling occasion t. If we assume that 

the true concentration Xt is unknown and is a random variable, the model evaluates the posterior 

distribution of Xt given the sample measurements xt at sampling occasion t.  

 

Using the normality assumption and given Xt = xt and δ2, the concentration measurements in xt 

represent a random sample of size m for random distribution with mean xt and variance δ
2
. 

 

We assume that the parameters xt and δ2 of the normal distribution are random variables with 

certain prior probability distribution. Therefore, the model for prior distribution of Xt and δ
2
 can 

be presented as follows: 

 

For t =1, 2… and given δ
2
 the conditional distribution of Xt at sampling occasion t is a normal 

distribution with mean µt-1 and variance δ2
t-1 δ

2.  The marginal distribution of δ2 is an inverted 

gamma distribution with parameter βt-1 and νt-1.  

 

This model uses the following prior distribution, which represents the concentration 

measurements before the first sampling.   

 

The pdf of the prior distribution of X0 is: 
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which is the pdf of the student’s t-distribution with 2v0 degrees of freedom, location parameters 

µ0 and variance δ0
2β0/ν0.  

 

Now suppose that the observations are available on the concentration of S, given the sample Xt 

the posterior marginal distribution of Xt is a student’s t-distribution with 2vt degree of freedom, 

location parameters µt and variance δt βt/νt where the pdf has the form:  
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It is obvious from the equation of µt the sequential nature of this posterior distribution. Therefore, 

in order to present the true unknown concentration of the substance S in the well under 

consideration, it is frequently more convenient to put a range (or interval) which contains most of 

the posterior probability. Such intervals are called highest posterior density (HPD) intervals. Thus 

for a given probability content of (1-α), 0< α<1, a 100(1- α) percent HPD interval for Xt, is given 

by: 

                      

tttvt t
t νβσαµ )2/(2±

                                                                                                   (2.4) 

when t2vt(α/2) is the 100(1- α/2) percentile of the student’s t-distribution with 2vt degree of 

freedom. 

 

2.2. Bayesian Algorithm 

 
In brief, the monitoring algorithm, which is based on the Bayesian model, is as follows: 

 

(1) Fix a value of α (0< α <1) based on the desired confidence level. In this case, we chose α 

to be 0.01. 

 

(2) Since we do not have enough data to work with, we used the same parameters of the prior 

distribution used in the model of Banerjee, Plantinga and Ramirez. These parameters are : 

β0=  0.0073 , ν0=2.336 , µ0= 9.53 , δ0
2 =3056.34  
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(3) At each sampling occasion  t , ( t= 1,2,...), compute the parameters βt , νt , µt and δt of the 

posterior distribution Xt given the set of observations in xt on the concentration of S 

available from a given well in a given site using  (2.3). Compute LHPD and UHPD using 

these parameter estimates and (2.4). 

 

(4) Plot µt, LHPD, and UHPD that are obtained in step 3 above against sampling occasion t. 

 

(5) For the next sampling occasion, update the values of the parameters βt, νt, µt and δt using 

(2.3) and the datasets just obtained. Recomputed LHPD, and UHPD using the updated 

parameter values in (2.4) and repeat step 4 above. 

 

Some of these datasets needed to be scaled down using the following normalization technique: 
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2.3. Implementation 

 
The pre-processing system is implemented on PC platform using Visual Basic programming 

language.  

 

Table 1 presents the concentration data for TDS (Total Dissolved Solids) for Well 001/577 in the 

Taqah area. In particular, the table shows the true concentration data for TDS produced by our 

pre-processing system. 
 

Table 1.  Concentration Data of TDS for Well001/577 in the Salalah plain, where OC stands for Observed 

Concentration and ETC stands for Expected True Concentration. 

 

Te OC LHPD ETC UHPD 

84 1.147 0.85 1.15 1.45 

85 1.106 1 1.13 1.26 

86 1.938 1.12 1.4 1.68 

87 2.237 1.33 1.61 1.88 

88 3.857 1.6 2.06 2.52 

89 3.834 1.91 2.35 2.79 

90 3.957 2.18 2.58 2.98 

91 3.761 2.38 2.73 3.08 

92 4.3 2.58 2.9 3.23 

93 3.958 2.72 3.01 3.3 

94 1 2.54 2.83 3.11 

95 3.714 2.64 2.9 3.16 

96 3.65 2.73 2.96 3.19 

97 3.381 2.78 2.99 3.2 

98 3.396 2.83 3.02 3.2 

99 3.477 2.87 3.04 3.22 

00 3.498 2.91 3.07 3.23 

01 3.23 2.93 3.08 3.23 

02 3.243 2.95 3.09 3.22 

03 3.267 2.97 3.1 3.22 

04 3.297 2.99 3.11 3.22 
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3. BAYESIAN NETWORKS 

 
After the pre-processing stage, we constructed a Bayesian Network (BN) by using the Hugin 

system.  We then used this BN as an initial building network for the construction of two Dynamic 

Bayesian Networks in order to predict the impact of pollution on groundwater quality.  

 

3.1. Dynamic Bayesian Networks (DBNs) 

 
DBNs extend Bayesian Networks from static domains to dynamic domains [7, 8]. This is 

achieved by introducing relevant temporal dependencies between the representations of the static 

network at different times.  

 

The main characteristic of DBNs is as follows: 

 

Let Xt be the state of the system at time t, and assume that 

 

(1) The process is Markovian, i.e.,  

P(Xt/X0, X1, . . ., Xt-1)= P(Xt/Xt-1) 

 

(2) The process is stationary or time-invariant, i.e., 

P(Xt/Xt-1) is the same for every t. 

 

Therefore, we just need P(X0), which is a static Bayesian network (BN), and P(Xt/Xt-1), which is a 

network fragment, where the variables in Xt-1 have no parents, in order to have a Dynamic 

Bayesian Network (DBN). 

 

3.2. Bayesian Networks Development 

 
Among more than twenty wells in the Taqah area, we selected only four wells for this study. 

Those four wells have had, to the greatest extent, complete data measurements and provide 

sufficient information for the assessment of the groundwater quality for this area. 

 

The electrical conductivity (EC) of the water has been used as a measure for the salinity hazard of 

the groundwater used for irrigation in the Salalah plain. The total dissolved solid (TDS) limit is 

600 mg/L, which is the objective of the current plan of the MWR. TDS contains several dissolved 

solids but 90% of its concentration is made up of six constituents. These are: sodium Na, 

magnesium Mg, calcium Ca, chloride Cl, bicarbonate HCO3 and sulfate SO4. We, therefore, 

considered only these elements in the calculation of TDS.  

 

We also used the following relationship between TDS and EC. 

 

TDS = A * EC; where A is a constant with value between 0.65 and 0.77. 

 

Both TDS and EC can affect water acidity or water pH. Solute chemical constituents are variable 

in high concentration at lower pH (higher acidity). On the other hand, acidity allows migration of 

hydrogen ions (H+), which is an indication of conductivity. Therefore, our work concentrated on 

the following relations. 

TDS � EC, EC � pH, TDS � pH 

 

Reaching to these relations we used two learning approaches to construct and parameterize a 

simple static BN that have three nodes, each node represents a groundwater quality constituent 



402 Computer Science & Information Technology (CS & IT) 

 

(TDS, EC or pH). Learning basically consists of two different components: 1) learning the 

network structure, 2) learning the conditional probability distributions.  

 

For the first component, we used the Hugin system that supports structure and parameter learning 

in Bayesian networks. We also developed a program written in C++ to generate the conditional 

probabilities for TDS, EC and pH using Table 2 as input.  

 

Once the static BN model (static model) for each monitoring well was built, parameterized and 

tested, we used these models as initial building networks in the construction of OOBNs.  Figure 1 

models the time slices for each well characterizing the temporal nature of identical model 

structures, where the initial building network, see Figure 2, describes a generic time-sliced 

network. 

 
Table 2. TDS,  EC, and pH data for the well Well 001/577. 

 

Yr TDS 

mg/L 

EC 

µS/cm 

pH 

84 542.7 548 7.85 

85 525.5 548 7.8 

86 565.4 579 7.75 

87 604.2 588 7.57 

88 541.8 601 7.43 

89 565.9 625 7.34 

90 558.6 638 7.32 

91 640.4 798 7.27 

92 754.5 739 7.24 

93 798.7 758 7.28 

94 746.4 799 7.29 

95 615.8 514 7.3 

96 737.5 619 7.28 

97 753.6 869 7.19 

98 935.6 558 7.15 

99 1174 855 7.15 

0 1021 796 7.06 

1 1067 855 6.98 

2 1223 844 6.94 

3 1055 881 6.9 
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Figure 1. The OOBN representing three time-sliced networks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. The initial building block representing one time-sliced network 

 

4. USING CLASSICAL TIME SERIES FOR THE ASSESSMENT OF 

GROUNDWATER QUALITY 

 
The purpose of this section is to apply the classical time series analysis to groundwater quality 

data and to compare the results with that obtained by the application of Dynamic Bayesian 

Networks (DBNs). The continuous and regular monitoring data of electrical conductivity (EC), 

total dissolved solid (TDS), pH measured by the Ministry of Water Resources (MWR) were also 

used here for the time series analysis.  

 

Time series analyses of water supply wells with respect to the concentration of chemical 

constituents are presented in Figures 3-8.   
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Total dissolved solids (TDS) are a measure of the dissolved minerals in water and also a measure 

of drinking water quality. There is a secondary drinking water standard of 500 milligrams per liter 

(mg/L) TDS; water exceeding this level tastes salty. Groundwater with TDS levels greater than 

1500 mg/L is considered too saline to be a good source of drinking water. Figure 3 shows the 

concentration of TDS for the well Well001/577 for a period of twenty one years. 

  

The fluctuation of the concentration of the chloride (Cl), sodium (Na), and calcium (Ca) with 

respect to time is shown in Figure 5.  The values were averaged during the initial analysis as there 

were no significant differences among the monthly data. Chloride values above 250 mg/l give a 

slight salty taste to water which is objectionable by many people.   

 

Relationships between TDS, EC and pH are examined using multiple regression analysis, see 

Figure 5. Multiple regression analysis is used to explain as much variation observed in the 

response variable as possible, while minimizing unexplained variation from “noise”.  The results 

of this analysis are used to produce the moving average chart, Figure 7, and the linear regression 

chart, Figure 8.  We used Excel Business Tools, Microsoft Excel, and Matlab for producing these 

and other charts. 
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Figure 3. Fluctuation of TDS concentration for the well Well001/577 
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Figure 4. EC concentration is poorly represented for the well Well001/577 
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Figure 5. Fluctuation of the concentration of the major chemical constituents for Well001/577 for a period 

of 21 years 

 

 
 

Figure 6. Excel templates for financial analysis and business productivity from Excel Business Tools 

 

As is shown in Figure 5 that the trend is as follows: 

 

TrendWQ=19.01*TDS - 5.42*EC -270.16*pH + 205.14 
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Figure 7. Moving average chart of 2-year period for groundwater quality trend 
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Figure 8. A curve fitting chart showing groundwater quality trend over time 

 

Figure 7 shows the groundwater quality trend over time (linear regression). The trend has the 

following properties: 

 

Linear model Poly1: 

f(x) = p1*x + p2 

Coefficients (with 95% confidence bounds): 

p1 = 0.8954 (0.7962, 0.9947) 

p2 = 1.332 (0.08589, 2.579) 

Goodness of fit: 

SSE: 32.91 

R-square: 0.9494 

Adjusted R-square: 0.9467 

RMSE: 1.316 

 

Although the classical time series models are used here to assess the presence and strength of 

temporal patterns of groundwater quality. These models are based on the assumption of stationary 

(i.e. time invariant). They have been widely used in many domains such as financial data and 

weather forecasting. Yet these models do not readily adapt to domains with dynamically changing 

model characteristics, as is the case with groundwater quality assessment. In addition to the above 

mentioned assumption, the classical models are restricted in their ability to represent the general 

probabilistic dependency among the domain variables and they fail to incorporate prior 

knowledge.  

 

The observed groundwater quality data are irregularly spaced and not predetermined as in the 

case with ordinary time series. This may cause the traditional time series techniques to be 

ineffective (Prediction: what is the predicted value for one period a head). It is evident that the 

time series casts doubts on the positive or negative effects of any chemical constituent on the 

groundwater quality for the long run, and is thus not as clear and reliable as in the case of using 

Dynamic Bayesian Techniques. While some groundwater quality constituents, such as chloride 

and TDS, show an increasing trend, the other constituents, such as pH, Mg, and SO4 do not 

demonstrate obvious trends. Therefore, we can draw a reliable conclusion on the cause of the 

increasing trend of the groundwater quality and we cannot investigate the effect of the increasing 

or decreasing other constituents, such as pH and EC. In addition to this ignorance of the cause-

effect relationships, classical time series models assume the linearity in the relationships among 

variables and normality of their probability distributions. 
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5. CONCLUSION AND FURTHER WORK 

 
This work presents the assessment of groundwater quality. Bayesian methods have been 

investigated and shown to offer considerable potential for use in groundwater quality prediction. 

These methods are based on reasoning under conditions of uncertainty. This work is the first step 

towards having a comprehensive network that contains the other variables that are considered by 

the researchers significant for the assessment of groundwater quality in the Salalah plain in 

particular.  

 

Also we showed that the classical time series models do not readily adapt to domains with 

dynamically changing model characteristics, as is the case with groundwater quality assessment. 

This is mainly because these models are restricted in their ability to represent the general 

probabilistic dependency among the domain variables and they fail to incorporate prior 

knowledge.  

 

REFERENCES 

 
[1] Wu-Seng, L. 1993. Water Quality Modeling, CRC Press, Inc.  

[2] Dames and Moore. 1992. Investigation of The Quality of Groundwater Abstracted from the Salalah 

Plain: Dhofar Municipality, Final Report. 

[3] Ministry of Water Resources (MWR), Sultanate of Oman. 2004. Law on the Protection of Water 

Resources, promulgated by Decree of the Sultan No. 29 of 2004, and its implementing regulations 

(Regulations for the organization of wells and aflaj, and Regulations for the use of water desalination 

units on wells), (in Arabic). 

[4] Shihab, K. and Al-Chalabi, N. 2004. Treatments of Water Quality Using Bayesian Reasoning, Lecture 

Notes in Computer Science, 3029, 728–738. 

[5] Shihab, K and Nida Al-Chalabi, 2007. Dynamic Modeling of Groundwater Quality Using Bayesian 

Techniques, Journal of the American Water Resources Association (JAWRA), Blackwell Publishing 

(Online Blackwell Synergy),  Vol. 43, No. 3, pp. 664-674. 

[6] Banerjee A. K. et al. 1985. TR no. 773, Monitoring groundwater quality, Department of Statistics, 

University of Wisconsin. 

[7] HUGIN Expert Brochure. 2005. HUGIN Expert A/S, P. O.Box 8201 DK-9220, Aalborg, Denmark, 

(http://www.hugin.com). 

[8] Kjaerulff, U. 1995. dHugin: A computational system for dynamic time-sliced Bayesian Networks, 

International Journal of Forecasting, 11, 89-111. 

[9] Shihab, K. 2008. Analysis of Water Chemical Contaminants: A Comparative Study, Applied 

Artificial Intelligence (AAI), Vol 22, No. 4, pp. 352-376. 

 

 


