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ABSTRACT 

 
This paper presents a solution to real-world delivery problems for home delivery services where 

a large number of roads exist in cities and the traffic on the roads rapidly changes with time. 

The methodology for finding the shortest-travel-time tour includes a hybrid meta-heuristic that 

combines ant colony optimization with Dijkstra’s algorithm, a search technique that uses both 

real-time traffic and predicted traffic, and a way to use a real-world road map and measured 

traffic in Japan. Experimental results using a map of central Tokyo and historical traffic data 

indicate that the proposed method can find a better solution than conventional methods. 
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1. INTRODUCTION 

 
Ant colony optimization (ACO) is a stochastic search algorithm for problem solving that takes 

inspiration from the foraging behaviors of ants. The main idea of ACO rests on the indirect 

communication among individuals in an ant colony based on the pheromone trails that real ants 

use for communication. ACO has been formalized into a meta-heuristic for combinatorial 

optimization problems by Dorigo et al., and many applications are now available [1]–[3]. In 

particular, many studies on ACO have been performed using the traveling salesman problem 

(TSP [4]), and it has been shown that ACO is superior to other meta-heuristics [5] [6] for this type 

of problem. 

 

In this paper, we deal with real-world delivery problems (RWDPs) for home delivery services as 

an extension of the TSP, where a large number of roads exist in cities and the traffic on the roads 

rapidly changes with time. This scenario reflects the typical traffic congestion in a wide area 

urban road network. 
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The problems that deal with finding optimal tours with time-dependent travel time have been 

studied as TSPs, delivery problems [7], and vehicle routing problems [8]. Conventional problem-

solving methods using ACO repeat a search when the traffic flow changes during movement [9]–

[11]. However, finding the global optimal solution by this method is difficult because when the 

traffic changes rapidly, the information obtained from an old search may not be helpful. 

Furthermore, research based on real road maps and traffic information services in the real world 

is seldom found.  

 

In this paper, we propose a new method to solve RWDPs using ACO and Dijkstra’s algorithm. 

(DA). Search techniques based on only the predicted traffic have previously been presented for 

real-world time-dependent vehicle routing problems using ACO [12], an evolution strategy [13], 

and a genetic algorithm [14]. When these methods make mistakes with the prediction values, 

solution accuracy may deteriorate. The proposed method aims at improving the accuracy by 

combining real-time data with predicted traffic data that can actually be obtained. 

 

In the following section, we start by describing the problem. Then, we detail the algorithm of the 

proposed method. Finally, we present the results of experiments using a map of central Tokyo and 

real traffic data. 

 

2. PROBLEM DESCRIPTION 

 
In this paper, we regard the RWDP as an extension of the TSP: a vehicle starts from a depot, 

visits all customers without any time constraint, and finally returns to the depot. This type of 

problem is also called a one-to-many-to-one delivery problem [7]. Here, we first describe the 

time-dependent TSP (TDTSP) and the calculation of the tour travel time and then explain the 

RWDP and a traffic information service in the real world. Finally, a brief account of ACO will be 

given. 

 

2.1. Time-Dependent Traveling Salesman Problem 

 
The TSP [4] can be represented by a complete graph G = (N, A), where N is a set of nodes, i.e. 

cities, n = |N| is the number of nodes, and A is the set of arcs fully connecting the nodes. Each arc 

(i, j)∈A is assigned a value di,j (=dj,i), which represents the distance between nodes i and j. The 

TSP then is the problem of finding the shortest closed tour that visits each of the nodes of G 

exactly once. The TSP instances used in this paper are taken from the TSPLIB benchmark library 

[15]. 

 

The TDTSP extends the original TSP so that traffic congestion can be included. Let Ti,j (t) be the 

travel time between nodes i and j at time t; Ti,j (0) means the original travel time of a given TSP, 

i.e. Ti,j (0) = di,j. Traffic congestion can be represented by a change in the travel time. Here, this 

change is defined by the following formula, where ∆t is an updated interval of travel time, Rjam 

and Bupper are constants showing the rate and the upper bound of traffic congestion, respectively, 

and rand∈[–1, 1] is a uniform random number. The time when a salesman leaves city 1 is set to t 

= 0, and he always starts from and returns to city 1. 
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Tmax = di,j × Bupper  

Tmin = di,j 

 

In the following, the time required to travel around a tour is called the tour travel time. The tour 

travel time for solution S can be calculated by the following formulas, where ti is the time when a 

salesman reaches node i: 
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2.2. Real-World Delivery Problem 

 
The RWDP can be represented by a quadruple G

RW 
= (N

RW
, A

RW
, M

RW
, T

RW
), where N

RW 
= {Ci | i = 

1, ..., n}, C1 is a depot and {C2, ..., Cn} is a set of customers, A
RW 

= {Ri,j(ti) | i, j = 1, ..., n (i≠j)} is 

the set of optimal routes from Ci to Cj at time ti when a vehicle reaches Ci, and MRW and TRW are a 

road map and a set of time-series traffic data in the real world, respectively. Each Ri,j(ti), generally 

≠Rj,i(ti), can be calculated using T
RW

 on M
RW

. It is necessary to calculate the optimal route between 

customers in RWDPs, while the distance between cities is given in TSPs. The RWDP then is the 

problem of finding a shortest-travel-time tour when a vehicle starts from C1 and returns to C1 

visiting each of the customers {C2, ..., Cn} exactly once. 

 

The road map M
RW used in this paper is the standard map database that is used in actual car 

navigation systems. This map includes all drivable roads in Japan and its format was developed 

and established by the Navigation System Researchers’ Association. 

 

Historical time-series traffic data T
RW

 are also used to calculate the travel time of a vehicle. In 

Japan, traffic meters are installed at more than 20,000 locations along principal roads throughout 

the country. These meters measure the average travel time of cars passing through specific road 

links at 5-minute intervals. The data so obtained is collected at a traffic information center and 

provided to subscribers in real time. Figure 1 shows an example of time-series traffic data. The 

vertical axis represents the average speed of cars on a link calculated directly from the traffic data. 

In this figure, data in the range of 0:00 to 5:00, 5:00 to 8:00, 8:00 to 18:00, and 18:00 to 20:00 

correspond to no congestion, outbreak of congestion, heavy congestion, and dissolution of 

congestion, respectively. Thus, time-series traffic data is highly nonlinear, which makes it difficult 

to perform accurate predictions. Application to real-world scenarios must take the prediction error 

rate into consideration. 
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Figure 1. Example of time-series traffic data. 
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2.3. Ant Colony Optimization 

 
The generic ACO meta-heuristic [1] is shown below. After initialization, the meta-heuristic 

iterates over two phases. First, a number of solutions are constructed by the ants, and second, the 

pheromone trails are updated. 

 

Procedure ACO ( ) 

Set parameters; 

Initialize pheromone trails; 

While (terminal condition not met) { 

           Construct ant solutions; 

           Update pheromone; 

} 

 

There have been many attempts to improve the performance of ACO. Max-Min Ant System 

(MMAS) has demonstrated an especially impressive performance [1], so we used the MMAS, 

except for constructing the ant solution described in section 3.3, as the ACO in the proposed 

method. 

 

3. PROPOSED METHOD 

 
3.1. Configuration of System and Data Flow 

 
Figure 2 shows the configuration and the data flow of the proposed system. A target road map 

including the depot and all customers is prepared along with the historical traffic data for 

principal roads on the road map. The latter are required for the prediction. The real-time traffic 

data for the principal roads are input at ∆t intervals, so updating the travel time and recalculating 

the predicted traffic are performed at this interval. The prediction system, as we have already 

reported [17] [18], has an interpolation function as well as a prediction function. This system can 

estimate traffic on roads not installed with detectors from the traffic on roads installed with 

detectors. The other systems and data in Fig. 2 are described in the following sections. 

 

3.2. General Procedure 

 
The general procedure of the proposed method is shown in Fig. 3. The index i in the outermost 

loop corresponds to the turn at which a vehicle visits customers. While the vehicle is moving, the 

search is repeated. When the vehicle reaches the next customer, if new traffic data is available, a 

new tour is constructed, where k is an ant number, Cl(i) is the i-th customer to which the ant moves, 

S
ib
 is the best solution in the current iteration, and S

gb
 is the best solution found since the first 

iteration. Constructing a tour by hybrid ACO is described in the next section. 

 

3.3. Constructing a Tour by Hybrid ACO 

 
In the proposed method, the routes between customers are planned by Dijkstra’s algorithm (DA) 

and the turn of visiting customers is constructed by ACO. The DA is widely used as a route 

planning method, and ACO is superior to other meta-heuristics including genetic algorithms [5] 

and simulated annealing [6] in terms of constructing a tour. 

 

When the ant k is at the customer Ci in constructing a tour, the customer to which the ant k moves 

next can be selected as follows. 
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[Step 1] The DA calculates the shortest-travel-time routes using predicted traffic for all roads at 

time ti: {Ri,j(ti) | Cj∈N
k}, where N 

k is the set of customers not yet visited by the ant k 

and ti is the time when a vehicle reaches Ci. 

 

[Step 2] Selection probabilities for all Cj∈N
k are calculated by the following formulas, where 

τi,j is a pheromone on Ri,j(ti), ηi,j(ti) is a heuristic value, Ti,j(ti) is a travel time between Ci 

and Cj, and α and β are constants. 
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[Step 3] Select a customer according to the probabilities above. 

 

 

Figure 2.  Configuration and data flow of proposed system. 
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Figure 3. General procedure of proposed method. 

 

4. EXPERIMENTS 

 
4.1. Experiments with TSP Instances (TDTSP) 

 
4.1.1. Experimental Methods 

 
To evaluate how well the proposed method performs, we first conducted experiments using the 

TSP instances eil51, eil76, kroA100, u159, and d198 from the TSPLIB [15]. The number of cities 

seems small in TSPLIB. However, considering correspondence with real-world problems, since 

the number of cities (or customers) that a salesman (or a vehicle) can visit in one day is at most 

200, this number should be suitable as a scale for benchmark problems. 

 

TDTSPs were generated by the method described in Section 2.1. Constants Rjam and Bupper were 

respectively set to 0.5 and 5 by reference to real-world traffic. Table 1 shows the number of cities, 

the optimal solution known in a static environment, the update interval of travel time in a 

dynamic environment, and the number of updates for each instance. Minutes and seconds are 

assumed as units of travel time for instances {eil51, eil76} and {kroA100, u159, d198}, 

Procedure main ( ) 

Input RWDP; 

for (i = 1 to n-1) { 

if (∆t passed or i = 1) { 

Input TRW(real-time); 

Predict travel time for all roads on M
RW

; 

While (terminal condition not met) { 

for (k = 1 to n) { 

Construct tour from Cl(i) to Cl(n) by hybrid ACO (=S
k); 

Plan route from Cl(n) to depot by DA (=R
k
); 

S
k ← Sk

 + R
k; 

} 

);(minarg k

k

ib
STS =

 

if ( T(Sib) < T(Sgb) ) Sgb=S
ib; 

Update pheromone; 

} 

} 

Move vehicle to next customer according to S
gb

; 

} 

Move vehicle to depot according to Sgb; 
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respectively. The number of updates for each optimal solution was as shown in Table 1. The 

number of updates ranged from 53 to 140—in other words, the traffic flow was changed very 

frequently.  

 

We compared the minimal tour travel time obtained by the proposed method with those by the 

conventional methods below.  

 

- Plain method: Search is conducted once before a vehicle starts using static traffic Ti,j (0). 

- Repeat method [9]–[11]: Search is repeated while a vehicle is moving using real-time traffic 

Ti,j (t). 

- Prediction method [12] [19]: Search is conducted once before a vehicle starts using predicted 

traffic Ti,j (ti). 

- Prediction and repeat method: The proposed method. 

 

We assumed two kinds of prediction errors, i.e., 2% and 5% in Fig. 4. The predicted traffic with 

error rate can be calculated as follows, where error(t) is given by Fig. 4, t is the current time, and 

rand∈[-1, 1] is a uniform random number: 

 

))(1()()( ,, randterrortTtT iijiiji ×+×=′   for prediction method 

))(1()(),( ,, randtterrortTttT iijiiji ×−+×=′  for proposed method 

 

This is based on experience in which short-term prediction has a smaller error rate than long-term 

prediction. For each solution, i.e. tour, obtained in this way, the tour travel time was calculated 

using predicted traffic without error. In addition, the values of parameters of the MMAS were 

those generally used [1]. 

 
Table 1. TSP instances used in experiments and updated travel time. 

 

TSP 
Number of 

cities 

Optimal 

solution 

Update 

interval 

Number of 

updates 

eil51 51 426 5 86 

eil76 76 538 5 108 

kroA100 100 21282 300 71 

u159 159 42080 300 140 

d198 198 15780 300 53 

 

0102030405060
0 30 60 90 120 150Error rate (%) Time (min)

 
 

Figure 4. Relationship between prediction error and time. 

50% 

20% 
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4.1.2. Experimental Results 

 
Table 2 lists the ratio of the tour travel time of each method to the optimal tour travel time. Since 

the optimal solutions of TDTSPs are not known, we assumed that the solution obtained by the 

prediction method without error, which knows the exact travel time on all the links at all times, is 

the optimal solution. Each value in Table 2 is the average of 30 trials using different random 

number sequences; the standard deviation was about 5 to 10%. Table 2 reveals three main 

findings. 

 

- Compared with the plain method, the performances of the other methods are improved. 

- When the prediction error rate becomes large (50%), the prediction method is inferior to the 

repeat method. 

- The proposed method is superior to the other methods, even when the error rate is large 

(50%). 

 
Table 2. Experimental results for TDTSP. Each value indicates the ratio of the tour travel time of each 

method to the optimal tour travel time. 

 

TSP Plain Repeat 
Prediction Prediction + Repeat 

20% 50% 20% 50% 

eil51 1.50  1.31  1.05  1.41  1.02  1.12  

eil75 1.39  1.36  1.29  1.44  1.06  1.10  

kroA100 1.27  1.18  1.16  1.17  1.03  1.05  

u159 1.26  1.27  1.29  1.39  1.03  1.08  

d198 1.55  1.24  1.06  1.26  1.03  1.04  

(Mean) 1.39  1.27  1.17  1.33  1.03  1.08  

 

4.2. Experiments with Real-World Problems (RWDP) 

 
4.2.1. Experimental Methods 

 
Next, to evaluate the proposed method in a real-world environment, we applied it to the RWDP 

described in section 2.2. Figure 5 shows a map of central Tokyo, which was the target area of this 

experiment. This map includes 58,222 links and 19,963 nodes and represents the most congested 

area in Japan. The positions of 100 customers are randomly selected from the nodes. The travel 

time of a vehicle was calculated from historical traffic data on June 17, 2003. An example of the 

data is shown in Fig. 1. We also assumed the prediction error rate in Fig. 4. We performed three 

experiments with the starting time of a vehicle at 6:00 (morning), 12:00 (afternoon), and 18:00 

(night). 

 

4.2.2. Experimental Results 

 

Figure 6 shows examples of the tours obtained by the proposed method. The red and black circles 

indicate a depot and customers, respectively. As shown, the tour depends on the time period. 

Crosses and returns appear in some parts of the tour in 2D, but in the 3D real-world, the tour is a 

complete circuit. Table 3 lists the tour travel time (minutes) of each method. Each value in Table 

3 is the average of 30 trials using different random number sequences, and the standard deviation 

was about 2 to 5%. Table 3 reveals two main findings. 

 

- The same results as the experiments for TDTSPs can be obtained in a real-world environment. 

- The performance of the proposed method does not deteriorate when the prediction error rate 

is large (50%), while that of the prediction method deteriorates. 
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Figure 5. Map of central Tokyo. There are 58,222 links and 19,963 nodes. 

 

 
(a) Morning                               (b) Afternoon                             (c) Evening 

 
Figure 6. Examples of tours obtained by proposed method. 

 
Table 3. Experimental results for RWDP. Each value is shown in minute. 

 

Time Plain Repeat 
Prediction Prediction + Repeat 

20% 50% 20% 50% 

Morning 371  336  308  323  294  294  

Afternoon 349  341  327  336  316  320  

Night 281  266  266  280  265  269  

 

5. CONCLUSIONS 

 
In this paper, we presented three techniques: a hybrid meta-heuristic that combines ACO with 

Dijkstra’s algorithm, a search method that combines repeat and prediction, and a way to use a 

real-world road map and measured traffic data in Japan. The experimental results suggest that the 

proposed method is effective in a wide area road network. The results presented in this paper are 

based on five benchmark problems and a real-world problem. Further investigation using other 

maps and traffic from additional days is necessary. Although the proposed method is for delivery 

problems, the basic idea can be used for other combinatorial optimization problems in networks. 

In future work, we will improve the ACO model and shorten the computational time. 
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