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ABSTRACT 
 
Internet middleboxes such as VPNs, firewalls, and proxies can significantly change handling of 

traffic streams. They play an increasingly important role in various types of IP networks. If end 

hosts can detect them, these hosts can make beneficial, and in some cases, crucial improvements 

in security and performance But because middleboxes have widely varying behavior and effects 

on the traffic they handle, no single technique has been discovered that can detect all of them.  

 

Devising a detection mechanism to detect any particular type of middlebox interference involves 

many design decisions and has numerous dimensions. One approach to assist with the 

complexity of this process is to provide a set of systematic guidelines. This paper is the first 

attempt to introduce a set of general guidelines (as well as the rationale behind them) to assist 

researchers with devising methodologies for end-hosts to detect middleboxes by the end-hosts.  

 

The guidelines presented here take some inspiration from the previous work of other 

researchers using various and often ad hoc approaches. These guidelines, however, are mainly 

based on our own experience with research on the detection of  middleboxes. To assist 

researchers in using these guidelines, we also provide an example of how to bring them into 

play for detection of network compression.  
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1. INTRODUCTION 

 
Abstractly, we often assume that the Internet follows the end-to-end principle, with smart 

endpoints and a dumb network. However, this general picture is very different from the 

capabilities of the latest technologies and the actual Internet is far more complex, with the 

emergence and rapidly growing prevalence of middleboxes deployed at various points in the 

network. 

 

Middleboxes are defined as intermediary devices which take actions other than the normal, 

standard functions of an IP router on the datagram path between a source host and destination 

host [1]. They manipulate traffic for purposes other than simple packet forwarding. In addition to 

routing the traffic, middleboxes can make serious changes to network flows from altering the 
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user-data to more transparent effects such as imposing additional delay on the traffic. These 

influences by third party middleboxes could be for malicious, security, or performance reasons.  

 

A wide variety of middleboxes have been proposed, implemented, and deployed during the last 

decade [2,27,28]. Today's enterprise networks rely on a wide spectrum of specialized applications 

of middleboxes. Middleboxes come in many forms such as proxies, firewalls, IDS, WAN 

optimizers, NATs, and application gateways, and are used for various purposes including 

performance and security improvement and compliance. They are an integral part of today's 

Internet and play an important role in providing high levels of service for many applications. 

Recent papers have shed light on the deployment of these middleboxes [2, 3] to show their 

prevalence. And a recent study [4] shows that the number of different middleboxes in an 

enterprise network often exceeds the number of routers. Trends such as proliferation of 

smartphones and wireless video are set to further expand the range of middlebox applications [5]. 

 

In some cases, middleboxes do indeed exert a real influence on traffic.  In others, they merely act 

as if they are simple routers.  Knowing the presence of middleboxes is most critical in the former 

case, when they are actually doing something to the traffic.  This is also the easier case to detect, 

since a middlebox that does nothing leaves no traces of its presence.  We concentrate on this more 

important case. 

 

Knowing the existence of the influence of middleboxes could be beneficial to the end-hosts. 

Sometimes the end-hosts would behave differently based on what they sense is happening to their 

traffic. In such cases, an accurate detection of what is happening to that traffic is the first step. 

Here, to illustrate this idea, we present a number of scenarios from different categories.  

 

Scenario I 
 
Assume a sender is about to send sensitive data, making encryption necessary. In this case, the 

sender will check to determine if a strong end-to-end encryption (VPN) on the path is deployed. If 

he detects that strong encryption is already in place, to save energy and resources, he might 

choose not to encrypt the traffic stream, since encryption is a relatively expensive operation.  

 

Scenario II 

 
The sender detects that the receiver is using a wireless connection, but is unsure if that connection 

is secure. If he detects that the last link is unencrypted, he would either refrain from sending 

sensitive information or would apply end-to-end encryption to the channel. For example, Amazon 

does not provide end-to-end SSL encryption to its users who are not logged in and does not 

require them to log in until they are about to make the payment. This is perhaps due to lack of 

available resources required to encrypt all users' contents for all users. Amazon servers, to use 

their resources effectively while protecting users' privacy from profiling, could first sense whether 

the user is using a secure wireless connection or not, and then apply end-to-end encryption only if 

the user needs that protection. Conversely, the receiver would mark the incoming data as 

untrusted if he detects that the sender's wireless link is insecure.  

 

Scenario III 

 
An Internet user in an oppressive country might detect Internet censorship imposed by his ISP 

and then chooses to use a proxy to bypass it. In a different scenario, an Internet user detects 

wiretapping on his network and uses evasive techniques such as Tor or a VPN. 

Devising a detection mechanism for middleboxes can be difficult. For instance, detecting a third 

party middlebox that does not alter the user data, from the end hosts’ point of view, is particularly 



Computer Science & Information Technology (CS & IT)                                 115 

 

challenging, since the effect of middleboxes of this class seems transparent to the end hosts. This 

is true if either the third party undoes the changes made to the data before passing it to the 

receiver (e.g., VPN gateways or link-layer compression) or it does not alter the data at all and 

affects the traffic stream similarly to normal network variation (e.g., the delay-attack [6] by a 

compromised node in sensor networks or the Shrew attack [7] that selectively drops packets).  

 

There have been numerous efforts to detect various types of middleboxes in the past [8, 9, 10, 

11]. However, the proposed approaches are ad hoc and mostly designed to detect only specific 

types of middleboxes. Despite these differences, nevertheless, there are common elements in the 

process leading to the design of such methods. These common elements could be identified and 

summarized into general guidelines.  

 

The ultimate objective of this paper is to assist researchers who intend to conduct research 

focused on detection of the interference of middleboxes and introduce them to the potential 

challenges they might face in the process. In addition, we present some recommendations on how 

to overcome those challenges in certain situations.  In other words, the desirable outcome we seek 

here is to assist with devising an accurate detection mechanism in an efficient manner with the 

help of systematic guidelines that have been drawn from past experiences. To the best of our 

knowledge this is the first attempt to devise systematic guidelines for the purpose of assisting 

other researchers. 

 

While introducing the phases and steps of our proposed guidelines, we demonstrate each by 

applying it to an example: end-to-end detection of network compression on the path. The network 

compression detection approach and the corresponding results have been presented in [12] as part 

of our prior work on this subject. 
 

Detecting Network Compression: A Case Study  

 
One way to increase network throughput is to compress data that is being transmitted. Network 

compression may happen at different network layers and in different forms: application layer, 

TCP/IP header [13], IP payload [14], and link layer [15, 16].  

 

Except for application-layer compression, compression happens at intermediate nodes, often 

without the knowledge of end-users. For example, in January 2013, a researcher discovered that 

Nokia had been applying compression to its users' data without their knowledge [16]. In this case, 

the intermediary was surreptitiously decrypting and re-encrypting user packets in order to 

effectively apply compression. Users surely would have preferred to know that this was 

happening, both because of the security risk and because it would render their own application-

level compression unnecessary. 

 

However, performing compression and decompression requires many resources at the 

intermediate nodes, and the resulting overhead can overload the intermediary’s queue, causing 

delay and packet losses. Further, not all commercial routers come with compression capabilities 

[17]. Thus, some intermediaries apply compression, some do not, and generally they do not tell 

end-users whether they do. While managing resources effectively at end-hosts is not as crucial as 

it is at routers, it is still beneficial—particularly for mobile devices where resources are limited. 

Wasting these resources on redundant compression is undesirable. End-hosts can benefit from 

recognizing when compression has already being applied on a network connection. 

Ideally, end-hosts and intermediaries should coordinate their compression decision, but practical 

problems make that ideal unlikely. Therefore, since the end-hosts have the greatest interest in 

proper compression choices for their data, they could detect if intermediate compression is 

present and adjust their behavior accordingly. An end-to-end approach to detect compression by 
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intermediaries can help to save end-host’s resources by not compressing data when intermediaries 

are already doing so. 

 

The remainder of the paper is organized as follows: Section 2 presents the guidelines for a 

detection methodology, followed by related work in Section 3. Section 4 concludes the paper. 

 

 
 

Figure 1: Phases and steps in the guideline. 

 

2. GUIDELINES ON A DETECTION METHODOLOGY 

 
In this section; we present the guidelines for a detection methodology. Later in this section, we 

show that a careful completion of the preliminary phase will lead to a significant reduction of the 

complexity in the design phase. 

 

Our proposed guidelines consists of phases in a sequential order. Figure 1 illustrates the overview 

of the phases. The phases introduced in this guideline are: 

 

• Phase 1: Problem Definition Phase 

• Phase 2: Preliminary Phase 

• Phase 3: Design Phase 

• Phase 4: Evaluation Phase 

 

In the problem definition phase we clearly define the problem and its scope by setting the 

assumptions. The preliminary phase consists of five steps to be followed in the presented order.   

The design phase in this process is when, with the help of information obtained in the preliminary 

phase, the detection algorithm is developed. The evaluation takes place when we validate the 

proposed detection mechanism devised in the design phase.  

 

2.1 Problem Definition Phase 

 
2.1.1 What is it that we want to detect? 

 
What it is that we want to detect should be clearly stated. For instance, the running example we 

use in this paper is that we want to detect the presence of network compression on the path 

between two end-hosts.  
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2.1.2 Assumptions 

 
The scope of the general detection problem is very broad. Many variations of the problem can be 

formulated based on constraints and limitations imposed on the problem: e.g., the method used 

for detection and the degree of detection for the problem. Before we begin with the design of any 

detection mechanism, we should prepare a list of assumptions we make in order to define the 

scope of the problem we aim to solve. 

 

2.1.2.1 Degree of detection 

 
A problem can be formulated to only answer an existential question about whether the network 

flow is influenced by some third-party or not. An instance of this problem can attempt to further 

characterize the influence to discover exactly what the third party is doing to the network flow. 

 

2.1.2.2 Locating the third-party node/link 

 
The problem statement can be phrased in several ways from determining whether the path is 

influenced or not to precisely locating the third-party on the path or the link(s) influenced by it.  

 

2.1.2.3 Method of detection 

 
There are essentially two methods of network measurements for detection available to the end-

hosts: active and passive measurements. Passive measurements have the goal of minimally 

affecting the measured network, by merely monitoring traffic on the network and inferring 

measurements from the observed traffic. Active measurements involve interacting with the 

network to make measurements, usually by sending probe packets. In active measurements, we 

refer to the two end-hosts as the sender and the receiver. Based on how the receiver cooperates (if 

it does) in the detection process, we present three variations to this problem: 

 

A. Receiver is uncooperative 
The receiver does not respond to the sender's requests that are beyond their primary 

purpose of communication. For examples, most web servers expect only HTTP requests 

and responses.  

 

B. Receiver is responsive 
The receiver responds to the sender's requests beyond their primary purpose of 

communication as long as it does not require any changes on the receiver's machine. For 

example, the receiver responds to the sender's ICMP requests. 

 

C. Receiver is cooperative 
The receiver is willing to make necessary changes on its machine or system to fully 

cooperate with the sender in the detection process. 

 

2.1.2.4 Assistance from intermediaries or other parties 

 
If all or some intermediaries on the path are responsive, active measures can also be used to get 

intermediaries to respond with valuable information. In another instance of the problem, the end-

hosts assume that the intermediaries are uncooperative. Another instance of the problem is where 

the end-hosts make use of help from volunteer nodes on the network that are not on the path. 
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2.1.2.5 Detection by comparing to unperturbed channel 

 
One instance of the problem is when end-hosts have a model of the channel in the absence of a 

third-party's influence (perhaps captured in the past). In this case, the presence of the third party 

could be determined by comparing the current network behavior to the model. The other instance 

of this problem, however, is when the end-hosts do not have access to such information. 

 

2.1.2.6 Static vs. dynamic third-party middleboxes 

 
The last instance we address here is whether the middlebox is static or dynamic. In other words 

does its behavior remains unchanged at the time that an end-host is trying to detect it or does the 

third party middlebox notices the end-host’s detection attempt, and hence, evades detection by 

changing its behavior during the detection period. In the latter case, only a stealth detection 

mechanism might be effective. 

 
For our running example, end-to-end detection of network compression, we choose the following 

assumptions, to define the scope of the problem: 

 

Regarding the degree of detection, we only seek to detect the presence of the intentional influence 

on the network flow. This problem is not about specifically locating the third-party or the 

influenced link on the path connecting the end-hosts. We assume end-hosts are fully cooperative 

and can use active measures for detection. However, due to the end-to-end nature of our problem 

definition, we exclude the scenario where the intermediaries are cooperative. For instance, the 

end-hosts should not rely on responses from pings sent to the intermediate routers. For the same 

reason, we exclude the instance where the end-hosts use help from volunteer nodes on the 

network that are not on the path. Furthermore, our proposed problem assumes that the end-hosts 

do not have any model of the unperturbed channel (i.e., in absence of the third party) between the 

end-hosts. We also assume that the end-hosts are not just normal network users and will use their 

resources to any required level (with some limitation on the available resources) in the detection 

process. And lastly, we base our detection methodology on detecting only static middleboxes. 

 

2.2 Preliminary Phase 

 
We believe that when starting on the design of a detection mechanism, it is necessary to carefully 

find answers to the following questions before offering any detection mechanism. In this phase, 

answering the five questions stated below will defines the steps to complete this phase.  

 

In every step of this phase, we ensure that in addition to clearly addressing the question, and the 

scope of it, we also address the following questions about it: (1) Why is having an answer for this 

particular question important, or at least useful in the detection process? (2) What are the 

potential challenges in the process of answering it?  

 

Some of the steps in this phase require a thorough understanding of the current state of 

technology and available tools; some others require careful analysis and examination, and some 

require extensive experimentation. Here, we leave the technical details out of these steps and limit 

ourselves to the high level presentation of the sub-problem and the expected outcome. Clearly, if 

a step requires experimentation that means that even more questions must be answered–such as 

how exactly to implement it, what would be a suitable environment to run it on, or how to prepare 

the experiment environment. 
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1)  The Path Property Step “P”: What important pieces of information about the 

network path properties are available to typical end-hosts? 

 
Similar to any detection process in the real world, special tools are needed to observe and to look 

for signs leading to detection. Hence, it is crucial to know what information and tools are 

available that are observable and measurable, by the end-hosts, in order to utilize them effectively 

for the detection process.  

 

For instance, some network properties such as RTT, packet delay variation, available bandwidth, 

and hop count (leaving out the discussion on the measurement accuracy) can be measured by the 

end-hosts. On the other hand, other invaluable information such as the queue size of the routers 

on the path is normally not available to typical end-hosts. Technically, we are only interested in 

standard methods and tools available for standard computers with standard equipment. For 

instance, we assume that in an end-host, processing time and packet arrival time can be measured 

and its TCP congestion control mechanism's behavior is observable. On the other hand, we 

exclude using irregular methods to obtain some information. For instance, we do not consider 

using measuring electromagnetic emissions to detect the queue size of a router.  

 

Throughout this paper, we refer to the set of all available network properties about the path as P. 

 

Challenges: 

 
• Understanding exactly how well the properties in P can be measured and how the 

existing tools' imprecision and potential inaccuracy in measurements would affect the 

accuracy of the detection mechanism. 

 

Detecting Network Compression: The receiver can measure the arrival time of packets with 

precision on the order of at least micro-seconds.  

 

2) The Influence Characteristics Step “I”: What are the characteristics of the 

influence I? 

 
To detect the presence of I, we must have a way to distinguish I from other types of influences. 

Therefore, it is necessary to find unique, indicative, and distinguishing characteristics of I. 

This step requires gathering and understanding all, if any, publicly available and known 

information about the internal design of the influence in question. A thorough and perhaps 

creative analysis is necessary to find subtle unique characteristics about I that can be used to 

detect it. These characteristics of I will then be exploited to help detect the middlebox. 

Technically, we are mainly interested in observable and measurable effects on elements of P and 

not interested in hidden or non-measurable effects of I. For instance, one characteristic of 

gateway VPNs is the relatively constant delay they impose on every packet due to the 

encryption/decryption time. 

 

Challenges: 

 
• These characteristics are not always obvious and might require a thorough and careful 

examination to find them.  

 

Detecting Network Compression: If compression is placed on the bottleneck of the path, then end-

hosts would potentially sense a higher bandwidth when data with lower entropy is sent. In 

practice, this is the primary, if not the only, objective of employing network compression.  
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3) The Determinant Factors Step “D”: What elements in P are impacted by I (and to 

what extent)? 

 
The values of P, by definition, are all that the end-hosts can know. Therefore, the only way to 

detect I, is by examining the path properties, and by looking at the changes in their values in the 

presence and absence of I.  

 

This is an important step in identifying the factors involved in detecting I. We define D as the set 

of all indicative elements of P in detecting I (D ⊆ P). Intuitively, if the value of a path property 

remains constant in the presence or absence of I, then it is not a helpful piece of information in 

the detection process. It is also important to determine which of these elements are more 

indicative than the others in detecting I. Furthermore, any interdependency relationship between 

members of D must be investigated.  

 

Theoretical analysis could lead to a hypothesis on D, where further experiments could verify it.  

Another approach to this step could be the use of network simulations. One could simulate the 

effects of I in a clean environment (i.e., in the absence of network variation and any types of 

traffic other than the one generated by the detection probes) and look for changes in values of 

various path properties in P. 

 

Challenges: 

 

• How exactly to assess the relative level of importance of d ∈ D in detecting I? 

• How do inaccuracies in measurements influence our findings? 

• How exactly to derive the interdependency relationship between members of D? 

 

Detecting Network Compression: Network compression is designed to improve, and hence should 

affect, the available bandwidth. Therefore, the available bandwidth is a strong candidate as a 

determinant factor that is potentially influenced by network compression. 

 

4) The Normal Network Step “N”: What are the sufficient, yet unavoidable, 

assumptions about the normal network behavior, in the particular network 

environment, required to make any comments on detectability of I feasible? 

 
Even if we make the assumption that the end-hosts have no access to information on the 

unperturbed channel, for any detection mechanism to work, there should be a precise definition 

for the notion of normal behavior to use as a reference point. This is where we define the specific 

network environment (either in high level properties or low level). For instance, if it is multi-hop 

wireless network, then we expect a higher rate packet loss, whereas in a wired network, random 

losses are rare events. Another approach is to impose an upper-bound on the value of RTT. 

 

These are conditions, assumptions, and constraints on the elements of D. But only those that are 

in D are significant, because P - D, by definition, is expected to remain relatively constant. 

Hence, there is no need to check whether they have deviated from normal behavior.  

 

Basically, the violation of assumptions on the elements of D would be used to indicate the 

existence of deviations from normal network behavior. 

 

Challenges: 

 
• What is precisely “normal” and how do we define it? 
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• It is crucial to come up with not only correct, but tight assumptions about normal network 

behavior. Failing to arrive at correct assumptions would lead to false positives. On the 

other hand, loose assumptions almost certainly lead to undesirable false negatives.  

 

Detecting Network Compression: In a normal network (i.e., in the absence of compression on the 

path), all packets of the same size are treated equally regardless of the data entropy of the content 

of their payloads. 

 

5) The Network Variation Step “V”: Does normal network variations (e.g., network 

congestion, load balancing effects, link failures, and dynamic routing effects) 

influence the end-to-end detection of I? 

 
Any proposed detection mechanism should work in a real network. An approach that only works 

in a controlled and isolated environment is not very useful.  

 

If the answer is “no” to the question posed in this step, then we can completely skip this step. For 

instance, detecting a third party that sends out spoofed control packets is not affected by normal 

network variation. 

 

However, if the answer is “yes” (which is the case for all delay and loss-based influences), then 

we proceed to the following questions. 

 

• What is the specific set of normal network variation that we care about in the detection 

process, V?  For instance, one could focus only on network congestion due to its 

popularity. 

• How well is I distinguishable from effects of V? 

 

Note that it is generally true that congestion usually hinders the detectability of loss or delay-

based influences.  Clearly, if congestion, in some cases, helps the detection process, one could 

impose network congestion to makes detectability easier. 

 

Challenges: 

 
• Network variations that resemble normal loss and delay in the network are particularly 

challenging. This is because intentional and normal loss or delay in those cases are 

perhaps not easily distinguishable. This leads to another issue: how is I distinguishable 

from V? 

• Active probing used for the detection process may contribute to network congestion. 

 

Detecting Network Compression: Congestion influences the available bandwidth. 

 

2.3 Design Phase 

 
This is a crucial phase in the process where we use the information obtained in the preliminary 

phase to produce the detection algorithm. The design phase requires creativity and knowledge of 

the subject to use the information gathered in the previous phases. We recommend testing the 

initial approach in a simulated environment to verify the approach. Then information from Step V 

could be incorporated to produce an approach that works well in real networks. Again, we 

emphasize that the goal is to detect the middlebox’s interference or influence on the traffic flow 

and if it is not interfering with the network, whether it is detectable or not is not an objective of 

this paper. Also, note that ∀d ∈ D is used in the detection mechanism, and inaccuracies involved 

in measuring each element d must be taken into consideration. 
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Using the example of detecting network compression we show how the information obtained 

from the previous phases could lead to the design of an approach that to detects this particular 

influence.  

 

Detecting Network Compression: To detect if compression is provided on the network we exploit 

the unique effects of compression on network flows. Assuming the original packets are of the 

same size, compressed low entropy data packets are expected to be considerably smaller than 

compressed packets containing high entropy data (the sensed bandwidth is vastly different), 

which in turn leads to a shorter transmission delay. Based on these facts, the sketch of our 

approach is as follows: 

 

Send a train of fixed-size packets back-to-back with payloads consisting of only low entropy data. 

Then send a similar train of packets, except these payloads contain high entropy data instead. The 

receiver then measures the arrival times of the first and the last packet in the train, independently 

for low entropy (
1Lt and 

NLt , where N is the number of packets in a single train) and high 

entropy (
1Ht and 

NHt  ) packet trains. Note from step P of the preliminary phase that the typical 

machines are capable of measuring the arrival time of packets with a precision on the order of at 

least micro-seconds. Since the number of packets in the two trains is known, and all of the 

packets have the same uncompressed size, the following inequality will hold if some kind of a 

network compression is performed on the path: 

                                                                                     
Lt∆ =

NLt 1Lt− < Ht∆ =
NHt 1Ht−

 

 

This inequality suggests that the total set of highly compressible low entropy packets gets to the 

destination faster than the set of less compressible high entropy packets since the available 

bandwidth is better utilized by compression. Conversely, if the packets are not being compressed 

by any intermediary, then the two sides of the inequality should be almost equal. This suggests 

that a threshold should be specified to distinguish effects of compression from normal Internet 

variabilities:  

                                                                                  Ht∆ Lt∆− τ>
 

 

The underlying rationale behind this approach is that because of the presence of network 

compression on the bottleneck link, the receiving party should sense a relatively higher 

bandwidth when the train of low entropy data is sent. This is because the same amount of data is 

received in both cases, but in a significantly shorter period of time when low entropy data is used. 

 

2.4 Evaluation Phase: 

 
Any proposed detection mechanism must be not only validated, but also evaluated under certain 

or all network conditions to confirm that it successfully detects the influence in question. This 

requires answers for questions such as: 

 

1)  How can we validate/evaluate our proposed detection algorithm? 

2) How confident are we in the results of the evaluation system? 

3) What metrics should we use to evaluate our detection mechanism?   

4) Does the testbed used to validate our proposed detection mechanism have any 

shortcomings that would impact the accuracy of evaluation of our detection mechanism? 

 

As an example, let’s examine perhaps the most popular testbed used in the research community 

for Internet measurements: PlanetLab [18]. PlanetLab is widely used by the research community 
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and is generally a suitable candidate for such purposes. For every researcher working on 

PlanetLab there is a need to know what bias the system introduces in the collected experiment 

results. For instance, one should keep in mind that PlanetLab is not completely representative of 

the current Internet. This testbed is all about small, long running services in specific locations. 

There are also some shortcomings associated in the use of PlanetLab as well. For instance, we 

normally have very little, if any at all, control over the actual path between the chosen sender and 

receiver. Depending on the nature of the experiment, this could make PlanetLab somewhat 

ineffective. 

 

Challenges: 

 
• Find a platform to test the proposed detection mechanism on a global testbed, specifically 

one that allows us to possibly overload its nodes, if needed. It is highly desirable that the 

chosen testbed gives us some control over or information about the path between the 

nodes. Known as the ground truth problem, this is a fundamental challenge in validating 

detection mechanisms and the majority of previous research has acknowledged this 

problem to some extent. For instance, how are we going to evaluate our compression 

detection mechanism if we do not know whether link compression exists on the path 

between two nodes of the testbed? 

• What metrics should be used in the evaluation process and how do we accurately measure 

them: e.g., false positive rate, detection rate, performance overhead, and packet delivery 

rate? 

• Is there a need for a general evaluation system that applies to detecting all influences? 

How feasible is this idea? 

• Recent studies, suggests that testbed results for Internet systems do not always extend to 

the targeted deployment. For example, Ledie et al. [19] and Agarwal et al. [20] show that 

network positioning systems perform much worse “in the wild” than in PlanetLab 

deployment. Identifying such inconsistencies to avoid false claims is not trivial.  

 

3. RELATED WORK 

 
While our work is the first attempt to introduce general guidelines for devising detecting 

methodologies for middleboxes, there has been much work in the past that proposed various 

approaches to detect middleboxes’ interference on traffic flows. In this section, we briefly present 

some of that work that has mainly security applications or implications.  

 

Very few and even more specific works focused on detecting intentional delaying and dropping 

of selective packets for malicious reasons. Song et al. [5] propose two different approaches to 

detect and further accommodate delay attacks in wireless sensor networks. Kuzmanovic et al. [21] 

identify TCP victims (as the first step to detect the attacker) by monitoring their drop rates to help 

mitigate low-rate TCP-targeted attacks. 

 

Other approaches introduced methodologies to detect middleboxes that send spoofed control 

packets on behalf of the other party. BTTest [22] focuses on detecting BitTorrent traffic blocking 

by ISPs that use forged TCP RST packets. Weaver et al. [23] also introduce a method to detect 

connection disruptions via forged TCP RST packets, but they focused only on detecting the 

method that China's Great Firewall uses.  

 

FireCracker [24] proposes a framework that, through tailored probes, could be used to blindly 

discover a firewall policy remotely as a blackbox and without prior knowledge about the network 

configuration.  In a more recent work, SymNet [25] proposes a static analysis technique that can 

model stateful middleboxes such as stateful firewalls and IDSs. There basis also been work on 
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detecting middleboxes that modify TCP Fields. Tracebox [26] detects middleboxes that modify 

TCP sequence and acknowledgement numbers, as well as TCP MSS option. Glasnost [11], on the 

other hand, detects modified TCP advertised window size. Detecting traffic discrimination has 

drawn more research attention than detecting other types of middleboxes. The majority of such 

detection mechanisms [8, 9, 11] use the relative discrimination technique, where they test each 

application (the measured flow) against a flow that is assumed to be non-discriminated (the 

baseline flow).  

 

4. CONCLUDING REMARKS 

 
In this paper we present a set of general guidelines to assist researchers with devising end-to-end 

detection methodologies for detecting middleboxes. More detailed, low-level guidelines could 

provide support for more specific design decisions. While more detailed guidelines arise left for 

future work, we still need to be careful not to lose the generality of the guidelines here. For 

instance, the evaluation phase might be generalized into a general evaluation methodology that 

can be used to validate all methodologies for detecting middleboxes. 

 

We have presented a detailed case study using our proposed guidelines for detecting network 

compression. Evaluating the outcome of this work is difficult because it is rather a qualitative 

assessment. While the results are encouraging, more case studies will help to assess the 

effectiveness of this guideline. 
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