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ABSTRACT 

 
Model transformation is widely recognized as a key issue in model engineering approaches. In 

previous work, we have developed an ATL transformation that implements a strategy to obtain a 

set of Raise Specification Language (RSL) modules from Feature Models (FM). In this paper, 

we present an improvement to this strategy by defining another complementary and independent 

model, allowing the incorporation of traceability information to the original transformation. 

The proposed mechanism allows capturing and representing the relationships created by the 

application of the transformation rules. 
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1. INTRODUCTION 

 
As formal methods offer a wide spectrum of possible paths towards designing high-quality 

software, in the academia and the industry have adopted them as an alternative of development, 

especially where safety or security is important [1]. By using formal methods early in the 

software development process, ambiguities, incompleteness, inconsistencies, errors, or 

misunderstandings can be detected, avoiding their discovery during costly testing and debugging 

phases.  

 

However, formal specifications are unfamiliar to stakeholders, whose active participation is 

crucial in the first stages of software development process to understand and communicate the 

problem. This holds in Domain Analysis (DA), because its first stage is to capture the knowledge 

of a particular domain, making necessary to have a model that is comprehensible by software 

engineers and domain experts. To contribute to bridge the gap between DA and formal 

specifications, we have been working in the integration of domain analysis phase into the RAISE 

Formal Method [2]. The main purpose is to specify a family of systems to produce qualitative and 

reliable applications in a domain, promoting early reuse and reducing development costs. Feature 

models were used to represent domain analysis because they facilitate the customization of 

software requirements. 
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The integration between the models implies the definition of rules to derive an initial hierarchy of 

RSL types from a FM. We use the structural information of the FM to derive RSL (Raise 

Specification Language) [3] constructs following one of the several proposals that facilitate the 

construction of FM: the Feature-Oriented Reuse Method (FORM) [4]. In order to fit the main 

proposal of enhancement of formal developments with the RAISE Method into Model Driven 

Development (MDD) paradigm [5], an ATL (Atlas Transformation Language) [6] transformation 

has been developed. This transformation allows the automatic derivation of a first abstract RSL 

specification of a domain starting from a FM. The ATL rules define how features and 

relationships between them (the source model) are matched and navigated to produce the RSL 

specification (the target model) [7]. The rules follow closely the principles proposed in the 

RAISE Method, so this first and still incomplete specification may be later developed into a more 

concrete one following the RAISE Method steps. The overall strategy is explained in [8]. In this 

work, we improve this transformation by providing a simple trace mechanism that creates a trace 

relationship between the elements of the source and target metamodels.  

 

The paper is organized as follows: In Section 2 we introduce the derivation process. The core of 

the paper is in section 3, were we describe the ATL transformation that obtain RSL schemes from 

FM with the incorporation of the  trace mechanism, and exemplify it with the case study in 

section 4. Finally, in Section 5 we present some conclusions and outline possible future work. 

 

2. AN OVERVIEW OF THE DERIVATION PROCESS 

 
We have been working in the integration of DA models and formal specifications, giving a 

strategy to dine a set of RSL schemes from FM. The strategy begins with the analysis of features 

into the model to arrive to RSL schemes. Then, different constructions of the FM are analyzed in 

order to complete the structure of the schemes. Relationships between schemes are modelled from 

the feature information. The result of these steps is a set of schemes that serves as a basis for the 

RSL scheme hierarchy, reducing the gap between analysis and specification phases. The full 

derivation process may be found in [9]. In [8] we presented the rules to define schemes in an 

automatic way. These rules are a simplification of the derivation process with the objective of 

defining an automatic transformation aligned with Model Driven Architecture (MDA) framework. 

 

The transformation rules are defined by the following mappings:   

 
• A Feature Model is mapped into one or more RSL modules hierarchies. 

• A Feature Diagram (FD) is mapped into a RSL modules hierarchy. 

• A Concept Feature (root feature) is mapped into a RSL class expression with a type of 

interest. 

• Features that are not concept features are mapped into RSL modules. 

• Relationships 

 
o Grouping is mapped into RSL schemes relations. 

o Dependencies between features are mapped into RSL axioms expressing the 

corresponding restriction. 

 

Rule 1: Mapping Feature Model 

 

Description: this transformation declares that a FM will be mapped into one or more RSL 

modules hierarchy. Each hierarchy will be derived from a FD.  
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Transformation:  

 

� a FM is transformed into one or more RSL schemes  

 

Rule 2: Mapping Feature Diagram 

 
Description: this transformation declares that an initial hierarchy structure of RSL modules will 

be derived from a FM diagram. The hierarchy could have modifications later when the evolution 

of the specification is made.  

 

Transformation: 

 

� each feature of the FD will be mapped into schemes according to the following rules. 

 

Rule 3: Concept2Scheme (mapping Concept feature) 

 
Description: this transformation declares that the most abstract RSL module of the hierarchy will 

be derived from the feature concept. 

 

Transformation: 

 

� each concept in the FM will be a RSL scheme with the same name 

� the RSL scheme will have a type of interest whose name represents the system that is 

being modeled. 

 

Rule 4: Fea2SchSpec (mapping Mandatory feature) 

 
Description: this transformation declares that the schemes in a hierarchy will be derived from the 

mandatory features. 

 

Transformation: 

 

� a mandatory feature is transformed into a scheme with the same name as the feature 

and two clauses:  

 

- the value clause with the following properties: 

 

o isSolitary with TRUE | FALSE value  

o isMandatory with TRUE value 

o isSelected with TRUE value 

 

- the extend clause with the parent scheme name. 

 

Rule 5: Fea2SchSpec (mapping Optional feature) 

 
Description: this transformation declares that the schemes in a hierarchy will be derived form the 

optional features selected in a configuration time.  

 

Transformation: 

 

� an optional feature is transformed into a scheme with the same name as the feature 

and two clauses:  
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- the value clause with the following properties: 

o isSolitary with TRUE | FALSE value  

o isMandatory with FALSE value 

o isSelected with TRUE value 

- the extend clause with the parent scheme name. 

 

Rule 6: Fea2SchSpec (mapping Parameterized feature) 

 
Description: this transformation declares that a parameterized scheme will be derived from a 

parameterized feature. 

 

Transformation: 

 

� a parameterized feature is transformed into a parameterized scheme with the same 

name as the feature and the following clauses:  

 

- the context clause with the list of parameters 

- the object clause where the type of the parameters is declared 

- the value clause with the following properties: 

o isSolitary with TRUE | FALSE value  

o isMandatory with TRUE | FALSE value 

o isSelected with TRUE value 

 

Rule 7: Aggr2Sch (mapping Aggregate relationship) 

 
Description: the statement may express both a composition relationship as well as an aggregate 

relationship. Thus, a RSL specification will have one or more axioms expressing post-conditions 

ensuring the relation whole/parts. 

 

Transformation: 

 

� if the feature part is atomic and express simple types, it will be transformed into a 

component in the scheme corresponding to the parent feature. The component is a 

record into the RSL expression. It has the same treatment that the mandatory, 

optional or parameterized feature. 

 

� If the feature part is not atomic, the part will be transformed into a RSL expression 

according to the type of the feature that is being modeled, expressed as an embedded 

object of the expression that contains it.  

 

Rule 8: GroupOR2Sch (mapping Group OR) 

 
Description: this type of grouping is considered like a ´is-a´ relationship among alternative, 

mandatory or optional features with a parent feature. Thus a RSL hierarchy of modules will be 

derived from the structure of the set of features. 

 

Transformation: 

 

� the parent feature is modeled as a RSL scheme with at the least one abstract 

operation. This scheme will define: 

   

- the type clause with the lower and upper values expressing the group cardinality 
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- the value clause with the restriction expressions of the grouping. 

- in later refinement of schemes, the consistence restriction will be mapped into a 

boolean function.  

 

Rule 9: GroupXOR2Sch (mapping Group XOR) 

 

Description: this type of grouping has the same treatment that the OR group.  

 

Transformation:  

 

� the parent feature is modeled as a RSL scheme with at the least one abstract 

operation. This scheme will define:   

- the type clause with the lower and upper values expressing the group cardinality 

- the value clause with the restriction expressions of the grouping. 

- in later refinements of schemes, the consistence restriction will be mapped into 

a boolean function.  

 

Rule 10: FeaReq2SchSpec (Mapping Requires) 

 
Description: this restriction will generate two RSL schemes derived from two features related by 

the requires relationship.  

 

Transformation:  

 

� the supplier feature is mapped to a RSL scheme with the same name as the supplier 

feature  

� the requester feature is mapped to a RSL scheme with the same name as the requester 

feature  

� an axiom that defines the implication in the requester scheme expressing the requires 

restriction.  

 

Rule 11: FeaExc2SchSpec (Mapping Excludes) 

 
Description: this restriction will generate a RSL scheme derived from the relations between two 

features by the exclude relationship. 

 

Transformation: 

 

� the supplier feature is mapped to a RSL scheme with the same name as the supplier 

feature 

� an axiom that defines the implication in the requester scheme expressing the excludes 

restriction.  
 

3.  INCORPORATION OF TRACEABILTIY INTO THE ATL 

TRANSFORMATION 

 
This section describes the ATL transformation that obtains RSL schemes from FM with the 

incorporation of the trace mechanism. The complete description of the transformation rules may 

be found in [9]. This ATL definition represents the rules described before and it is a single 

module involving several ATL Rules (both matched and lazy rules) along with a set of helpers. In 

order to define the transformation and execute it, we must define the source and target models as 
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an Ecore Metamodel. Traceability is also implemented as a separate model, as we describe later 

in this section. 

 

3.1. Source and Target Models 

 
Figure 1 shows a diagram with the FM Metamodel defined for the ATL transformation. Also, we 

have defined an Ecore Metamodel for RSL by using a simplified version (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Feature Model Metamodel 

 

 

 

 

 

 
Figure 1. Feature Model Metamodel 

 

 

 

 

 

 

 

 

 

 
Figure 2. RSL Metamodel 

 

 

 

 

 

 
Figure 2. RSL Metamodel 

3.2. Traceability information 

 
The transformation process we have proposed allows a simple trace mechanism, based on [10] by 

creating a trace relationship between the source and the target elements of the corresponding 
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metamodel according to each transformation rule. For example, each RSL scheme of the module 

hierarchy is related with one feature because the scheme was originated from one of them. Each 

of the relationships has their own semantic, and there may be more than one relationship between 

those components, depending on the rules.  

 

Table 1 shows each trace relationship between elements of the source (FM) and target (RSL) 

metamodels: the left column represents the source elements and the top row, the target elements. 

Cells with data indicate a trace relationship. Trace shows the relationships that give rise to new 

elements in the target metamodel from elements in the source metamodel, i.e. forward 

relationships, but from them backward traceability ones may be also obtained. The trace 

relationships are originated from the application a particular transformation rule. 

 

For each trace relationship the following item are described in Table 1: 

 

• Cardinality of source: how many elements were used to create the new element (Table 1, 

in the left side of the parenthesis), 

• Cardinality of target: how many elements are created in that relationship (Table 1, in the 

right side of the parenthesis), 

• Name of the rule that originated the trace relationship. 

 
Table 1. Trace Relationship between FM and RSL generated by the application of the rules 

 
                     

Target                             

Source 

SchemeSpecification SchemeTypes ObjectDeclar

ation 

SchemeValue 

Concept (1/1)Rule3:Concept2

Scheme 

(1/1)Rule3: 

Concept2Sche

me 

 

  

Feature mandatory (1/1)Rule 

4:Fea2SchSpec 

 

(1/1)Rule4: 

Fea2SchSpec 

 

 (1/n)Rule4:Fea2Sch

Spec 

Feature optional (1/1)Rule 

5:Fea2SchSpec 

 

(1/1)Rule 5: 

Fea2SchSpec 

 

 (1/n)Rule4: 

Fea2SchSpec 

Feature 

parameterized 

(1/1) Rule 6: 

Fea2SchSpec 

 

(1/1)Rule 6: 

Fea2SchSpec 

 

 (1/n)Rule4: 

Fea2SchSpec 

Aggregate (1/n)  Rule 7: 

Aggr2Sch  

 (1/n) Rule7: 

Aggr2Sch 

 

GroupORAssociati

on 

(1/n) 

Rule8:GroupOR2Sch  

 

   

GroupXORAssocia

tion 

(1/n) 

Rule9:GroupXOR2S

ch  

 

   

Requires relation (2/1) 

Rule10:FeaReq2Sch

Spec 

 

   

Excludes relation (2/1) Rule 11: 

FeaExc2SchSpec 

  

   

 

3.3. An example of a rule application 

 
In order to exemplify part of the derivation strategy, we describe the ATL transformation 

corresponding to the Aggregate association (Figure 3) present in a FM Model to RSL schemes 
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explaining each of the defined rules and helpers. The Transformation Process contains a matched 

primary rule that guide the overall process of this transformation, the rule aggr2Sch. This rule 

allows the matching of all features from the FM and defines a RSL scheme for each of them. For 

each association, the rules identify the name of the association and collect all of the features 

clustered under this association. These features will be expressed under the objects declaration 

into a scheme definition. The helper getparts returns the features that are the parts of the 

aggregate. The lazy rule Feature2Obj has the input features that are part of the aggregate (this 

condition is implemented by the helper isPartofAggregate), and returns the names of these 

features. The helper isPartofAggregate verifies the type of association will be an aggregation. 

 

 

 

 

 

 

 

 

 

Figure 3. AggregateAssociation Rule 

 

 

 

 

 

 

 
Figure 3. AggregateAssociation Rule 

 

3.4 Implementing the Traceability Mechanism 

 
In order to implement traceability in our transformation process, we adopt the proposal of Jouault 

[10]. In this work a trace mechanism is defined by considering traceability information as a 

separate model (Figure 4), and the code to generate trace relationship is added directly to the 

transformation rules. It is a simple mechanism that supports any form of traceability, and it is 

used in other transformations. 

 

Following this idea, we have defined our trace metamodel, and added the corresponding code to 

the rules in order to define the trace relationship presented in Table 1. All the matched and lazy 

rules are modified in order to define the trace information. 

 

 

 

 

 

 
 

Figure 4: Trace Metamodel 

Table 2 shows the implementation of traceability for each transformation shown in Table 1. For 

our example, during the transformation of a feature to a RSL scheme, trace information is 

generated for Feature2Object, Feature2ValueIsMandatory, Feature2ValueIsSolitary , 

Feature2ValueIsSelected  lazy rules, besides Aggr2Scheme rule.  

 module fm2rsl; 

create OUT: rsl, trace: Trace from IN: FM; 

....... 

 

rule aggr2Sch{ 

from  

 A:FM!AggregateAssociation 

to  

 S:rsl!SchemeSpecification ( 

  name <-A.name, 

  object <- A.getparts()->collect (feature | 

thisModule.Feature2Obj(feature)) 

  ), 

 TL1: Trace!traceLink ( 

  ruleName <-'aggr2Scheme', 

  targetElements <-S) 

  do  { 

  TL1.refSetValue('sourceElements', A); 

        } 

} 



Computer Science & Information Technology (CS & IT)                                 227 

 

 
Table 2. Implementation of Trace Relationship 

 

 
 

4. CASE STUDY 

 
We applied the ATL transformation described in this paper to the case study “e-Shop” [12], as it 

is a well known one. Figures 4 and 5 show some FM features taken from the FM Model of the 

complete case study, which are necessary to exemplify how the ATL transformation works. For 

example, we consider the Eshop-Aggregate Association (Figure 4) for the Aggregate Association 

StoreFront. The features were defined in a XMI format to be used as source in the derivation of 

the RSL schemes.  

 

Figure 5 shows the XMI definition for the Trace-Eshop-AggregateAssociation, using the Sample 

Reflective Ecore Model. This Figure presents an extract of the ADITIONAL trace information 

produced after the ATL transformation. Each trace link includes a reference to an element in the 

source model (Feature Model), and another one to an element in the target (RAISE Model). For 

example, trace link with rule name aggr2Scheme produce the trace link for Feature2Obj for the 

three object declaration (Catalog, BuyPaths and CustomerService) and the trace link for 

StoreFront. 
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Figure 5.  Sample Reflective Ecore Model for Eshop-Aggregate Association 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Trace-Eshop-AggregateAssociation 

 

5. CONCLUSIONS AND FUTURE WORK 

 
Traceability plays a crucial role in MDD. The transformation process we have proposed and 

implemented in the ATL rules allows making a trace between the source and the target models. 

This concept is quite simple: to follow relationships or links. It is essential for software 

development because a lot of information is used and produced and it should be kept traceable. 
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A domain component (source model) is traced forward, for example, when the component is 

changed and we want to investigate the impact of the change. A scheme is traced backward, for 

example, when there is a change and we want to understand it, investigating the information used 

to derive this scheme. Also, we may want to know how a RSL scheme is related with others in a 

hierarchy, for example, if the derived scheme has a parent or it has some restrictions among 

features. 

 

In this work, traceability information is easily created but, until the moment it is not managed. 

There are several difficulties related to the implementation and use of traceability [13]. Wieringa 

[14] points out that the major problems of realising traceability are organisational, not technical. 

As future work, we must incorporate trace supporting in order to recorded traces became useful 

for the entire development process. The traceability generating code is easily added to the ATL 

code, and can be automated 

 

To help those who are responsible for the specification phase, it is helpful if the work team has 

traceability policies to traceability information be maintained. Maintaining traceability 

information is tedious, time-consuming a labour- intensive. Therefore, the policies may be fine, if 

they cannot be implemented, they are useless [11]. Although in this paper we focused on the 

transformation rules and the traceability, we know that a lot of information is used and produced 

and it should be kept related. So, we believe that this approach could be adapted to approach for 

visualizing traceability in (compositions of) model transformations. The main purpose will be to 

study the effects of the evolution of a source model, or changes in the transformation model.  
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