

David C. Wyld et al. (Eds) : SAI, CDKP, ICAITA, NeCoM, SEAS, CMCA, ASUC, Signal - 2014

pp. 219–230, 2014. © CS & IT-CSCP 2014 DOI : 10.5121/csit.2014.41121

ENHANCING AN ATL TRANSFORMATION

WITH TRACEABILITY

Laura Felice, Marcela Ridao, Maria Carmen Leonardi and

Maria Virginia Mauco

INTIA, Departamento de Computación y Sistemas

Universidad Nacional del Centro de la Provincia de Buenos Aires

Tandil, Argentina
felice@exa.unicen.edu.ar, mridao@exa.unicen.edu.ar,

cleonard@exa.unicen.edu.ar, vmauco@exa.unicen.edu.ar

ABSTRACT

Model transformation is widely recognized as a key issue in model engineering approaches. In

previous work, we have developed an ATL transformation that implements a strategy to obtain a

set of Raise Specification Language (RSL) modules from Feature Models (FM). In this paper,

we present an improvement to this strategy by defining another complementary and independent

model, allowing the incorporation of traceability information to the original transformation.

The proposed mechanism allows capturing and representing the relationships created by the

application of the transformation rules.

KEYWORDS

Raise Specification Language, Feature Models, Traceability, MDD, ATL.

1. INTRODUCTION

As formal methods offer a wide spectrum of possible paths towards designing high-quality

software, in the academia and the industry have adopted them as an alternative of development,

especially where safety or security is important [1]. By using formal methods early in the

software development process, ambiguities, incompleteness, inconsistencies, errors, or

misunderstandings can be detected, avoiding their discovery during costly testing and debugging

phases.

However, formal specifications are unfamiliar to stakeholders, whose active participation is

crucial in the first stages of software development process to understand and communicate the

problem. This holds in Domain Analysis (DA), because its first stage is to capture the knowledge

of a particular domain, making necessary to have a model that is comprehensible by software

engineers and domain experts. To contribute to bridge the gap between DA and formal

specifications, we have been working in the integration of domain analysis phase into the RAISE

Formal Method [2]. The main purpose is to specify a family of systems to produce qualitative and

reliable applications in a domain, promoting early reuse and reducing development costs. Feature

models were used to represent domain analysis because they facilitate the customization of

software requirements.

220 Computer Science & Information Technology (CS & IT)

The integration between the models implies the definition of rules to derive an initial hierarchy of

RSL types from a FM. We use the structural information of the FM to derive RSL (Raise

Specification Language) [3] constructs following one of the several proposals that facilitate the

construction of FM: the Feature-Oriented Reuse Method (FORM) [4]. In order to fit the main

proposal of enhancement of formal developments with the RAISE Method into Model Driven

Development (MDD) paradigm [5], an ATL (Atlas Transformation Language) [6] transformation

has been developed. This transformation allows the automatic derivation of a first abstract RSL

specification of a domain starting from a FM. The ATL rules define how features and

relationships between them (the source model) are matched and navigated to produce the RSL

specification (the target model) [7]. The rules follow closely the principles proposed in the

RAISE Method, so this first and still incomplete specification may be later developed into a more

concrete one following the RAISE Method steps. The overall strategy is explained in [8]. In this

work, we improve this transformation by providing a simple trace mechanism that creates a trace

relationship between the elements of the source and target metamodels.

The paper is organized as follows: In Section 2 we introduce the derivation process. The core of

the paper is in section 3, were we describe the ATL transformation that obtain RSL schemes from

FM with the incorporation of the trace mechanism, and exemplify it with the case study in

section 4. Finally, in Section 5 we present some conclusions and outline possible future work.

2. AN OVERVIEW OF THE DERIVATION PROCESS

We have been working in the integration of DA models and formal specifications, giving a

strategy to dine a set of RSL schemes from FM. The strategy begins with the analysis of features

into the model to arrive to RSL schemes. Then, different constructions of the FM are analyzed in

order to complete the structure of the schemes. Relationships between schemes are modelled from

the feature information. The result of these steps is a set of schemes that serves as a basis for the

RSL scheme hierarchy, reducing the gap between analysis and specification phases. The full

derivation process may be found in [9]. In [8] we presented the rules to define schemes in an

automatic way. These rules are a simplification of the derivation process with the objective of

defining an automatic transformation aligned with Model Driven Architecture (MDA) framework.

The transformation rules are defined by the following mappings:

• A Feature Model is mapped into one or more RSL modules hierarchies.

• A Feature Diagram (FD) is mapped into a RSL modules hierarchy.

• A Concept Feature (root feature) is mapped into a RSL class expression with a type of

interest.

• Features that are not concept features are mapped into RSL modules.

• Relationships

o Grouping is mapped into RSL schemes relations.

o Dependencies between features are mapped into RSL axioms expressing the

corresponding restriction.

Rule 1: Mapping Feature Model

Description: this transformation declares that a FM will be mapped into one or more RSL

modules hierarchy. Each hierarchy will be derived from a FD.

Computer Science & Information Technology (CS & IT) 221

Transformation:

� a FM is transformed into one or more RSL schemes

Rule 2: Mapping Feature Diagram

Description: this transformation declares that an initial hierarchy structure of RSL modules will

be derived from a FM diagram. The hierarchy could have modifications later when the evolution

of the specification is made.

Transformation:

� each feature of the FD will be mapped into schemes according to the following rules.

Rule 3: Concept2Scheme (mapping Concept feature)

Description: this transformation declares that the most abstract RSL module of the hierarchy will

be derived from the feature concept.

Transformation:

� each concept in the FM will be a RSL scheme with the same name

� the RSL scheme will have a type of interest whose name represents the system that is

being modeled.

Rule 4: Fea2SchSpec (mapping Mandatory feature)

Description: this transformation declares that the schemes in a hierarchy will be derived from the

mandatory features.

Transformation:

� a mandatory feature is transformed into a scheme with the same name as the feature

and two clauses:

- the value clause with the following properties:

o isSolitary with TRUE | FALSE value

o isMandatory with TRUE value

o isSelected with TRUE value

- the extend clause with the parent scheme name.

Rule 5: Fea2SchSpec (mapping Optional feature)

Description: this transformation declares that the schemes in a hierarchy will be derived form the

optional features selected in a configuration time.

Transformation:

� an optional feature is transformed into a scheme with the same name as the feature

and two clauses:

222 Computer Science & Information Technology (CS & IT)

- the value clause with the following properties:

o isSolitary with TRUE | FALSE value

o isMandatory with FALSE value

o isSelected with TRUE value

- the extend clause with the parent scheme name.

Rule 6: Fea2SchSpec (mapping Parameterized feature)

Description: this transformation declares that a parameterized scheme will be derived from a

parameterized feature.

Transformation:

� a parameterized feature is transformed into a parameterized scheme with the same

name as the feature and the following clauses:

- the context clause with the list of parameters

- the object clause where the type of the parameters is declared

- the value clause with the following properties:

o isSolitary with TRUE | FALSE value

o isMandatory with TRUE | FALSE value

o isSelected with TRUE value

Rule 7: Aggr2Sch (mapping Aggregate relationship)

Description: the statement may express both a composition relationship as well as an aggregate

relationship. Thus, a RSL specification will have one or more axioms expressing post-conditions

ensuring the relation whole/parts.

Transformation:

� if the feature part is atomic and express simple types, it will be transformed into a

component in the scheme corresponding to the parent feature. The component is a

record into the RSL expression. It has the same treatment that the mandatory,

optional or parameterized feature.

� If the feature part is not atomic, the part will be transformed into a RSL expression

according to the type of the feature that is being modeled, expressed as an embedded

object of the expression that contains it.

Rule 8: GroupOR2Sch (mapping Group OR)

Description: this type of grouping is considered like a ´is-a´ relationship among alternative,

mandatory or optional features with a parent feature. Thus a RSL hierarchy of modules will be

derived from the structure of the set of features.

Transformation:

� the parent feature is modeled as a RSL scheme with at the least one abstract

operation. This scheme will define:

- the type clause with the lower and upper values expressing the group cardinality

Computer Science & Information Technology (CS & IT) 223

- the value clause with the restriction expressions of the grouping.

- in later refinement of schemes, the consistence restriction will be mapped into a

boolean function.

Rule 9: GroupXOR2Sch (mapping Group XOR)

Description: this type of grouping has the same treatment that the OR group.

Transformation:

� the parent feature is modeled as a RSL scheme with at the least one abstract

operation. This scheme will define:

- the type clause with the lower and upper values expressing the group cardinality

- the value clause with the restriction expressions of the grouping.

- in later refinements of schemes, the consistence restriction will be mapped into

a boolean function.

Rule 10: FeaReq2SchSpec (Mapping Requires)

Description: this restriction will generate two RSL schemes derived from two features related by

the requires relationship.

Transformation:

� the supplier feature is mapped to a RSL scheme with the same name as the supplier

feature

� the requester feature is mapped to a RSL scheme with the same name as the requester

feature

� an axiom that defines the implication in the requester scheme expressing the requires

restriction.

Rule 11: FeaExc2SchSpec (Mapping Excludes)

Description: this restriction will generate a RSL scheme derived from the relations between two

features by the exclude relationship.

Transformation:

� the supplier feature is mapped to a RSL scheme with the same name as the supplier

feature

� an axiom that defines the implication in the requester scheme expressing the excludes

restriction.

3. INCORPORATION OF TRACEABILTIY INTO THE ATL

TRANSFORMATION

This section describes the ATL transformation that obtains RSL schemes from FM with the

incorporation of the trace mechanism. The complete description of the transformation rules may

be found in [9]. This ATL definition represents the rules described before and it is a single

module involving several ATL Rules (both matched and lazy rules) along with a set of helpers. In

order to define the transformation and execute it, we must define the source and target models as

224 Computer Science & Information Technology (CS & IT)

an Ecore Metamodel. Traceability is also implemented as a separate model, as we describe later

in this section.

3.1. Source and Target Models

Figure 1 shows a diagram with the FM Metamodel defined for the ATL transformation. Also, we

have defined an Ecore Metamodel for RSL by using a simplified version (Figure 2).

Figure 1. Feature Model Metamodel

Figure 1. Feature Model Metamodel

Figure 2. RSL Metamodel

Figure 2. RSL Metamodel

3.2. Traceability information

The transformation process we have proposed allows a simple trace mechanism, based on [10] by

creating a trace relationship between the source and the target elements of the corresponding

Computer Science & Information Technology (CS & IT) 225

metamodel according to each transformation rule. For example, each RSL scheme of the module

hierarchy is related with one feature because the scheme was originated from one of them. Each

of the relationships has their own semantic, and there may be more than one relationship between

those components, depending on the rules.

Table 1 shows each trace relationship between elements of the source (FM) and target (RSL)

metamodels: the left column represents the source elements and the top row, the target elements.

Cells with data indicate a trace relationship. Trace shows the relationships that give rise to new

elements in the target metamodel from elements in the source metamodel, i.e. forward

relationships, but from them backward traceability ones may be also obtained. The trace

relationships are originated from the application a particular transformation rule.

For each trace relationship the following item are described in Table 1:

• Cardinality of source: how many elements were used to create the new element (Table 1,

in the left side of the parenthesis),

• Cardinality of target: how many elements are created in that relationship (Table 1, in the

right side of the parenthesis),

• Name of the rule that originated the trace relationship.

Table 1. Trace Relationship between FM and RSL generated by the application of the rules

Target

Source

SchemeSpecification SchemeTypes ObjectDeclar

ation

SchemeValue

Concept (1/1)Rule3:Concept2

Scheme

(1/1)Rule3:

Concept2Sche

me

Feature mandatory (1/1)Rule

4:Fea2SchSpec

(1/1)Rule4:

Fea2SchSpec

 (1/n)Rule4:Fea2Sch

Spec

Feature optional (1/1)Rule

5:Fea2SchSpec

(1/1)Rule 5:

Fea2SchSpec

 (1/n)Rule4:

Fea2SchSpec

Feature

parameterized

(1/1) Rule 6:

Fea2SchSpec

(1/1)Rule 6:

Fea2SchSpec

 (1/n)Rule4:

Fea2SchSpec

Aggregate (1/n) Rule 7:

Aggr2Sch

 (1/n) Rule7:

Aggr2Sch

GroupORAssociati

on

(1/n)

Rule8:GroupOR2Sch

GroupXORAssocia

tion

(1/n)

Rule9:GroupXOR2S

ch

Requires relation (2/1)

Rule10:FeaReq2Sch

Spec

Excludes relation (2/1) Rule 11:

FeaExc2SchSpec

3.3. An example of a rule application

In order to exemplify part of the derivation strategy, we describe the ATL transformation

corresponding to the Aggregate association (Figure 3) present in a FM Model to RSL schemes

226 Computer Science & Information Technology (CS & IT)

explaining each of the defined rules and helpers. The Transformation Process contains a matched

primary rule that guide the overall process of this transformation, the rule aggr2Sch. This rule

allows the matching of all features from the FM and defines a RSL scheme for each of them. For

each association, the rules identify the name of the association and collect all of the features

clustered under this association. These features will be expressed under the objects declaration

into a scheme definition. The helper getparts returns the features that are the parts of the

aggregate. The lazy rule Feature2Obj has the input features that are part of the aggregate (this

condition is implemented by the helper isPartofAggregate), and returns the names of these

features. The helper isPartofAggregate verifies the type of association will be an aggregation.

Figure 3. AggregateAssociation Rule

Figure 3. AggregateAssociation Rule

3.4 Implementing the Traceability Mechanism

In order to implement traceability in our transformation process, we adopt the proposal of Jouault

[10]. In this work a trace mechanism is defined by considering traceability information as a

separate model (Figure 4), and the code to generate trace relationship is added directly to the

transformation rules. It is a simple mechanism that supports any form of traceability, and it is

used in other transformations.

Following this idea, we have defined our trace metamodel, and added the corresponding code to

the rules in order to define the trace relationship presented in Table 1. All the matched and lazy

rules are modified in order to define the trace information.

Figure 4: Trace Metamodel

Table 2 shows the implementation of traceability for each transformation shown in Table 1. For

our example, during the transformation of a feature to a RSL scheme, trace information is

generated for Feature2Object, Feature2ValueIsMandatory, Feature2ValueIsSolitary ,

Feature2ValueIsSelected lazy rules, besides Aggr2Scheme rule.

 module fm2rsl;

create OUT: rsl, trace: Trace from IN: FM;

.......

rule aggr2Sch{

from

 A:FM!AggregateAssociation

to

 S:rsl!SchemeSpecification (

 name <-A.name,

 object <- A.getparts()->collect (feature |

thisModule.Feature2Obj(feature))

),

 TL1: Trace!traceLink (

 ruleName <-'aggr2Scheme',

 targetElements <-S)

 do {

 TL1.refSetValue('sourceElements', A);

 }

}

Computer Science & Information Technology (CS & IT) 227

Table 2. Implementation of Trace Relationship

4. CASE STUDY

We applied the ATL transformation described in this paper to the case study “e-Shop” [12], as it

is a well known one. Figures 4 and 5 show some FM features taken from the FM Model of the

complete case study, which are necessary to exemplify how the ATL transformation works. For

example, we consider the Eshop-Aggregate Association (Figure 4) for the Aggregate Association

StoreFront. The features were defined in a XMI format to be used as source in the derivation of

the RSL schemes.

Figure 5 shows the XMI definition for the Trace-Eshop-AggregateAssociation, using the Sample

Reflective Ecore Model. This Figure presents an extract of the ADITIONAL trace information

produced after the ATL transformation. Each trace link includes a reference to an element in the

source model (Feature Model), and another one to an element in the target (RAISE Model). For

example, trace link with rule name aggr2Scheme produce the trace link for Feature2Obj for the

three object declaration (Catalog, BuyPaths and CustomerService) and the trace link for

StoreFront.

228 Computer Science & Information Technology (CS & IT)

Figure 5. Sample Reflective Ecore Model for Eshop-Aggregate Association

Figure 6. Trace-Eshop-AggregateAssociation

5. CONCLUSIONS AND FUTURE WORK

Traceability plays a crucial role in MDD. The transformation process we have proposed and

implemented in the ATL rules allows making a trace between the source and the target models.

This concept is quite simple: to follow relationships or links. It is essential for software

development because a lot of information is used and produced and it should be kept traceable.

Computer Science & Information Technology (CS & IT) 229

A domain component (source model) is traced forward, for example, when the component is

changed and we want to investigate the impact of the change. A scheme is traced backward, for

example, when there is a change and we want to understand it, investigating the information used

to derive this scheme. Also, we may want to know how a RSL scheme is related with others in a

hierarchy, for example, if the derived scheme has a parent or it has some restrictions among

features.

In this work, traceability information is easily created but, until the moment it is not managed.

There are several difficulties related to the implementation and use of traceability [13]. Wieringa

[14] points out that the major problems of realising traceability are organisational, not technical.

As future work, we must incorporate trace supporting in order to recorded traces became useful

for the entire development process. The traceability generating code is easily added to the ATL

code, and can be automated

To help those who are responsible for the specification phase, it is helpful if the work team has

traceability policies to traceability information be maintained. Maintaining traceability

information is tedious, time-consuming a labour- intensive. Therefore, the policies may be fine, if

they cannot be implemented, they are useless [11]. Although in this paper we focused on the

transformation rules and the traceability, we know that a lot of information is used and produced

and it should be kept related. So, we believe that this approach could be adapted to approach for

visualizing traceability in (compositions of) model transformations. The main purpose will be to

study the effects of the evolution of a source model, or changes in the transformation model.

REFERENCES

[1] Streitferdt, D., Riebisch, M. & Philippow, I. (2003) ”Formal Details of Relations in Feature Models”.

Proceedings 10th IEEE Symposium and Workshops on Engineering of Computer-Based Systems, pp:

297-304.

[2] George, C; Haxthausen, A; Hughes, S; Milne, R; Prehn, S & Pedersen, JS. (1995) The RAISE

Development Method. BCS Practitioner Series, Prentice Hall.

[3] George, C; Haff, P; Havelund, K; Haxthausen, A; Milne, R; Nielsen, CB; Prehn, S. & Wagner, K.R.

(1992) The RAISE Specification Language. Prentice Hall.

[4] Kang, K; Kim, S; Lee, J; Kim, K; E. Shin, E; M. & Huh, M. (1998) “FORM: A feature-oriented reuse

method with domain-specific reference architectures”. Annals of Software Engineering 5, pp 143-168.

[5] Mellor, S., Clark, A. & Futagami, T. (2003) “Model-driven Development”. IEEE Software Vol. 20,

Nº5.

[6] ATL Transformation Language. Available in: http://www.eclipse.org/atl/.

[7] Felice, Laura; Ridao, Marcela; Mauco, María Virginia & Leonardi, María Carmen. (2011) “Using

ATL Transformations to Derive RSL Specifications from Feature Models”, Proceedings of the 2011

International Conference on Software Engineering Research & Practice, Volume I, USA, pp: 273 –

279.

[8] Felice, Laura; Ridao, Marcela; Mauco, María Virginia & Leonardi, María Carmen. (2014)

“Enhancing Formal Methods with Feature Models in MDD”. Encyclopedia of Information Science

and Technology, Third Edition. Ed. Mehdi Khosrow-Pour. pp:170-183.

[9] Felice, Laura. (2013) Integration of Domain Analysis Techniques with RSL Specifications. Master

Thesis. Facultad de Informática, Universidad Nacional de La Plata, Argentina

(http://sedici.unlp.edu.ar/)

[10] Jouault, F. & Kurtev, I. (2005) “Transforming Models with ATL”. Proceedings of the Model

Transformation in Practice Workshop. MoDELS 2005 Conference.

[11] Kotonya, G & Sommerville, I. (2010) Requirements Engineering. Processes and Techniques. John

Wiley & Sons.

[12] Mendonca, M; Branco, M & Cowan, D. (2009) “S.P.L.O.T Software Product Lines Online Tools”. In

Companion to the 24th ACM SIGPLAN International Conference on Object-Oriented Programming,

Systems, Languages, and Applications. OOSPLA 2009. Florida, USA.

230 Computer Science & Information Technology (CS & IT)

[13] Pinheiro, F. (2004). “Requirement Traceability”. In Perspectives on Software Requirements. Ed. Julio

C.S.do Prado Leite, J. Doorn.

[14] Wieringa R.J. (1998). Traceability and Modularity in Software Design. Proceeding of 9th

International Workshop in Software Specification and Design. Japan.

Authors

Laura Felice is a computer science assistant professor at the Universidad Nacional del

Centro de la Provincia de Buenos Aires from Argentina. She is a member of the

Computer Science department. She has a Master´s degree in Software Engineering

from Universidad Nacional de La Plata, Argentina. Her main research interests

include Software development methodologies, domain engineering and model-driven

development. She has been member of the program committee of national and

international conferences related to software engineering.

Contact her at:

Computer Science Department, UNCPBA.

Campus Universitario. (7000) Tandil. Buenos Aires. Argentina.

e-mail: lfelice@exa.unicen.edu.ar

Marcela Ridao is a System Engineer and she is a computer science assistant professor

at the Universidad Nacional del Centro de la Provincia de Buenos Aires, in

Argentina. She has a master's degree in Software Engineering from La Plata

University, and she wrote her master’s thesis on Patterns used in Scenario

Construction Process. Her research interests include Requirements Engineering,

Compilers and real time problems. Currently, she is a doctoral student at La Plata

University. She’s writing her doctoral dissertation on Quantitative

Techniques Oriented to Semantic Reuse in Requirements Models.

Contact her at:

Computer Science Department, UNCPBA,

Campus Universitario. (7000) Tandil. Buenos Aires. Argentina.

e-mail: mridao@exa.unicen.edu.ar

María Carmen Leonardi is a computer science assistant professor in Universidad

Nacional del Centro de la Provincia de Buenos Aires from Argentina. She is member

of the Computer Science Department. She has a Master´s degree in Software

Engineering from Universidad Nacional de La Plata, Argentina. Her main research

interests include software development methodologies, requirements engineering,

and model-driven development. She has been member of the program committee of

national and international conferences related to software engineering.

Contact her at:

Computer Science Department, UNCPBA,

Campus Universitario. (7000) Tandil. Buenos Aires. Argentina.

e-mail: cleonard@exa.unicen.edu.ar

María Virginia Mauco is a computer science assistant professor in Universidad

Nacional del Centro de la Provincia de Buenos Aires from Argentina. She is member

of the Computer Science Department. She has a Master´s degree in Software

Engineering from Universidad Nacional de La Plata, Argentina. Her main research

interests include software development methodologies, requirements engineering, and

formal methods. She has been member of the program committee of national and

international conferences related to software engineering.

Contact her at:

Computer Science Department, UNCPBA,

Campus Universitario. (7000) Tandil. Buenos Aires. Argentina.

e-mail: vmauco@exa.unicen.edu.ar

