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ABSTRACT 

 

In this paper, we describe a novel variational Monte Carlo approach for modeling and tracking 

body parts of articulated objects. An articulated object (human target) is represented as a 

dynamic Markov network of the different constituent parts. The proposed approach combines 

local information of individual body parts and other spatial constraints influenced by 

neighboring parts. The movement of the relative parts of the articulated body is modeled with 

local information of displacements from the Markov network and the global information from 

other neighboring parts. We explore the effect of certain model parameters (including the 

number of parts tracked; number of Monte-Carlo cycles, etc.) on system accuracy and show that 

ourvariational Monte Carlo approach achieves better efficiency and effectiveness compared to 

other methods on a number of real-time video datasets containing single targets. 
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1. INTRODUCTION AND RELATED WORK 

 
Articulated object tracking is a central problem in Computer Vision particularly due to emerging 

applications within human computer interfaces, intelligent video surveillance, gait analysis, 

gesture analysis and video annotation. An ”articulated” object is defined [1] as a multi-body 

system composed of at least two rigid components and at most six independent degrees of 

freedom between any components. A non-rigid, but constrained dependence exists between the 

components of an articulated object [2]. Examples include the human body, most animals, 

manipulation robots, long lorries with trailers and many others. The problem of tracking such 

articulating objects in video is particularly hard from a statistical computer vision perspective 

owing to the high degree of freedom for motion to the constituent parts of the object. Articulated 

object tracking is significantly different from multiple target tracking where the motion of each 

target is independent of the others. In the case of articulated object tracking, the physical links 

between the various parts of the articulating body impose physical constrains to their motion. For 

instance, [3]clearly distinguishes articulated object tracking from multiple target tracking by 

stating that a) if the parts of the articulating body are independent then the motion of each part 
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stays as a manifold orthogonal to the manifolds of the other parts thus allowing the use of 

multiple target approaches to be applied on them. However, in the case that the parts remain 

dependent as in typical articulated object tracking situations, such orthogonality and factorization 

properties seize to exist thus exponentially increasing the computational load due to the curse of 

dimensionality. There exist a number of research contributions within articulated object motion 

analysis. Typical methods in articulated object tracking involve three stages. The firststage 

concerns determining the structural model representation of the body parts. The body parts model 

can take two distinct forms such as the centralized model and decentralized model. Whilst the 

centralized model assumes body parts to be connected to each other at particular angular 

orientations, the decentralized model combines the independent motion of the different parts to 

one. Different technique such as the card board person [4], the decentralized probabilistic model 

based on Markov networks, the loose-limbed model [5], [6],and tree structured model [7], have 

been proposed to use a decentralized structure representation for articulated objects. The second 

stage of the process, involves the application of inference methods for articulated motion analysis. 

These methods can be broadly summarized into deterministic and probabilistic types. According 

to [3], deterministic methods formulate articulated object tracking as a parameter estimation 

problem while the probabilistic schemes formulates it as a Bayesian inference problem. Though 

the deterministic methods are bound to get to an optimal solution, it is highly complex and 

essentially has high computational demands. 

 

However, the probabilistic methods provide approximate estimation with a simple model under 

conditions of low time demands. Bayesian inference methods attempt to provide a solution by 

recovering the motion posterior sequentially at each time instant. In order to cope with non-

Gaussian assumptions Monte Carlo simulation is generally used. Techniques have also been 

proposed to improve the efficiency for the probabilistic approach. For example, in multiple 

hypothesis tracking algorithms, the salient modes of the motion posteriors are retained for more 

efficient Monte Carlosimulation [8], [9]. Partitioned sampling is in the spirit of coordinate descent 

and preforms the sampling in a hierarchical fashion [10], [11]. Non-parametric belief propagation 

[12]algorithm have been proposed in [6], [13] and applied for modeling articulated body motion. 

 

2. CONTRIBUTIONS AND STRUCTURE 

 
The method proposed in this paper combines an evolving population sequential Monte 

Carlotechnique with Variational inference for tracking articulated targets. One of the main 

novelty of our proposed method stems from simultaneously enforcing the likelihood constraints 

of the considered parts and the spatial coherence of their neighboring parts. We also integrate an 

evolving population Monte-Carlo filtering mechanism that allows particles to regenerate both in 

sampling and re-sampling steps. Our results suggest that the proposed integrated model can 

considerably improve performance when compared individually to any non-Variational or others 

equential Monte-Carlo methods. We begin by describing our method, including the Variational 

framework and evolving population Monte-Carlo scheme in Section 3. We then perform 

experiments on some synthetic and real time datasets (Section 4) investigating the model and 

demonstrate the efficacy of the proposed model in comparison to other techniques. Finally, we 

present some concluding remarks in Section 5. 

 

3. PROPOSED METHOD 

 
An articulated body model can be represented using various forms of pictorial structures. In this 

paper, we restrict our discussion to modeling the articulated body as a collection of parts with 

connections between them. For example, the human body parts can correspond to the head, torso, 

arms and legs. The number of parts required to model the articulating object, directly relates to 
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the application under study, the level of accuracy expected and inversely to the computational 

expense incurred during processing. Throughout this paper, we assume that the silhouette of the 

articulating object is represented by a model of rectangular regions of specific dimensions as 

illustrated in 1. The simplest form of representing these parts as a structure is using a form of an 

undirected graph G = (V ;E), where V is the set of vertices representing the M parts of the body 

and E the edge between the connected parts in the graph. In each time instance the articulating 

body in any scene can be expressed in terms of a configuration X = {x1, x2, ...,xM} of different 

parts containing spatio-orientation parameters. The image observation associated with any part vk 

with configuration xk is denoted by zk, which is a combination of the colour and edge features of 

the parts. The combined observation for the articulating body can be represented by Z = {z1, z2, 

...,zM}. The goal of the tracking problem is to estimate the posterior p(X|Z).As mentioned earlier, 

the different parts are not independent and each part distinctly interacts with a specified set of 

neighbors. This graphical representation of an articulated body is analogous to a Markov network.  

 

 
 

Figure 1.The Markov network for an articulated body 

 

Given the undirected graph of the articulated body�, �(�) can be factorized as: 

 

�(�)  = 1
	
 � �
(�
)



�
 

 

Where �is a clique in the set of cliques ζ of the undirectedgraph, �
is the set of nodes associated 

with the clique and�
(�
) is the potential function associated with this clique,and	
 is a 

normalization function. Two different types of cliques are common in articulated objects. First 

order cliques ��, whose potential function ��, where � denotes a part of thebody model, provides 

the local prior for �� and the secondorder clique,��, has a potential function  ��� , where  � and 
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� are neighbourhood parts, that denotes the spatial coherencebased on model constraints. 

Therefore, �(�)reduces to: 

 

�(�)  = 1
	
 � ���(�� , ��)

(�,�)
��
� ��(��)


��

 

 

The likelihood model denoted by �(	|�)can be factorized as: 

 

�(	|�) = � ��(��|��)
�

���
 

 

According to the theory of Bayesian inference, the posterior �(�|	)can be estimated using the 

following relationship. 

 �(�|	) α �(	|�)�(�) 

 

It is apparent that the posterior of each part �(��|	) will be affected by its local prior ��, the 

likelihood and the constraints from its neighbors.Probabilistic reasoning consists in computing 

posterior distributions over hidden variables given visible variables, and estimating model 

parameters. There are different principled algorithms for approximate inference and learning in 

vision applications, including iterative conditional modes, Gibbs sampling, variational techniques, 

structural variational techniques, and belief propagation algorithm. Variational inference methods 

provide Bayesian inference to applications represented using graphical models. The main 

principle of behind the variational approximation is to estimate a variational distribution  (�) to 

approximate the posterior distribution �(�|	) such that the Kullback-Leibler (KL) divergence 

between the variational and the posterior distributions is minimized. Variational methods help in 

reducing an estimation problem to an optimization problem, that is, 

  ∗ = arg min () ( (� || �(�|	 ))) 

 

=  *+, -�. /  (�) log  (�)
�(�|	)2

 

 

In the case of articulate object tracking framework, it is effective to fully factorize the variational 

distribution  (�) among the 3 parts of the object as follows. 

 

 (�) = �  �(��)
4

���
 

 

Where  �(��)only relies on the configuration xi. According to [3], The KL divergence of each of 

the variational distribution Qi can be simplified using the factorization of �(�)and �(	|�). 

Therefore,  �(��) can be reduced and shown that: 

 

 �(��) = 1
	�5

��(��|��)��(��)3�(��) 

 

Where,  
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3�(��) = 6�� { ∑ 9  �:��; <=, ���:��, ��;2>� } 

 

Where 	�5 is a constant and �refers to a part in the neighborhood of part i. The above Bayesian 

inference problem can be solved using two distinct approaches. The first involves assuming that 

all the distributions in the Markov network illustrating the articulated object are Gaussian. This 

allows obtaining a closed-form implementation of the equations above. However, video 

applications require the computation of features such as color, texture, edges etc. for the 

likelihood function, which are often contaminated by clutter thus breaking Gaussianity 

assumptions. This results in the second technique of Bayesian inference based on Monte Carlo 

methods. The authors of [3] present a detailed Mean Field Monte Carlo technique that helps in 

evaluating efficient solutions. In this paper, we propose a modified solution to the Monte Carlo 

based on population methods and likelihood combined variational inference. The proposed 

Monte-Carlo framework includes three main stages: 1) Initialisation, 2) Resampling and 3) 

Sampling. In the subsections below we present a detailed overview of the different stages of the 

proposed Evolving Monte-Carlo (EvMC) filtering mechanism. 
 

3.1. Initialization 

 
Let us begin by assuming the update for one body part � with configuration��, which further can 

be generalised to the other parts of the articulated object. The basic underlying principle behind 

EvMC filtering is to iteratively update the set of optimal variation distributions  �(��)of that body 

part�  and approximate it to the posterior density �(��,?|	?)at any discrete time instant @, that is,  

 

 �,? ~ BC�(D),? , E�(D),?FD��
�

 

 

Where C� denotes the samples, wi their corresponding weights and N, the total number of samples. 

At the first time instant, i.e., k = 1 and iteration t = 1, samples BC�,G(D),?FD��
�

 are drawn from any 

proposal distributionH�,?. Estimate the weights of samples using:w�,G(J),K = �(��,?|C�,G(D),?). The 

likelihood measurement�(��,?|C�,G(D),?) is computed using the color measurement cue. Other cues, 

including the texture, edge or motion and joint variations of any of them can be used. The 

measurement is extracted from the image as the color histogram qt, computed inside the image 

regions specified by the stateC�,G(D),?
. The likelihood function is estimated as a Gaussian density of 

the Kullback Leibler distance between the colour histogram of the different channels in the RGB 

colour space between the reference histogramL∗ of the part to be tracked and the histogram 

LGcomputed from ��,? in regionsspecified by each sample C�,G(D),?
, that is,  

 

� M��,?NC�,G(D),?O  P 1
√2HS exp W− Y()(L∗, LG)Z�

2S� [ 
 

 

The weights are then normalized as
\],^(_),`

∑ \],^(_),`a_b�
. Followingthe initialization step, iterative 

resampling and sampling is performed as below. 
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3.2. Resampling 
 

The resampling step is performed in order to overcome the problem of degeneracy. However, 

degeneracy is commonly measured using the Effective Sample Size (ESS). ESS is estimated 

asc∑ ME�,G(D),?O��D�� d
e�

and compared against a threshold. If the ESS value is lower than the 

threshold, resampling is performed and the weights are updated to
�
� . A number of resampling 

methods have been proposed in the literature including, multinomial, residual, stratified, 

systematic etc. The multinomial re-sampling procedure involves drawing uniform distributed 

samples and applying the inversion method [14]. Residual resampling, otherwise known as 

remainder resampling, is an efficient technique of decreasing the variance of the generated 

samples due to resampling [15]. Stratified resampling is based on ideas of survey sampling and 

involves pre-partitioning the uniform distribution interval into disjoint sets and drawing 

independently and henceforth applying multinomial resampling approach [15]. Finally, systematic 

resampling improves the stratified approach further by deterministically linking all the variables 

in the subintervals. Most of the techniques aforementioned are sensitive to the order in which the 

particles are presented, i.e., a simple permutation can change the resampling process. Though 

these methods are widely used in the literature, they lack thorough theoretical analysis of their 

behavior, apart some theoretical works [15]. 
 

3.3. Sampling 
 

Following the resampling process, a transition prior model is applied to regenerate new samples 

using a specified Kernel function. This is usually done by applying a kernel function in the 

following way:C�,Gf�(D),? = ((C�,G(D),?, . ). The weights of samples are recomputed but now taking into 

account the influence of the neighbouring part j. This influence is characterized as a message 

function such as: 

 

-��(D),? = E�,G(D),?. log ���(C�,Gf�(D),?, C�,G(D),?)  
 

The overall weight for part i is updated using 

 

E�,Gf�(D),? = � M��,Gf�NC�,Gf�(D),?O 6�� h -��(D),?
�

 

 

Perform iteration over t and then proceed to the next time step k+1. The prior model is re-

evaluated by computing the probability �:��,?f�i��,?)and is updated using, 

�:��,?f�i��.?)~ ŝ�,G(D),?e�
 

 

3.4. Genetic Kernel 

 
In our proposed framework we employ a genetic kernel in the form of evolutionary cross-over, 

mutation and exchange steps to evolve a better population of samples at each cycle. In the 

following subsections we briefly describe the used genetic operators.  

 

1) CrossOver: In the proposed framework the state vector is represented as a string of bits. The 

crossover point lc is a random point on the string of bits of length l. The crossover operator cannot 

be applied to all parts of the state vector. Some parts of the state vector may not undergo any 

changes and thus for such components, the probability of crossover ρc is zero. This leaves the 
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crossover being operated only on components that are expected to undergo random changes. The 

crossover operator functions on two distinguished offsprings (paired particles), for example, xs,τ , 

xq,τ. The algorithm for crossover is described below: 

 

• Draw a uniform random number uc for every component uc≈ U(0, 1) and if k
 ≤  m
then 

perform crossover  

• Estimate a crossover point lc based on a uniform random integer between 1 and the length 

of the component l 

• Generate two offsprings: 

 �n,o = (��n , ��n , … , �(qre�)n, �qrs , … , �ts) 

 �s,o = (��s , ��s , … , �(qre�)s , �qrn, … , �tn) 

 

whereds and dq refers to the length of the samples xs,τ and xq,τ, respectively.Then in the crossover 

operation, performed with the two offspringsxs,k and xq,k, the particle weight can be expressed in 

the form 

E?
u,(�) = �(�?|�n,?(�)) �(�?|�s,?(�) )� M�n,?(�)N �n,?e�(�) )� M�s,?(�) N �s,?e�(�) )
L M�n,?e�(�) N �?e�)L M�s,?e�(�) N �?e�)  

 

Then the recursive weights can be written as  

 

E?
u,(�) = En,?e�
u,(�)Es,?e�
u,(�) ℒn M�?, �n,?(�)O ℒs(�?, �s,?(�) ) 

 

Here ℒn(�) M�?, �n,?(�)O = �(�?|�n,?(�)) is the likelihood function for the s
th
 offspring, ℒs M�? , �s,?(�) O =

�(�?|�s,?(�) ) is the likelihood function of the q
th offspring; En,?e� 
u,(�)

and Es,?e�
u,(�)
are the weights at 

(k−1)
th

 time instant, for the s
th
 and q

th
 offspring, respectively.  

 

2) Mutation: A probability of mutation ρm is initially defined for each component. Such a 

probability is chosen in order to make sure that components that need no stochastic fluctuations 

could be prohibited from undergoing mutation operation. For such components, the probability of 

mutation ρm is considered zero. The components are assumed as a vector string of binary units. 

According to the proposed mutation mechanism, 

 

• Draw a uniform random number um for every component um≈U(0, 1) and if kw ≤  mw 

then perform mutation  

• Estimate a mutation point lm based on a uniform random integer between 1 and length of 

the component l 

• Flip the mutation point lm The weights are of the form: 

 

E?wxGyG�zD,(�) = � M�?(�)N �?e�(�) )
{L M�?(�)N �?e�(�) ) 

 

Where, U is a uniform random number. During mutation, samples that undergo mutation are 

mutually independent. Therefore, the updated proposal distribution at time k is a factor of the 

proposal distribution at the previous iteration k − 1. 
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3) Exchange: Consider two independent chains of samples, for example, xs,k and xq,k. For their 

target distributions HnandHs, respectively, the swap of information between these two chains can 

be performed with a Metropolis-Hastings step. The swap occurs with probability min{1,A} , 

where 

| = Hn:�s,?;Hs:�n,?;
Hn:�n,?;Hs:�s,?; 

 

4. RESULTS AND ANALYSIS 
 

To track articulated objects we consider people (together with their multiple body parts) in video 

from the CAVIAR [16] data set. The CAVIAR dataset contains over 80 video sequences with one 

or more targets moving in real-time scenarios. We have chosen 10 videos from the data set at 

varying levels of complexity in terms of the motion characteristics, occlusion and clutter (due to 

illumination changes). We further divided the 10 selected sequences in 20 short clips with a 

single target. The tracked people have been manually annotated in these clips using a maximum 

10 point model consisting of the centers of the head (1 point), torso (1 point), arms (2 points for 

each arm) and legs (2 points for each leg). We would like to particular highlight that the frames 

are of resolution 384 x 288 captured at 25 frames per second. The scales of the human targets are 

fairly small in comparison with the resolution of the image and thus in some of the images a 10 

point model gives a dense set of labeled ground-truth which is unusable; therefore in such 

sequences we use a 6 point model. We use the method of [17], [18] to initialize the multiple body 

parts composed multiple targets in first frame of each video using the pictorial structure model. 

For all our experiment described below unless mentioned otherwise, the number of Monte 

Carlocycles is fixed to 100 and the number of particles used is 500. All our experiments are 

conducted on an Intel Duo Core processor with 4GB RAM. To evaluate the performance of the 

models, we compute the root mean square error distance (RMSE) between the estimated center 

point of every part and its manually labeled counterpart. 

 

4.1. Comparison of Proposed with Related Techniques  
 

One of the main novelties of the proposed method is the integration of the variational inference 

based on measuring the KullbackLiebler divergence into the evolving population Monte Carlo 

framework. In the following experiment we compare our method to the conventional evolving 

population MCMC filter as in [19] to study the effect of variational inference on tracking multiple 

body parts of human targets and in addition compare our method to a non-MCMC technique in 

the form of the generic particle filter with joint probabilistic data association filter (JPDA PF) 

proposed in [20], [21]. We summarize the performance of our method in the Table I. In terms of 

the computational demand, our algorithm takes 3742 msec on an average per image frame as 

against the combined EPMCMC and PDA methods that take 2169 msec(implemented in 

MATLAB).  

 

4.2. Effect of the number of parts tracked 

 
In this subsection, we investigate the effect of increasing the number of parts of each target that is 

used for tracking. In the lower levels of the model, we have a smaller collection of more salient 

parts representing the target followed by increasing number of lesser important parts. In the 

following experiment, we examine the impact of increasing the number of parts representing the 

target by comparing the model with level one (1 part: torso), level two (2 parts: head and torso), 

level three (6 parts: head, torso, two hands, and two legs), and level four (10 parts-head, torso, 

four for hands, and four for legs). In order to demonstrate the effectiveness of the variational 

approach in combining the effect of neighboring body parts 
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Video Proposed Baseline JPDAPF 

B2 4.3341 

5.1123 

6.9133 

7.2309 

4.6612 

5.4313 

BWW1 5.0098 7.0384 6.5367 

FC 4.9833 6.7847 5.9749 

LB 5.7683 

4.9987 

6.2053 

5.7574 

5.9930 

6.0393 

LBx 6.0139 6.8932 7.1938 

RFF 5.1342 8.8402 7.1305 

 
Table 1. Tabular description of the chosen video clips (B2- browse2, BWW1- Browse While Walking1, 

FC- Fight Chase, FR1- Fight Runway1, LB- Left Bag, LBx- Left Box, RFF- Rest Fallen Floor) and 

comparison of combined RMSE between variational model (proposed), EPMCMC model (baseline) and 

generic particle filter framework (JPDA PF) 

 

 
 

Figure 2. RMSE of the Torso (y-axis) versus the Number of Body Parts (x-axis) on Different Sequences 

 

4.3. Effect of the number of Monte Carlo cycles 

 
Finally, we also explore the effect of increasing the number of Monte-Carlo cycles on the 

accuracy of our tracking procedure. We record our finding as a plot of the increasing number of 

Monte-Carlo cycles against cumulative RMSE error in Figure 3 and against time in Figure 4. Our 

results suggest that with increase in the number of Monte-Carlo cycles the accuracy increases but 

remain nearly constant after 200 cycles. As it can be clearly visualized, with increasing Monte-

Carlo runs, the time complexity of the algorithm also increases. Therefore, a good trade-off needs 

to be set for balancing the increased accuracy against computational demand. 
 

5. CONCLUSIONS 

 
We have proposed an innovative method for variational inference combined with evolving 

population Monte-Carlo for robust and accurate target tracking. The evolving population filter 

introduces variety in the population of particles by combining them in both the sampling and 

resampling steps using constrained genetic operations. We measure the sensitivity and robustness 

of our proposed framework against key system parameters such the the number of body parts 

tracked and increasing number of Monte-Carlo cycles and have reported results that outperform 
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other baseline methods on standard datasets. Our future work will focus on combining the 

proposed methodology with appropriate data association schemes for reliable multiple articulated 

target tracking. 

 

 
 

Figure 3. Combined RMSE of the Body Parts (y-axis) versus the Number of Monte Carlo Cycles (x-axis) 

on Different Sequences 

 

 

 
 
Figure 4. Mean Time for Tracking (y-axis) versus the Number of Monte Carlo Cycles (x-axis) on Different 

Sequences 
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