

Sundarapandian et al. (Eds) : ICAITA, SAI, SEAS, CDKP, CMCA-2013

pp. 81–92, 2013. © CS & IT-CSCP 2013 DOI : 10.5121/csit.2013.3808

GPU-BASED IMAGE SEGMENTATION USING

LEVEL SET METHOD WITH SCALING

APPROACH

Zafer Güler

1
andAhmet Çınar

2

1
Department of Software Engineering, Firat University, Elazig, Turkey

zaferguler@firat.edu.tr
2
Department of Computer Engineering, Firat University, Elazig, Turkey

acinar@firat.edu.tr

ABSTRACT

In recent years, with the development of graphics processors, graphics cards have been widely

used to perform general-purpose calculations. Especially with release of CUDA C

programming languages in 2007, most of the researchers have been used CUDA C

programming language for the processes which needs high performance computing.

In this paper, a scaling approach for image segmentation using level sets is carried out by the

GPU programming techniques. Approach to level sets is mainly based on the solution of partial

differential equations. The proposed method does not require the solution of partial differential

equation. Scaling approach, which uses basic geometric transformations, is used. Thus, the

required computational cost reduces. The use of the CUDA programming on the GPU has taken

advantage of classic programming as spending time and performance. Thereby results are

obtained faster. The use of the GPU has provided to enable real-time processing. The developed

application in this study is used to find tumor on MRI brain images.

KEYWORDS

CUDA, GPU Programming, Level Set Method, Image Segmentation, Scaling

1. INTRODUCTION

The first and most important step in image analysis is image segmentation. Segmentation is the

process of dividing an image that created it, and the computer vision [1] and medical imaging [2]

are among the most significant transactions. Another purpose of segmentation is to extract the

boundaries of the object or objects in the images. For this purpose, level set method is used to

extract object boundaries in images with highly successful results. The level set method is

released by Osher and Sethian [3]. After it is released for the first time, it has become a favorite

technique for finding, tracking or monitoring of moving surfaces. The overall objective of the

level set method is to monitor moving surfaces and curves. Here, the moving surfaces can be

traced by the speed term and the speed term depends on the current geometry. By means of this

method, topological changes automatically manageable and an object can be divided into more

than one object, or vice versa.

Computer Science & Information Technology (CS & IT) 82

Level set method quite suitable for the method such as mud and water physically-based

simulations [4], but the method require solving the partial differential equations (PDEs), so the

solution requires a high computational cost. Many methods have been developed to deal with this

problem. Two major approaches are narrow band [5] and sparse field technique [6]. With these

methods, PDE improvements calculated only around the zero level set and the speed

improvement has obtained. But enough acceleration could not achieve. Later studies focused on

running parallel to the level set method. Thus the parallel algorithms have been developed [7].

Multiprocessor structures emerged in the last ten years, and today began to be used widely. These

structures are used in both industrial and academic research, and the difficulties and problems can

be solved with these structures. Nowadays, many problems can be implemented easily with this

structure. Especially with the rapid advances in video card, running parallel to the level set

method has become an important factor to the speed increase.

Graphics processor unit (GPU) to be used for general purpose applications is not an approach that

emerged in recent years, but in 2007, with the development of the CUDA architecture, it is

expanded rapidly. The CUDA architecture provide to execute general purpose application without

knowledge of the graphics processor. GPU-based applications are used not only in the scientific

field, but also in other fields that require high performance such as, image and video processing,

fluid dynamics simulation [8].

Level set method began to run on the GPU in the early 2000s. The first GPU implementation of

the level set method is implemented by Rumpf and Strzodka[18] in 2001. Researchers continued

to study in this area until 2007[19, 11]. With the release of CUDA C programming language in

2007, high performance solutions have been obtained [12-15]. One of the important studies on the

level set method was presented by Robert et al. [16] and Jalba et al [17]. Robert’s method

represents approach to implement narrow-band approaches on the GPU and Jalba’s method

represents approach to implement sparse approaches on the GPU.

In this paper, a novel GPU-based level set method is presented. The proposed method does not

include PDE solution, so our algorithm has significantly increased the speed of calculation. We

use basic geometric transformations for curve evolution. This paper is organized as flows. In

Section 2 provides information on the new generation of GPU and memory management. In

section 3 we explain the major details of developed GPU-based algorithm. Finally, results

andtime measurements are presented.

2. CUDA ARCHITECTURE

Graphics processors are rapidly developed and become available for general purpose applications.

Thus it has become to use in many areas to improve the speed of application. CUDA architecture

developed by NVIDIA company and this architecture allows high increase in computing

performance. In fact, this performance difference is due to the fact that, the GPU architecture

designed for parallel operations. A simple CPU (central processor unit) and GPU architecture are

illustrated in figure 1. As shown in the illustration GPU has a large number of arithmetic logic

unit (ALU), but its cache memory is low [18].

83 Computer Science & Information Technology (CS & IT)

Figure 1.CPU and GPU architecture [18].

GPUs execute a large number of threads on a set of data at the same time. Therefore it is only

appropriate for parallel data. Thus the successful result can be obtained. For example if a program

contains many flow control, its calculation speed may be reduce rather than increase [7].

2.1. CUDA C Programming Language

A CUDA C programming language introduces a small number of extensions to C language and

allows us to define C function called kernel. With kernel we can define and execute N function in

parallel. When kernel calls, unique threadId is available. Thus, with the Id number we can

determine which thread is currently running within the kernel. Threads are organized in blocks. In

the same as thread, blocks have an identification number. So that which block and which thread

actually running, can be easily determined in large data sets. But the number of thread in the

block is limited. Current GPUs are supported up to 1024 thread. Threads and blocks can be one,

two or three dimensional. Blocks are organized in grids. A general structure is illustrated in figure

2 [18].

Figure 2.Grid of the blocks [18].

Computer Science & Information Technology (CS & IT) 84

2.2. Memory Management

CUDA architecture supports many memory types. Threads, blocks and type of memory are

illustrated in figure 3. Each thread access registers, local memory, shared memory, constant

memory and global memory. The CPU part of the application can be access global memory and

constant memory. The used memory types are listed below.

Registers: Registers are defined in the thread. These variables cannot be accessed from outside

the thread. Generally, it is used to store local variable in the function. It is not require any extra

programming extension [8, 9, 10]

Local Memory: Same as registers it is valid only in the thread. It is defined by __local__

keyword. İt is slower than register [8].

Shared Memory: All of the thread in the blocks can access to shared memory. The values in the

blocks can be accessed by any thread. In general, it is fast as registers. İt can be defined by

__shared__ keyword [8, 9].

Global memory: All application (CPU and GPU part) can access global memory. It is defined by

__device__ keyword. Data transfer speed is very slow [18].

Constant Memory: Constant memory can only be read by the GPU. Each running thread can read

from memory at the same time. Thus, we obtain very fast data transfer [8, 10].

Figure 3.GPU hardware architecture and memory types [20].

85 Computer Science & Information Technology (CS & IT)

3. DEVELOPED METHODS

In this paper, a novel level set method based on scaling approaches for extracting object on the

images is proposed. In this section, developed GPU algorithm will be discussed. The application

is implemented by using the Visual Studio 2012 environment with CUDA C language. The

developed method consists of the following five stages. These stages and their working devices is

presented in Figure-4.

Figure 4.General algorithm of the developed method.

3.1. Preparation Stage

In this stage, user can select any picture by means of the developed user interface. After getting

the image from a user, it sends to the graphics processor. OpenGL library was used to display the

picture from the user. This process will be performed by the CPU.

3.2. Pre-processing Stage

In this stage some preprocessing techniques are performed on the images. The first technique is

noise reduction. We use Gaussian smoothing for this purpose [21]. The Gaussian smoothing

operator is a 2-D convolution operator that is used to remove detail and noise. We use 5x5

Gaussian filter. The second technique is to convert color to grayscale. The developed method

applies on gray level images so gray level transformation is made in this section for color images.

The final technique is Sobel operator. This operator is used in image processing, particularly edge

Computer Science & Information Technology (CS & IT) 86

detection algorithm. This technique is used to help “EDGE” algorithm which is mentioned in

section 3.4. These three techniques executes on the GPU.

3.3. Determination of Contour and Center

Sometimes the initial contour is very important to find object boundaries quickly. The developed

application has tested on MRI brain tumors images. Here, we have expected to identify tumor

area sketchy by expert. Determined initial contour curve is drawn as a circle. Then this curve is

sent to the graphic processor to provide curve evolution.

The center of the object is the main element of the curve evolution algorithm. But we have no

idea about the center of the object. Fortunately, it can be adjusted by the system automatically or

by an expert. In this paper, we prefer to determine the center by an expert. Thus, we provide a

more accurate center. Also, we allow selecting more than one center, so that the concave shapes is

successfully determined. An example is illustrated in figure 5. U-shaped object having a concave

region at the top of the figure. Figure 1a shows initial condition, figure 1b shows the result of

boundaries with one center, and figure 1c shows the result of boundaries with three centers. As

shown in the figure, using more than one center is more accurate.

(a) Initial Condition (b) Result with one center (c) Result with three centers

Figure 5.Comparison of the use of a single center and multi-center on U-shaped object.

3.4. Contour Evolution

In level set method, curve evolution is based on the solution of partial differential equation. This

causes the algorithm to run slowly. The developed algorithm for this paper use different approach

for curve evolution.

The developed curve evolution method uses two-dimensional geometric transformations such as

scaling and it uses the logic of binary search. Binary search technique is applied on series of

numbers and with this techniques search time significantly reduces. In developed algorithm, the

evolution of next point on the curve is determined for each point. Normally, binary search is

performed on numbers but in our method, we use pixels for binary search operation. Rather than a

set of number of binary search, we define a set of pixels and half of the cluster is eliminated at

each cycle approximately. This process continues until the edge is found or until there are no

elements in the cluster. Elements of the cluster are pixels between a point on the contour and

shape center.

87 Computer Science & Information Technology (CS & IT)

Figure 6.The movement of a pixel on the curve. (a) Initial state. (b) After first step. (c) After secondstep. (d)

After third step. (e) After fourth step – Edge found.

Algorithm is illustrated for a pixel in Figure 6. Thus, when we move contour pixel by pixel, the

running time of the edge detection process will be O(n) , but with this algorithm the running time

of the edge detection process will be O(logn) (n is the number of pixels between initial point and

center point). This process is repeated for all points on the curve, by this way the development of

the initial curve is provided.

In algorithm, we use scaling in order to ensure the movement of pixels. At the beginning of the

evolution, there are two variables defined for scaling which are called “sr1” and “sr2” and

respectively they are set 1 and 2. “sr1” variable refers to scaling factor which is applied to the

previous cycle and “sr2” variable refers to current scaling factor. Variables are calculated at the

end of each cycle by the following formula according to the movement of each pixel.

 ��1 = ��2 (1)

��2 = ���2 + |��1 − ��2|2 �� ���� ������ �� �ℎ� �ℎ��
��2 − |��1 − ��2|2 �� ���� ������� �� �ℎ� �ℎ�� � (2)

Developed GPU algorithm is given in Figure 7. Algorithm uses two functions. The first function

is “EDGE” function. This function provides information about whether or not a pixel closes to the

edge. The other function is “INSIDE” function. This function is used to determine a pixel is

inside or outside the shape.

Computer Science & Information Technology (CS & IT)

Figu

“EDGE” function uses the calculated edge information which is calculated in preprocessing

section and return in the form of true or false. In the same way “INSIDE” function returns result

as true or false. “INSIDE” function uses centers values, initial contour and the average density of

contour area to decide. Every pixels on the contour execute on a CUDA thread, so application

accelerated. Curve evolution algorithm is applied an MRI liver image and illustrated in figu

The image size is 512x512 and as shown in the illustration contour evolution is very fast.

(a) Initial State

(d) Cycle-3

Figure 8.

3.5. Presentation

At this stage, the entire calculation has been completed. Final contour and preprocessed image

copy from GPU to CPU memory. Then, contour points and image are combined and presented to

the user.

Computer Science & Information Technology (CS & IT)

Figure 7.GPU algorithm of the algorithm.

“EDGE” function uses the calculated edge information which is calculated in preprocessing

section and return in the form of true or false. In the same way “INSIDE” function returns result

nction uses centers values, initial contour and the average density of

contour area to decide. Every pixels on the contour execute on a CUDA thread, so application

accelerated. Curve evolution algorithm is applied an MRI liver image and illustrated in figu

The image size is 512x512 and as shown in the illustration contour evolution is very fast.

(b) Cycle-1 (c) Cycle

(e) Cycle-5 (f) Cycle

Figure 8.An example of curve evolution algorithm.

calculation has been completed. Final contour and preprocessed image

copy from GPU to CPU memory. Then, contour points and image are combined and presented to

 88

“EDGE” function uses the calculated edge information which is calculated in preprocessing

section and return in the form of true or false. In the same way “INSIDE” function returns result

nction uses centers values, initial contour and the average density of

contour area to decide. Every pixels on the contour execute on a CUDA thread, so application

accelerated. Curve evolution algorithm is applied an MRI liver image and illustrated in figure 8.

The image size is 512x512 and as shown in the illustration contour evolution is very fast.

(c) Cycle-2

(f) Cycle-7

calculation has been completed. Final contour and preprocessed image

copy from GPU to CPU memory. Then, contour points and image are combined and presented to

89 Computer Science & Information Technology (CS & IT)

4. RESULTS

In this section we present experimental results obtained by the proposed methods. All

experiments were performed on a machine equipped with an Intel Core i7-3770 CPU at 8GB

RAM and a GeForge GTX 660 Ti GPU. GPU has 7 streaming multiprocessor (SM) and each SM

has 192 CUDA processor. This means 1344 computing core per chip. The number of register per

multiprocessor is 65536, the total amount of constant memory is 64KB. The amount of shared

memory per multiprocessor is 48KB, organized into 32 banks. The 2GB amount of global

memory is reached through a GGDR5 interface. The architecture supports the double precision

floating point arithmetic.

In this study, we use MRI brain tumor images. The resolution of the image is512x512. The results

are illustrated in figure 9. As shown in the figure the tumor has found with high success rate.

Figure 9.The results of the proposed method.

Computer Science & Information Technology (CS & IT) 90

The developed application has been tested with different settings on different images with

different resolution. Firstly, the preprocessing operation is tested with different settings. We test

our algorithm with three different parameters. These are block number, thread number and image

resolution. The results are shown in Table 1. Table 1 also shows that execution time generally

depends on the image resolution but block number and thread number are also very important for

performance optimization. As shown in second and last row of the table 1, thread number is

selected very low, so the execution speed increases.

Table 1. Execution time of the preprocessing stage.

Image Resolution Block Number Thread Number Execution Time (ms)

256x256 16x16 16x16 (256) 0,36

256x256 32x32 8x8 (64) 0,70

256x256 8x8 32x32 (1024) 0,36

256x256 16x8 16x32 (512) 0,36

512x512 16x16 32x32 (1024) 1,34

512x512 32x32 16x16 (256) 1,33

512x512 16x32 32x16 (512) 1,32

512x512 32x64 16x8 (128) 1,33

1024x1024 64x64 16x16 (256) 5,14

1024x1024 64x32 16x32 (512) 5,19

1024x1024 32x32 32x32 (1024) 5,19

1024x1024 128x64 8x16 (128) 5,36

Secondly, curve evolution algorithm is tested with different settings. We test our algorithm with

four different parameters. These are block number, thread number, image resolution and number

of contour points. The results are shown in Table 2. Considering that, curve evolution algorithm

is a circular structure, so we only give one cycle’s execution time. In Table 2, execution time is

given in milliseconds and indicates that, the slow-running cycle. As shown in table 2, the

execution time is not change with the image resolution, because we use image only for

information. In other word, we do not use image information primarily, so threads will access

image data with global memory when it is necessary.. We use contour points as primary data, but

as shown in the figure 2, it is generally no effect for execution time. There are two reasons for this

result. Firstly, the complexity of the algorithm is O(1). Each thread executes their code and this

code does not include a circular part. Second and main reason, the video card capacity is not used

in this process. As shown in table 2, threads and blocks number are very limited. Here, the

important factor for execution time is to select a sufficient number of threads. For example, the

second, fourth and sixth row of the table 2, we select 4x4 thread number. But there is no effect for

performance. On the other hand, when we increase the number of contour points, 4x4 thread

number is not enough and this leads to increase execution time. For example, in seventh row in

table 2, we use 4096 contour points and 4x4 thread number is not enough.

A key decision for performance optimization in CUDA programming is not only the choice of the

size of the block and thread number, but also the choice of the memory type. With an only small

change to the type of memory used, can be achieved great acceleration. We use shared and

constant memory in this study. The main aim is to maximize memory bandwidth. For this,in

91 Computer Science & Information Technology (CS & IT)

preprocessing stage, we use shared memory for image convolution. Also the constant memory is

used in all GPU-based function.

Table 2. Execution time of the curve evolution algorithm. (For 1 cycle)

Image

Resolution

Block

Number

Thread

Number

Contour Point

Number

Execution Time

(ms)

256x256 4x4 8x8 1024 0,058

256x256 8x8 4x4 1024 0,055

256x256 4x2 4x8 256 0,057

256x256 4x4 4x4 256 0,054

512x512 4x4 8x8 1024 0.058

512x512 8x8 4x4 1024 0.056

512x512 16x16 4x4 4096 0.090

512x512 8x8 8x8 4096 0.059

1024x1024 4x8 16x8 4096 0.060

1024x1024 4x4 16x16 4096 0.060

5. CONCLUSIONS

In this paper, a novel GPU-based level set method has presented with scaling approach.We

followed the method of heterogeneous programming technique for this study. Some of the steps

were made on the CPU side and some of the steps were made on the GPU side. Minor procedures

and user inputs performed on the CPU side. Operations that require high computing such as curve

evolution and preprocessing performed on the GPU side. Thus, we achieved very fast execution

time.

In developed method, the curve evolution algorithm used basic geometric transformation like

scaling, so that the algorithm has been run much faster. As a result, all operations were completed

in about 2 milliseconds with all memory operations. Thus, it is possible to show that with the

developed method, we can perform real-time operation.

REFERENCES

[1] S. Osher, and N. Paragios, (2003)“Geometric Level Set Methods in Imaging, Vision and Graphics”,

Springer-Verlag New York, Secaucus, NJ, USA.

[2] D. W.Shattuck, G. Prasad, M. Mirza, K. L. Narr, and A. W. Toga, (2009)“Online resource for

validation of brain segmentation methods”, NeuroImaging, 45, 431-439.

[3] S. Osher, and J. Sethian, (1998)“Fronts propagating with curvature-dependent speed: Algorithims

based on Hamilton-Jakobi formulation”, J. Comput. Phys., 79-1, 12-49.

[4] R. Fetkiw, (2002)“Simulating Natural Phenomena for Computer Graphics, Geometric Level Set in

Imaging”, Vision and Graphics, 461-479.

[5] D. Adalsteinsson, and J. Sethian, (1995)“A Fast Level Set Method for Propagating Interfaces”,

Journal of Computational Physics, 118-2, 269-277.

[6] R. Whitaker, (1998)“A Level-Set Approach to 3D Reconstruction from Range Data”, International

Journal of Computer Vision, 29-3, 203-232.

Computer Science & Information Technology (CS & IT) 92

[7] S. P. Awate, and R. T. Whitaker, (2004)“An Interactive Parallel Multiprocessor Levet-Set Solver with

Dynamic Load Balancing”, Scientific Computing and Imaging Institute Technical Report, UUCS-05-

002, University of Utah, Salt Lake City, UT, USA.

[8] J. Sanders, and E. Kandrot, (2011)“CUDA By Example: An Introduction to General-Purpose GPU

Programming”, Addison-Wesley, NVIDIA Cooporation.

[9] M. Rumpf, and R. Strzodka, (2001) “Level Set Segmentation in Graphics Hardware”, IEEE

International Conference on Image Processing (ICIP’01), Thessaloniki, Greece, October 7-10, pp.

1103-1106.

[10] A. Lefohn, and R. Whitaker,(2002)“A GPU-Based Three-Dimensional Level Sey Solver with

Curvature Flow”, Scientific Computing and Imaging Institute Technical Report, UUCS-02-017,

University of Utah, Salt Lake City, UT, USA.

[11] A. Lefohn, J.M. Kniss, C. D. Hansen, and R. T. Whitaker, (2004)“A Streaming Narrow-Band

Algorithm: Interactive Computation and Visualization of Level Sets”, IEEETransactions on

Visualization and Computer Graphics, 10, 422-433.

[12] O. Klar, (2007)“Interactive GPU-based Segmentation of Large Medical Volume Data with Level-

Sets”, 11th Central European Seminar on Computer Graphics (CESCG’07), Budmerice Castle,

Slovakia, April 23 - 25.

[13] H. Mostofi, and K. Colege, (2009)“Fast level Set Segmentation of Biomedical Images using Graphics

Processing Units”, Final Year Project, University of Oxford, Department of Engineering Science

Oxford.

[14] A. Hagan, and Y. Zhao, (2009)“Parallel 3D Image Segmentation of Large Data Sets on a GPU

Cluster”, 5th International Symposium on Visual Computing, Las Vegas, Nevada, USA, November

30 - December 2, pp. 960-969.

[15] G. J. Tornai, and G. Cserey, (2010)“2D and 3D level-set Algorithm on GPU”, 12th International

Workshop on Cellular Nanoscale Network and Their Applications (CNNA), Berkeley, CA, USA,

February 3-5, pp. 1-5.

[16] M. Roberts, J. Packer, M. C. Sousa, and J. R. Mitchell, (2010)“A Work-Efficient GPU Algorithm for

Level Set Segmentation”, High Performance Graphics (HGP ‘10), Saarbrucken, Germany, June 25-

27, pp. 123-132.

[17] A. C. Jalba, W. J. Van Der Laan, and J. B. T. M. Roerdink, (2013).“Fast Sparse Level Sets on

Graphics Hardware”, Visualization and Computer Graphics, 19-1, 30-44.

[18] NVIDIA., (2012) “CUDA C Programming Guide v5.0”.

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf, 15 Mayıs 2013.

[19] S. Cook, (2012)“Cuda Programming: A Developer’s Guide to Paralel Computing with GPUs”,

Elsevier, Morgan Kaufmann.

[20] J. Ooster,“Cuda Memory Model”, http://3dgep.com/?p=2012, 14 Mayıs 2013.

[21] “Gaussian Smoothing”, http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm, 14 Mayıs 2013.

Authors

ZaferGüler is a research assistant in the Department of Software Engineering at the Firat

University of Elazig where he has been a faculty member since 2010. He completed his

master at Firat University Computer Engineering department. His research interests are

GPU programming, level set methods.image segmentation.

AhmetÇınar was born in Elazig (1972). He received the PhD degree in Electric-

Electronics Engineering in 2003 from Firat University. He has graduated in 1993 BSc.

He has been working on Firat Univ. Department of Computer Engineering, (Assistant

Professor). His research is interested in development and improvement of mesh

generation methods, and applications of virtual reality, augmented reality, artificial

intelligence and game programming.

