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ABSTRACT 

 

In this paper we study the improvement in the performance of Artificial Neural Networks (ANN) 

by using parallel programming in GPU or FPGA architectures. It is well known that ANN can 

be parallelized according to particular characteristics of the training algorithm. We discuss 

both approaches: the software (GPU) and the Hardware (FPGA). Different training strategies 

are discussed: the Perceptron training unit, the Support Vector Machines (SVM) and Spiking 

Neural Networks (SNN). The different approaches are evaluated by the training speed and 

performance. On the other hand, algorithms were coded by authors in the hardware, like Nvidia 

card, FPGA or sequential circuits that depends on methodology used, to compare learning time 

with between GPU and CPU. Also, the main applications were made for recognition pattern, 

like acoustic speech, odor and clustering According to literature, GPU has a great advantage 

compared to CPU, this in the learning time except when it implies rendering of images, despite 

several architectures of Nvidia cards and CPU’s. Also, in the survey we introduce a brief 

description of the types of ANN and its techniques of execution to be related with results of 

researching. 
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1. INTRODUCTION 

 
This paper presents a survey of the improvement of training time and performance of Artificial 

Neural Networks (ANN). Some trends of topics are about ANN is Parallel Programming to solve 

problems such as clustering (Herrero-Lopez [8]), pattern recognition (Olaf [28]), regression 

(Carpenter [19]), building of ANN in a specific hardware, such as FPGAs (Papadonikolakis [7]). 

Historically, ANN were developed in second half of century XX as a result of research made in 

Second War World. First generations are MC Culloc (1943), Hebb (1949), Perceptron (1957), 
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Adaline y Madaline (1959), Cognitron (1980) y Hopfield (1982). Then, in 1982 Hinton and 

William developed the known algorithm called back propagation. This can be considered as 

second generation of ANN. The third generation was studied since 1930, with British scientists 

Alan Lloyd Hodgkin (1914-1998) y Andrew Fielding Huxley (he was born in 1917), nowadays 

SNN are based on this model. These authors finished their research in 1950 and their 

mathematical model is known as Hodgkin – Huxley [27] 

The perceptron is the first training unit in which a training algorithm for linearly separable 

problems, that consist of a single neuron. Mathematically, itis represented by anstraight line 

equation [36]. However, non – linear problems can’t be solved with this methodology. 

However, in decade of 1990 was started the development of SVM [35], even this methodology 

had been invented since 1979 [32] by Vapnik, to solve more complex problems, linearlly 

separable or non – separable. In this case, support vectors are a set of vectors placed in border of 

clusters for classifying or densities detection. An advantage related to this methodology was that 

scientist calculated its architecture that consists of three layers; however, SVM consume many 

memory resources.  

In 2003 was developed the methodology SNN also called Spike Response Model (SRM) (Bohte 

[29], Olaf[28]). At the same time, Izhikevich [30] developed a reduced model of Hodgkin – 

Huxley model that consist on two differential equations that explain behavior of mammal 

neurons. The main diference between SRM and Izhikevich’s model are the differential equations. 

In case of Hodgkin – Huxley model has four differential equations with partial non linear 

derivatives, and depends on the space and time. This model describes propagation and generation 

of potential of a big axon of squid in order to explain the main properties. SNN’s are based on the 

model described in last paragraph, because is the model most similar to the neurons of mammals 

[28] 

Information in the mammalian neurons of the brain, is coded with spikes, around 55 mV. A spike 

is an electrical pulse along its axon. The similar Artificial Neural Network with mammalian 

neuron is Spiking Neural (SNN), what sends a response according to the data encoded in the time, 

so it is more suited for applications where the timing of input signals carries important 

information (e.g., speech recognition and other signal-processing applications). Also, SNN can be 

applied to the same problems that depend on behavior of time of parameters because of its 

singular characteristic of coding in the time [13] 

Respect to parallel programming [38] calculations are carried out simultaneously, operating on 

the principle that large problems can often be divided into smaller ones, that are solved 

concurrently. There are several different forms of parallel computing: bit-level, instruction level, 

data, and task parallelism. This manuscript is focused on instruction level and task. In the figure 

1, we can see principle of parallel computing. 

Problems of parallel programming can be solved in OpenGL, Cg, C, C++ and Fortran.�� 

Finally, they are developed for CUDA language. 

This paper is distributed as follows: in section 2 the state of the art of ANN is presented, in 

section 3 the performance of ANN in parallel programming is included, finally in section 4 are 

the conclusions. 
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Figure 1. Parallel programming. 

2. RELATING WORKS ON THE USE OF PARALLEL PROGRAMMING IN 

ARTIFICIAL NEURAL NETWORKS 
 
Recently works are shown in the following paragraph. According to Sridhar [1], proposes 

application of a technology that consists of a chip thermal modelling based on Neural Network 

and GPU’s. Learning time is compared between CPU and GPU for this application. As a 

conclusion, GPU is faster then CPU. 

Table 1. State of the Art Parallel. 

AUTHOR CONTRIBUTION YEAR  

Arash [2] 

 

Implements Izhikevich’s model in a GPU of Spiking Neural 

Network. Comparisons between CPU and GPU are shown and 

considerable speedup is achievable with the approach depending 

on the system architecture and the SNN complexity. 

2011 

Lowe [3] He uses several GPU’s of Nvidia to compare an Artificial 

Neural Network with eight neurons in the hide layer about its 

training time. As a result, Nvidia GTX is faster than other cards 

that he used. However, he doesn’t say which is the model of 

Artificial Neural Network. 

2011 

Sergio Herrero [8] Compares learning time and precision between two GPU targets 

and libraries of MatLab. 

2010 

Izhikevich [9] Designs a hybrid model for SNN in order to combine continuous 

and discontinuous numeric methods. 

2010 

Bhuiyan [11] Compares the models of SNN such as Izhikevich and Hodgkin 

Huxley, these models applied to recognition of characters. 

2010 

Yudanov [13] Implements a hybrid method with numeric integration of Parker 

Sochacki (PS) with adaptative order. This is validated at the 

moment in the comparision made between GPU and CPU in 

their characteristics. 

2010 

Scanzio [12] He compares the speed of processing in CUDA of algorithms 

feed fordward and back propagation. 

2010 

Xin Jin [14] He Applies a chip called SpiNNaker that contains several 

processors ARM968 that has a speed of processing of 200MHz 

each one. He compares the results usingMatLab. He evaluate the 

state of actualization of the neuron, arrangement of entry, 

processing of a new entry;. However he don’t experiment with 

other databases.  

2010 

Papadonikolakis 

[15] 

He has focused on improving the speed of learning and 

efficiency of SVMs using several methods. Also, he compares 

these parameters between a GPU and a FPGA programming 

Gilbert’ algorithm. 

2009 

Nageswaran [17] He presents a compilation of  theIzhikevich’s models. 2009 
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Thomas andLuk 

[18] 

The author proposes a Simulation with maximum 1024 neurons 

in a FPGA the Izhikevich’s model. 

2009 

Stewart andBair 

[20] 

He Applies Runge – Kutta’s method for Izhikevich and Hodgkin 

Huxle’s models. As a result, second method is more efficient. 

2009 

Prabhu [21] He applies GPU for pattern classifier in images. He focuses on 

the degree of parallelism of a problem. He uses maximum size 

of image of 256 MB, and in a video memory GPU of 768 MB. 

As a result, author compares Dual – Core AMD processor with a 

Geforce 6150 GPU, and when the number of patterns increase, 

the CPU is linearly slower than GPU,  But when the network 

size increase the curve isn’t linear. 

2008 

Catanzaro [22] The author proposes  theSVM using algorithm of Sequential 

Minimal Optimization (SMO), also he compares time of 

learning and precision of classification between GPU and 

libraries of SVM of MatLab. 

2008 

Martínez [23] He implementes Fuzzy ART Neural Network in a GPU in order 

to compare results with CPU processor. Type of data applied are  

images in format RGB. Also the author uses dual – core Pentium 

4 at 3.2 GHz, although the Neural Network is only accelerated 

in a GeForce 7800 GT card. As a conclusion, CPU is faster in 

training stage that CPU, in spite of GPU is faster in testing stage. 

2007 

Philipp [24]  He programs Spiking Neural Network in a FPGA. About results, 

author says that this hardware can be simulated through 

thousands of neurons, however author does not show 

conclusions about it. On the other side, he focuses on 

synchronization of nodes according to the frequency of the 

signal.  

2007 

Pavlidis, et. al [26] He Applies evolution algorithms using SNN, however according 

to author efficiency of the network was not calculated. 

2005 

Zhongwen [25] He calculates the learning time in a multilayer perceptron in a 

CPU and a GPU, spending 11328 ms (CPU) and 46 ms (GPU) 

respectively. 

2005 

Olaf [28] The author Shows theory about SNN and the problem of 

codification of the entries. 

2004 

Bohte [29] He also made a comparison with different algorithms as 

Spikeprop. The work does not show the learning time. On the 

other hand, he presents differences between traditional ANN and 

SNN. 

2003 

Izhikevich [30] He simulates in MatLab the Hodgkin – Huxley’s model. Also, 

he gots to execute maximum 10000 neurons and 1000000 of 

sinapsys. 

2003 

 

3. PARALLEL PROGRAMMING IN ANNS 
 

3.1. Types of architectures for parallelization 

Artificial Neural Networks can be parallelized in a specific hardware, for example GPU, FPGA 

such a Thomas [18], sequential circuits, or specific card [14] However, according to the most 

often used, we have focused on GPU and FPGA. 

In the case of SVM’s, they are better designed in a GPUbecause the optimizing methodrequires of 

solving repetitively operations of matrixes. However, for SNN methodology is better to use 
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FPGA or sequential circuits, although it can be simulated in GPU. The reason is that in a GPU 

thelearning time is calculated with a non linear and exponential equation,which algebraic order 

depends directly of number of neurons in the input. This equation is solved with mathematical 

approximations, so if the number of neurons in a input layer is increasing, the computational 

complexity too. However, to design SNN architecture in the circuit mentioned, the time does not 

need a mathematical solution to find the threshold, this is only detected with a simplex circuit. 
 

3.2. Configuration of a GPU 

This section is focused in program CUDA in a GPU. Because of each author uses his own 

resources, then there is not a standardhardware of interest for comparing the results with other 

researchers, however results of other investigations can be used as a reference to improve the 

algorithms.  

One of the biggest problems to start isto configure the hardware selected. Some ANNs need to be 

programmed with kernel in three dimensions, such as SNN. The simplest configuration in one or 

two dimensions is perceptron method. Parameters to be considered in hardware are threads, 

blocks and grids. In case of perceptron, each column of a block can be used as a layer;in contrast 

for SNN each block can represent only one neuron. Sometimes computational resources are not 

enough. Other problem to be considerated is thatthis method is recursive and weightsmust be 

frequently adjusted because of local memory is not enough. 

However, all details of programming depend on the ability to program each design it can be easy 

or not. Also, efficiency can be better if the researcher knowswhen  a specific methodology could 

be used. But the most important depends on the researcher’s ability to decide when and how 

much can be parallelized (the grade of parallelism). 

The hardware configuration is selected in each kernel,  the number of threads and the number of 

blocks per grid are chosen [38] 

3.3. Grade of parallelization 

All ANNs can be parallelized in several levels. First, perceptron can be parallelized per layer. In 

other words, all outputs of neuronsper layer can be calculated at the same time because of 

thesimple form of its activation function. On the other hand, each layer must be calculated 

sequentially because of input of hidden layer depends on output of previous layer. However, 

circular buffer, this procedure can be designed, through FIFO principle (First in – First out).So, 

when all the output values of the first iteration are known all the layers could be parallelized. 

However, this can be implemented in other research. 

Second, in case of SVM, is similar to perceptron but the difficulty increases when the quantity of 

parameters increases to calculate the dimension in where the problem is separable. So, a handle 

matrix of more than one columnis needed and requirements of computational resources are 

bigger. In this case, we kernels in CUDA with more than one dimension could be needed. 

Third, for SNN an implement algorithmof a mathematical or sequential method to calculate the 

value of threshold in amplitude and time is needed. This impliesthatmany values of time are 

needed, as well as, maybe hundreds or thousands per row in a block. So, a neuron is represented 

as a grid in tree dimensions, where each row can represent a previous neuron to be added for one 

output of the following neuron. This method requiresgood memory resources. 

Therefore, sometimes it is not recommended to parallel more than hardware features allow you to 

do. 
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3.4. Examples of parallelization in ANNs 

Parallelization of ANN consists in two phases: first learning phase, and second execution phase. 

Parallelization for learning phase in case of SVM is in parallelization of matrixes operations, 

what is well defined in webpage of CUDA [37] although this depends on optimization method 

applied what is focused on solving quadratic problem [38]. In case of SNN, the mathematical 

calculus in phase of learning is more sequential because of its approximation method.But in both 

SVM and SNN all weight of hidden layers neurons can be parallelized and calculated at the same 

time. 

The second phase refers about to evaluations of weights calculated according to inputs. The 

sections A, B and C show a way of parallelizing of this phase. 

Preceptron.Graphically, the following components of the model represent the actual activity of a 

neuron. All inputs are summed altogether and modified by the weights. This activity is referred as 

a linear combination. Finally, an activation function controls the amplitude of the output. This 

process is described in the figure 2. Each thread represents a layer. In the GPU, parallelism for a 

neuron of perceptron is focused on mathematical operations [38] 

 
Figure 2. Simple perceptron. 

Backpropagation.In this case has the samealgorithm in weight thatSNN. The weight needs to be 

adjusted per iteration. Parallelization in two dimensionsis like the figure 3. 

Support Vector Machines (SVM).In the figure 3, the parallelization of SVM could be observed, 

in this case each thread represents a layer with n or k number of rows, however the mathematics 

calculus are parallelized into of each neuron of hidden layer in other kernel, what is solved as a 

optimization problem. The dimension of the Hessian matrix isequal to numberof input 

parameters. So, the multiplication of matrix is another operation to parallelize that can be solved 

in a separated kernel. In the figure 3, the y0 neuron gets at the same time all values multiplied per 

its respective weight, the in other kernel in CUDA the mathematical operations are parallelized. 

At the same time the other neurons of hidden layer computing its respective output. However, the 

next layer cannot calculate its output without the previous layer has done. 

 
Figure 3. Parallelization of Support Vector Machine (SVM), 2D Array. 



Computer Science & Information Technology (CS & IT)                                   45 

Spiking Neural Networks (SNN). Thearrange of figure 4 represents a configuration of the GPU 

device in three dimensions. This is a solution for parallelizing SNNalgorithm.The cube showedin 

this figure is only a neuron of a hidden or output layer.There are as many cubes as neurons are 

required. Each cube is divided in blocks, what depend on the length of time in the input [28]. All 

neurons per layer can be calculated in parallel, but a disadvantage is thatthis procedure requires 

many resources of memory.   

 
Figure 4. Parallelization of Spiking Neural Network (3D Processor Array). 

SNN has significant characteristics that must be considerated. The synapses of the biological 

neuron are modeled as weights. Let’s remember that the synapse of the biological neuron is 

which interconnects the neural network and gives the strength of the connection. For an artificial 

neuron, the weight is a number, and represents the synapse. A negative weight reflects an 

inhibitory connection, while positive values designate excitatory connections.Inherent parallelism 

of commodity graphic hardware is used to accelerate the computationofANN.According to 

Nikola [34], taxonomy of parallelization approaches for neurosimulations is represented in the 

figure 5. 

 
 

Figure 5. Taxonomy of parallelization approaches for neurosimulations. 

Sridhar [1] says that the main advantage of GPU over CPU is high computational parallelism and 

efficiency with a relatively low cost.However, it is difficult to design an algorithm. Also, the 

author says that although exist Integrated Circuits (IC) for high parallelism, it is very difficult to 

translate this parallelism in an efficient software.On the other hand, human brain can be trained to 

solve complex problems, such as thermal modeling of specific IC layouts. 

Prabhu [21] compares efficiency of the human brain with enormous computational powerand 

parallel environs of GPU’s, so we understand that GPU has some limitations. According to him, 

the role played by Graphical Processing Unit (GPU) is approaching to Artificial Neural Networks 

to the nature of human brain. Also, GPU’s have been used for rendering high quality images in 

real time, virtual reality simulations and games. Modern GPU’s can perform highly intensive 

parallel tasks. 

4. CONCLUSIONS 

 
In this paper weconclude thatparallelismin ANNincrease speedof learning time. However, is very 

difficult to design this sort of algorithms. On the other hand, we can parallelize by hardware 

(FPGA) of software (GPU). Tendency is study to know which algorithm is the most efficient and 
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faster, because of their mathematical characteristics and their architecture. So, is better to solve a 

problem with large database using SVM and SNN than traditional ANN. 

 

The importance to compare the efficiency between these algorithms is to know the error in the 

results and which is faster for learning according to quantity of instances and parameters per 

instance. So, with this information is possible to know what applications are the most 

appropriates for each application.  

 

As a future work, there are some aspects, as parallelizing SVM or SNN in a GPU and SNN in a 

FPGA, then compare learning time. However, also is necessary to propone an important 

application to solve real problems. 
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