

Sundarapandian et al. (Eds): ICAITA, SAI, SEAS, CDKP, CMCA, CS & IT 08,

pp. 205–222, 2012. © CS & IT-CSCP 2012 DOI : 10.5121/csit.2012.2518

DYNAMIC AND REALTIME MODELLING OF

UBIQUITOUS INTERACTION

Imen Ismail and Faouzi Moussa

CRISTAL Laboratory, National School of Computer Sciences,

Manouba University, Tunis, Tunisia
imen_ismail@yahoo.fr faouzimoussa@gmail.com

ABSTRACT

Ubiquitous systems require user to be dynamically and realtime informed in order to make his

current activity increasingly easy. First, this paper presents and discusses a method to model

the realtime interaction of the user with a ubiquitous system based on Petri-nets modelling

technology. The goal deals with investigating dynamically the appropriate form of interaction

depending on the context of the user. Thus, the interaction model structure should be

dynamically improved with respect to the current and particular activity or goal of the user to

better cope with his runtime requirements. This mechanism has been characterized as “models

mutation”. Secondly, this paper proves the dynamic construction of models while basing on the

dynamic composition of services. The ultimate purpose is to take advantage of the ontology of

service written in OWL-S in order to describe the dynamic aspect of Petri-nets based models,

especially, the realtime and automatic composition of such models. Simulation work has been

conducted to validate the proposed approach.

KEYWORDS

Petri-nets; Modelling; OWL-S; Model Mutation; Ubiquitous Interaction; Ubiquitous

Environments

1. INTRODUCTION

Man-System Interaction with increasingly more complex environments is a major concern. This

paradigm is becoming more and more challenging with the emergence of the smart and

ubiquitous environments leading to a new form of interaction i.e. the ubiquitous interaction. One

of these challenges is to know what information is the most appropriate for the user, when this

information will be needed and how it should be provided [1]. A system which reacts at runtime

as expected by the end-user contributes to the reliability of the Man-System Interaction [2]. This

paper presents and discusses a method to model the realtime interaction based on dynamic created

models.

To address this problem, the proposed strategies will be based on evolutionary models and applies

the Petri-nets technology to model the user’s interaction. Such models can be created while

integrating progressively a range of elementary models or undergo modifications and changes as

the result of interactions with the user and through reinterpretations of existing models stored by

the acquisition of preceding knowledge; this was called models mutation. The proposed approach

takes advantage of the service ontology written in OWL-S in order to describe the dynamic aspect

of Petri-nets based models, specially the realtime and automatic composition of such models. In

short, a Petri-nets based elementary model is described by using an OWL-S atomic service. Then,

206 Computer Science & Information Technology (CS & IT)

progressively a set of elementary actions will be composed to construct the entire Petri-nets

model.

2. THE UBIQUITOUS COMPUTING

The ubiquitous computing is a recent area of research considered as the new generation of Human

Computer Interaction. The basic concepts of this new paradigm were founded in 1993 by Mark

Weiser in his famous paper “Some Computer Science Issues in Ubiquitous Computing” [3]. In

addition to computer science and engineering, the ubiquitous computing encompasses a wide

range of other research subjects such as mobile computing, wireless network, artificial

intelligence, as well as social and psychological sciences. This new technology deals with

incorporating various electronic devices throughout our world. It consists in hiding these devices

into our physical environment and our daily work [4][5]. The main purpose is to assist people in

their daily activities without being noticed. Ubiquitous environment is defined as any physical

space in which we integrate an important number of heterogeneous and smart devices, making a

growing ubiquitous information network. Therefore, in such space, user is in front of enormous

amount of information and heterogeneous content. Thus, he could see on his interface varied

information. However, at some moment, user could need certain information and find the others

completely useless: this choice depends necessarily on his/her preferences and his/her individual

requirements.

2.1 Ubiquitous Systems

As previously said, the ubiquitous environments are highly dynamic environments where the

context tends to evolve at runtime. Ubiquitous systems are systems that must work efficiently in

such environments while providing the suitable information relevant to the interaction between a

user and these systems. They will be able to adapt dynamically their behaviours based on the

context change of users. This ability consists in perceiving the environment and detecting its

contextual parameters. On the basis of these factors the system can react to the environment

variations and responds to the user's requirements. The most oft-cited and widely accepted

definition is given by Dey [6]: "A system is context-sensitive (i.e. ubiquitous system) if it uses

context to provide information and services relevant to the user, where relevancy depends on the

task requested by the user". For instance, a mobile phone with this ability may know that it is

currently in the meeting room, and that its owner has sat down; in addition, it may conclude that

the user is currently in a meeting and reject any unimportant calls.

2.2 Overview of the Proposed Ubiquitous System

The key goal of the proposed system [7] consists mainly in developing a formal modelling of the

user’s behaviour and applies specific processing to that model in order to identify the realtime

required information. In light of this fact, the system tries to build the user’s interface on an as

needed basis; i.e. by mapping the best possible interface components (so-called widgets) with this

information to concretely perform the target interface [7]. To overcome this purpose, the retrieval

mechanism is built on a realtime and dynamic user activity modelling. Thus, the system could

have a suitable representation of the user in a particular situation on realtime. Hence, it can

deduce the suitable model or build a realtime model according to the analysis of the user-system

interaction and the current context of use. It can then adaptively offer user information concerning

what he/she is doing.

The proposed system comprises three functional phases (Figure 1) which are described in more

details in [7]. The contextual data processing is the primary phase. In fact, pervasive environment

is a greatly dynamic environment where context can evolve continually and at runtime. Therefore,

an analysis step of this environment is necessary. The output is a document describing the

Computer Science & Information Technology (CS & IT) 207

contextual information. It represents the context model that will be used later by the adaptation

strategy module. The gathered data which represents the context need to be stored in a suitable

form. By analyzing related work on contextual data modelling, we concluded that ontology based

languages seems to be the most appropriate candidate model [8]. In our context model, data are

expressed by ontology written in OWL (Ontology Web Language).

Figure1. The ubiquitous system functioning stages

The second phase concerns the adaptation strategy. It is divided into two modules:

User-Ubiquitous System Interaction Modelling: The user's activity must be analyzed in this

second step, which will be further discussed later. A user’s activity is composed of a set of

elementary actions. The elementary actions were, first, modelled by elementary structures of

Interpreted Petri-nets. Then, we proceed by typical compositions as sequential, parallel, choice,

iteration, etc. A global model is then constructed integrating the different evolutions of the

ubiquitous system operation. Likewise, the user’s behaviour is modelled. It expresses the

interaction of the user with the graphical interface. In this way, the user-system interaction model

is achieved. It allows, afterward, the deduction of the user requirements.

Deduction of User requirements and Identification of the required Widgets: The next step ensures

the identification of the user’s requirements in terms of information in a first stage, and in term of

interface widgets in a second stage.

The last phase consists of two steps that describe the interface generation. Once the interface

widgets have been identified in the previous phase, this step consists in specifying the interface in

terms of displays and graphical objects: this is the user interface specification phase. The final

step represents the automatic and realtime user interface generation.

3. INTERPRETED PETRI NETS FOR MODELLING THE USER’S INTERACTION

WITH UBIQUITOUS ENVIRONMENTS

3.1 The Interpreted Petri-nets

The Petri-nets technology is a formal and abstract method to specify and to model a data flow. It

was proposed by Carl Adam Petri in 1962 [9]. Generally, this method is showing an efficient and

accurate way for specifying and describing the dynamic behaviour of various systems. It includes

especially the distributed modelling of parallelism and synchronization in such systems. In

particular, Petri-nets are continuously expanding and represent an appropriate tool for modelling

208 Computer Science & Information Technology (CS & IT)

the human-Machine Interaction [10]. At first they were used only for tasks description. But later,

especially with the emergence of High-Level Petri-nets, modelling human-machine dialogue

based on Petri-nets’ profits has been started. We included principally Willem and Biljon’s works.

They were the first to model Human-Machine dialogue based on Petri-nets [11].

Petri nets are a graphical method for the modelling. They are in the form of bipartite graphs based

on two types of nodes:

 Represents Places (Conditions)

 Represents Transitions (Discrete Event may occur)

These nodes are connected by arrows that indicate the direction of the data flow and describe

what places are pre-and / or post-conditions for each transition (Figure 2).

A Petri-net is a tuple (P, T, Pre, Post) where:

P = {p1, p2, p3, ..., Pn} is the set of places

T = {t1, t2, t3, ..., tn} is the set of transitions

• Input function: Pre: P x T � N, Defines the necessary number of tokens in place Pi (input) of a

transition Tj enabling this transition.

• Output function Post: P x T � N, Defines the number of tokens necessary for the place Pi

(output) of a transition Tj after firing this transition.

Petri-nets represent statements or resources in the system while transitions model the system

activities. With the emergence of the high-level Petri-nets [12], the study of a wide range of

applications becomes easier. These new models were mainly based on the basic concepts of Petri

nets; the initial model was enriched by extensions and a variant of Petri nets models. Among

these models we quote: the Coloured Petri-nets, the Synchronized Petri-nets, the Synchronized

and Timed Petri-nets, Stochastic Petri-nets and Interpreted Petri-nets.

Figure 2. Petri-nets graphical Example before and after firing transition

The Interpreted Petri-nets will be defined by the set [13]:

< P, T, E, W, Pre, Post, µ, Precond, Action, Info-Transition >

where:

• P : set of places = {P1, P2,..., Pn},

• T : set of transitions = {T1, T2,..., Tm},

• E : set of events including the event "always present" <e>,

• W : set of the interface widgets,

• Pre: P x T → N defines the weight of the bow joining a place pi of P to a transition tk of

T,

• Post: P x T → N defines the weight of the bow joining a transition tk of T to a place pi of

P,

Computer Science & Information Technology (CS & IT) 209

• µ: T → E associates to each transition the appropriate triggering event,

• Precond: T → Boolean Expression defines the necessary passing condition for each

transition,

• Action: T → A defines the eventual and appropriate action procedure associated to each

transition

• Info-Transition: T → W associates to each transition, the appropriate widget(s).

3.2 Interpreted Petri-nets for Human-System Interaction Modelling

Petri-nets were chosen as a formal technique for the interaction modelling. The essential reason

behind this choice is that the Petri-nets based models can reliably describe the aspects of

concurrency, parallelism and dynamism which are fundamental features of ubiquitous

environment. This extension introduces the notion of events and conditions as well as the notion

of actions. We associate a passing condition (Condj), a triggering event (Evj) and a possible action

(Actionj) to each transition (Tj) (Figure 3). To model the user’s behaviour using interpreted Petri-

nets the places represent the user’s behaviour according to the system’s evolution, in particular

the environment evolution and changes.

Figure 3. Interpreted Petri-nets modelling

The user’s activity model is composed of a set of elementary action’s sub-models. Figure 4

depicts an example of elementary action representation, where the places represent the user’s

interaction according to the system’s evolution and changes. In particular, the places Pai and Pci

model the state of the user before and after the execution of the action; whereas the place Pbi

describes a waiting state. Two main types of events trigger the end of the elementary action and

indicate that it has been successfully executed: The validation of the condition i as well as the

presence of the event “End action”. It is the user-interaction model that we wish to describe. This

model is built by composing all the required elementary actions. As per the requirements, these

elementary actions are scheduled according to typical compositions as sequential, parallel, choice,

iteration, etc.

Figure 4. Elementary activity modelling

Condition i

T2

Begin Ai T1

Pbi

Pci

 Pai

End Ai

Pi

Tj Actionj Evj, Condj

 Pk

210 Computer Science & Information Technology (CS & IT)

The sequential composition of N elementary actions is done by merging the output places of the

Petri-nets that describes the first action (Ai) and the input places of the next action (Aj). It should

be noted that this actions’ sequence is supposed to be possible. Figure 5 shows an example of

sequential composition.

Figure 5. Sequential composition of two elementary actions

The parallel composition enables two or more actions’ execution in a simultaneous manner

(Figure 6). An input place, called synchronization place, must at the same time activate all initial

places of the parallel actions. The parallel composition of n Petri-nets based-model actions

involves two particular composition structures: parallel structure 1 and 2 (resp. PS1 and PS2).

PS1 represents the starting synchronization of the n Petri-nets models (Figure 7a) whereas the

final synchronization of these models is described by the PS2 structure (Figure 7b).

Figure 6. Parallel composition of two elementary actions

PIs

P1 P2

PFs

P1’

Pbi

Pci

Pai

Pbj

Paj

P1’

Pci

Pbi

Pdij

Pai

Pbj

Pcj

Pbi

Pci

 Pai

Pbj

Pcj

 Paj

Computer Science & Information Technology (CS & IT) 211

Figure 7. (a) PS1 structure Figure 7. (b) PS2 structure

A global model is then constructed by integrating the different evolutions of the functioning states

of the ubiquitous system. Likewise, the user’s interaction is modelled. Once the user’s behaviour

has been modelled, the user requirements can be deduced. In fact, we consider a transition “Begin

Action” in the user’s behaviour model. We associated the adequate parameter(s) to these

transitions. These parameters refer to the information required at this working point within these

specified operating conditions. Once these parameters have been identified, we can deduce the

necessary components and widgets of the user interface [7].

We consider the detection, the evaluation of the situation, the decision, and the action. The

evolutions between these states are modelled by the transitions. It should be noticed here that any

change of the environment state may affect the user interface layer. In other words, it will imply a

change in the graphical display affecting the widget's parameters or the display contents

(appearance or disappearance of some widgets, etc.). This modelling technique allows us to

deduce on realtime the user requirements according to the current context of use, including the

user’s activity.

3.3 Motivating Example

Ambient intelligence and ubiquitous computing have large advanced application areas. Computer

science technology applied to personalized medicines benefits greatly from research done in this

area. This subsection presents a case study in the recovery room of a hospital, variously called a

post-anaesthesia care unit. It’s a space a patient is taken to after surgery to safely regain

consciousness from anaesthesia and receive appropriate post-operative care. To achieve such

objectives, the nurse (or any medical staff) may do several activities. Two specific activities were

considered to illustrate what can happen for the system functioning when a user must suddenly

change activities. The first activity is to carefully monitor patient’s state evolution right after

surgery. The second one deals with an immediate intervention when a specific type of sensor, a

pulse Oximeter, warned a very low level of oxygen saturation, indicating consequently a priority

activity to be undertaken. Regarding the former situation, two elementary actions (Ea1 and Ea2)

will have to be conducted.

A set of key information must be provided to the nurse in order to successfully perform his

current activity. First, for Ea1’s accomplishment (i.e. to update the patient’s chart) the nurse

needs to know patient’s data such as: the responsible surgeon information, the time of the

operation, the operation room (room number, floor and service) and some information about the

anaesthesia phase (anaesthetist’s details, estimated duration before recovery). Then, the nurse

must monitor carefully (Ea2) vital signs (e.g. Pulse, blood pressure, temperature, blood oxygen

levels…) as the effects of anaesthesia wear off. The model depicted by Figure 8 should govern

the system functioning to address this interaction and adequately deduce all these aforementioned

data at the appropriate moment.

PIs

P1 P2 Pn PFs

P1 P2 Pn

212 Computer Science & Information Technology (CS & IT)

Figure 8. Interpreted Petri-nets Model of the first activity (Ea1 Seq Ea2)

Suppose the system detects a very low OSL threshold related to another patient in the recovery

room when no other nurses or doctors are available. This patient is in danger of losing his life

unless an urgent intervention has to be carried out. Dealing with this case is, therefore, seen as a

priority for the nurse. The Petri-nets model which represents this new activity is depicted by the

Figure 9. A nurse must perform two parallel elementary actions (for example namely Ea6 and

Ea7). The first step is to administrate supplemental oxygen through a nasal cannula or face mask.

The second action consists in administering an intravenous fluid to the patient. Nevertheless,

given the sensitive nature of this action, it must be carried out by a specialist nurse.

Another question is how the system should support the nurse when it discovered that he is not

specialist. Since any decision must be in keeping with the responsible doctor-surgeon, the nurse

needs to know the doctor and his contact details. An elementary action (Ea14) enables to meet

such objectives (Figure 10). This action requires the patient’s identity as input and provides the

doctor’s general details as outcomes. Implicitly, it gives the responsible doctor-surgeon details in

the case of recovery room (i.e. according to the user’s places).

Figure 9. Interpreted Petri-nets model of the second activity (Ea6 Par Ea7)

These, in short, are the different models which should govern the nurse’s intervention faced with

such particular conditions and circumstances and with respect to a given composition. The

suitable interpreted Petri-nets model to cope with the previous described situation is depicted by

Figure 11. This means that the execution of the PatientStatusEvaluation process should be

interrupted and turns to a sequential execution of the second process model, i.e.

AdministrateOxygen. As well, based on the nurse’s information, which has been obtained from

his online, OWL-encoded profile, the entire model should be improved by the parallel execution

OperationRoom,

SurgeonInfo,

AnesthesiaPhase

Pulse, BloodP, Tp,

BloodOxyLevel

Condition NasalCannula

OR FaceMask

IntravFluidQt ?

Computer Science & Information Technology (CS & IT) 213

of the elementary action CallDoctor. Finally, the execution of the last elementary action will be

performed.

Figure 10. Interpreted Petri-nets

model of the Ea14 activity

Figure 11. Suitable Petri-nets based model describing the current situation

4. IMPLEMENTATION OF INTERPRETED PETRI-NETS MODELS MUTATION

BASED ON OWL-S SPECIFICATIONS

The proposed approach mainly refers to the variation of the user’s activities. Obviously, each

activity may apply for specific information in order to be accomplished. Thus, the models, on

which the system’s operation is based to deduce these specific data, should be built in proportion

as runtime evolving of ubiquitous environment as well as according to available information. This

means that the model can progress and change its structure, so the system can provide for

adequate controls over the management of the user-system interaction. Within this context, the

mutation of Petri-nets based modelling is addressed. Taking into account that our ontology is

described by OWL [14], the OWL-S [15] technology best fits our requirements. With OWL-S as

starting point we are going to describe the Interpreted Petri-nets model’s mutation.

4.1 Modelling Services based on OWL-S Specifications

Services or more precisely, Web services are software components that communicate using

pervasive, standards-based Web technologies including HTTP and XML-based messaging. They

DoctorNumber

OperationRoom,

SurgeonInfo,

AnesthesiaPhase

Pulse, BloodP, Tp,

BloodOxyLevel

OperationRoom,

SurgeonInfo,

AnesthesiaPhase

Pulse, BloodP, Tp,

BloodOxyLevel

DoctorNumber

214 Computer Science & Information Technology (CS & IT)

are designed to be accessed by other applications and vary in complexity from simple operations

to complex processes running. The main benefit of this technology lies in the fact that it

establishes a common, vendor-neutral platform for integrating distributed computing applications.

Semantic Web Services promise to provide solutions to the challenges associated with automated

discovery, dynamic composition, enactment, and other tasks associated with managing and using

service-based systems [16]. OWL-S is OWL-based web service ontology. It supplies a core set of

markup language constructs for describing web service in computer-interpretable form [15]. Each

service is characterized by three main concepts: Profile, Process and Grounding (Figure 12).

Figure 12. Representation of the service structure

The Profile feature describes the semantic properties and capabilities of a service. It represents a

specification of what functionality is provided by the service through a certain number of

parameters. The Process represents the current composition and gives a detailed description of a

service’s operation [17]. The Grounding specifies on how to interoperate with a service via

messages [18]. There are three key properties that describe a service profile. Service Name which

refers to the name of the service, it can be used as an identifier. The Text Description which

provides a brief description of the service, including what the service requires to work. The

Contact Information that provides a mechanism of referring to humans or individuals responsible

for the service.

An OWL-S process is based on an IOPR model (Inputs, Outputs, Preconditions and Results). The

Inputs are information required for the execution of the service, whereas outputs are information

that the process returns to the requester. The preconditions are determining factors imposed over

the inputs and that must hold for the process to be successfully invoked. The result entity

specifies means to meet the process’s results with corresponding outputs. Each result can be

associated to a result condition, called inCondition, that specifies when that particular result can

occur. Therefore, an inCondition binds inputs to the corresponding outputs. It is assumed that

such conditions are mutually exclusive, so that only one result can be obtained for each possible

situation.When an inCondition is satisfied, there are properties associated to this event that

specify the corresponding output (withOutput property) and, possibly, the Effects (hasEffect

properties) produced by the execution of the process.

The execution of a process may also result in changes of the state of the world. Note that there is

a fundamental difference between effects and outputs. Effects describe conditions in the world,

while outputs describe information. OWL-S does not assume that outputs and effects are the same

for every execution of the process. Rather, it allows the specification of the set of conditions

under which the outputs or the effects may result. Because of the need for conditions, OWL-S

defines the classes of ConditionalOuput and ConditionalEffect. Both classes allow a number of

conditions to be associated with the outputs and the effects respectively. Unconditional outputs

and effects are defined by leaving the list of conditions empty implicitly saying that the condition

is always true.

Service

ServiceModel

(Process)

ServiceGrounding ServiceProfile
DescribedBy

Support
Presents

Computer Science & Information Technology (CS & IT) 215

Two classes of services can be identified depending on the complexity of the interaction with a

service: Atomic Services and Composite Services [15]. With the former type, a single program,

sensor or device is invoked by a request message. Then, it performs its task and produces a single

response to the requester. Thus, there is no ongoing interaction between the user and the service.

The latter type is composed of more multiple primitive services and may require an extended

interaction or conversation between the requester and the set of involved services. The atomic

process is a description of an atomic service which can be directly called while passing

appropriate messages. The composite process is decomposable into atomic processes or other

composite ones while using control constructs such as sequence, split, choice, if-then-else, iterate,

repeat-while, and repeat-until.

4.2 Interpreted Petri Nets modelling based on OWL-S processes

This subsection explains our approach for enabling an interpreted Petri-nets based model to be

dynamically executed through the OWL-S specification and properties. The goal is to improve a

method so as to adapt user-system interaction successfully and dynamically into the contingent

needs to achieve a sufficient fit between user’s requirements and the perpetual change of his/her

environment. The key idea is to formulate a Petri-nets based elementary action by using an OWL-

S atomic process, and formulate a Petri-nets based activity while composing progressively a set of

atomic processes. The idea is based on the hypothesis that the elementary action is a non-

decomposable action. The activity is composed of elementary or composite actions through well-

defined composition rules. These rules govern the ordering and conditional execution of the

action in the model.

4.2.1 Encoding IPN-based Elementary action as OWL-S Atomic Process

The basic concept of the approach is to encapsulate an elementary action by an atomic process.

Therefore, the elementary action’s parameters can be specified by the IOPR model of an atomic

process. In particular, the input parameters are information needed for the well accomplishing of

the action. The output information is information provided by the action. The precondition

parameters are the condition imposed over the inputs of the action to be successfully executed.

Local parameters are only used in atomic processes. These essential parameters are summarized

in the following table (Table1). Some other non-functional properties can be considered including

local parameters, name, category and goal [15].

Table 1. Fit between OWL-S based Process’s properties and Elementary action Parameters

Elementary

action

Parameters

OWL-S based

Process’s

properties

Type

Condition i hasPrecondition EXPRESSION (KIF-Condition)

BeginAi hasInput PARAMETER : TRNSITION

Pai hasLocal PARAMETER : PLACE

EndAi hasOutput PARAMETER : TRANSITION

Pci hasLocal PARAMETER : PLACE

Requirements hasResult REQUIREMENTS_LIST

ActionName Name STRING

Pbi hasLocal PARAMETER : PLACE

216 Computer Science & Information Technology (CS & IT)

The following OWL-S code gives an extract specification of the elementary action Ea1 depicted

by Figure 13 For the effective beginning, this action needs Pai and BeginEa1 as inputs, as well as

the patient identification (PatientId) as precondition on result. EndEa1 and Pc1 represent the

outputs of the action. Ea1 should provide as results the post-operative information of the given

patient; more precisely, properly tests for the existence of the patient in the database and

conducting research on patient’s information. Results include OperationRoom, SurgeonInfo,

AnesthesiaPhase which represent the nurse’s needed information to satisfactorily perform his

current activity.

Figure 13. Simplified representation of the elementary action Ea1

<!— Ea1: Service description -->
<service:Service rdf:ID="UpdatePatientChartService">
<service:presents rdf:resource="#UpdatePatientChartProfile"/>
<service:describedBy rdf:resource="#UpdatePatientChart"/>
<service:supports rdf:resource ="#UpdatePatientChartGrounding"/>
</service:Service>
<process:AtomicProcess rdf:ID="UpdatePatientChart">

<process:hasInput>
<process:Input rdf:ID="PaUpdatePatientChart"/>

</process:hasInput>
<process:hasInput>

<process:Input rdf:ID="BeginUpdatePatientChart"/>
</process:hasInput>
<process:hasOutput>

<process:Output rdf:ID="EndUpdatePatientChart"/>
</process:hasOutput>
<process:hasOutput>

<process:Output rdf:ID="PcUpdatePatientChart"/>
</process:hasOutput>

<process:hasPrecondition>
<expr:SWRL-Condition rdf:about="#SWRL-IsPatient()">

<expr:expressionObject>
<swrl:AtomList rdf:ID="AtomListID2"/>
</expr:expressionObject>

</expr:SWRL-Condition>
</process:hasPrecondition>
<process:hasLocal>

<process:Local rdf:ID="PbUpdatePatientChart"/>
</process:hasLocal>
<process:hasResult>

<process:Result rdf:ID="OperationRoom">
<process:hasResultVar>

<process:ResultVar rdf:ID="VarOperationRoom">
<process:parameterValue rdf:parseType="Literal">
</process:parameterValue>

</process:ResultVar>
</process:hasResultVar>

</process:Result>

OperationRoom,

SurgeonInfo,

AnesthesiaPhase

PaUpdatePatientChart

PbUpdatePatientChart

PcUpdatePatientChart

BeginUpdatePatientChart

 EndUpdatePatientChart

IF isPatient(PatientId)

Computer Science & Information Technology (CS & IT) 217

</process:hasResult>
(…)
</process:AtomicProcess>

4.2.2 Encoding IPN-based Activity as OWL-S Composite Process

As previously noted, an activity is an aggregation of elementary actions scheduled according to

typical compositions as sequential, parallel, choice, iteration. Developing the runtime model of

the user’s activity is based on operational compositions of elementary actions models. Since an

elementary action is encapsulated by an atomic process, thus an activity can be modelled by a

composite process mainly thanks to the control constructs which enable the composition of

elementary actions. Examples of these constructs include sequence control which allows a list of

processes to be done in order; the split control executes a number of processes concurrently; the

execution of processes until the while Condition becomes true is done by the Iterates control, etc

[15]. As an illustration, take the example of the first activity, called “PatientStatus-Evaluation”.

This activity is composed of two sequential elementary actions, i.e. Ea1 and Ea2. Ea1,

UpdatePatientChart, consists in monitoring the patient’s state evolution right after surgery in

order to update the patient’s chart. Next is Ea2, EvaluateCriticalSign, where the nurse must

monitor carefully vital signs as the effects of anaesthesia wear off. The following is a simplified

example that illustrates the description of this composite process through OWL-S specifications:

(…)
<process:CompositeProcess rdf:ID=”PatientStatusEvaluation”>
<rdfs:label>The process for monitoring patient state after surgery
</rdfs:label>

<process:ComposedOf>
<process:Sequence>

<process:components rdf:parseType=”Collection”>
<process:AtomicProcess

rdf:about=”#UpdatePatientChart”/>
<process:AtomicProcess rdf:about=
 ”#EvaluateCriticalSign”/>
</process:components>

</process:Sequence>
</process:ComposedOf>

</process:CompositeProcess>
(…)

4.3. Realtime and Dynamic Composition of Interpreted Petri-nets Model

Our aims are supposed to benefit from the specified features of OWL-S specification to

dynamically create a model, notably the running, the dynamic composition, the invocation and

others particular features. Within OWL-S specification, the execution of a process may result in

the data transfer from inputs into outputs. This, while generating some new information based

both on given data as well as the environment state. Such new information is specified by the

inputs and outputs of the process. In addition, a process can produce a change of the state of the

world. This transition is described by the preconditions and effects of the process: Effects are

changes in the state of the world, and Preconditions specify conditions that should be satisfied for

a process to be executed correctly.

The ubiquitous environment changes are one of the most important information sources that the

system needs to have instantly in the course of its operation. In particular, events that are sources

of urgent intervention of the system can be specified by the parameter Effects. Therefore, the

carrying out of the model continues to be held as normal until a new event is triggered. The model

must reform itself at that time according to the new situation. With reference to the approach

above-described, the system should identify and assess the next action supposed to be executed. It

shall also control the connection conditions to the current action. Here, in particular, the data flow

specification must be defined as well as the nested control constructs from which it is composed,

218 Computer Science & Information Technology (CS & IT)

and their ordering too. More precisely, a precondition must be carried out for each EndAction

transition of an elementary action. This precondition, called MutEvent will be represented by a

Boolean variable which must be set to false in order to enable this transition. This value becomes

true upon detection of a change event while the system is searching for the next necessary action

to be executed. In the proposed example, the system initiates its operation by identifying the

appropriate model required to perform the first activity: PatientStatusEvaluation. The

conditioning change of the current context, semantically specified by the MutEvent parameter of

the Ea2, makes the remainder of the current model no longer suitable. Thus, the system identifies

the more suitable action according to the new situation (Figure 14).

Figure 14. Model mutation according to the context change

5. SIMULATION AND RESULTS

For evaluation purposes, simulation work has been conducted to validate our approach. Based on

OWL-S process execution, our aim is to simulate results while highlighting the models mutation

compared to a normal execution of OWL-S processes based models. For these purposes, Live

Sequence Charts (LSCs) tool [19][20] is used to simulate the processes communication.

Furthermore, Play-Engine [21] is employed to perform automated visualization, simulation and

checking processes execution. The main intention of LSCs and the Play-Engine tools is providing

the means for monitoring scenario based behaviour in operation and direct testing of requirements

[21]. Applied to OWL-S based process, LSCs is able to describe not only the way a service will

be executed and invoked, but also the expected result and outputs.

Play-Engine supports also a mechanism that enable the specification, validation, analysis and

execution of LSCs, called “play-in” and “play-out”. Within LSC chart, two condition’s types are

distinguished: cold condition and hot one having different impacts on the process execution. The

cold condition is used in complex control structure specification in particular do-while and

Context of

Use Variation

At ti the context of the nurse

has changed

(2) Initial functional model of

PatientStatusEvaluation

�According to the current

context this model is

inappropriate

(1) MutEvent of Ea2 becomes

true
(3) The system identifies the plausible next

action’s to construct the suitable model

MutEvent TRUE

Computer Science & Information Technology (CS & IT) 219

choice. However, to assure critical properties at certain point of execution the hot condition is

used. Thus, if any hot condition evaluated to false, a violation is caught, alternatively simulation

continues with the user’s provided events [21]. That way, a precondition of a process is identified

with a cold condition at the beginning of the chart. If the condition is false the chart terminates

and the process is not performed. The inCondition and hasResult properties are conjoined and

identified with a hot condition. The withoutput property is identified with communication after

the hot condition. An atomic process is described by a universal chart [20] represented as vertical

lines; the messages between instances are represented through horizontal lines. About composite

process, composition’s properties are translated to the appropriate communication type. For

instance, the sequence’s property is translated to sequential communication along the vertical

lines.

Figure 15. Scenario LSC to provide information about a given patient

Processes in Split correspond to multiple pre-service requests; each of them will activate an LSC

modelling the corresponding service at the right moment. Further details about other properties

are given in [17]. Figure 15 shows an LSC example that specifies the necessary interactions

between the Ea1 process and one of the system’s services PatientInformation- ProviderService.

Once the Ea1 process requests the system’s service as well as if the value PatientId is validated,

necessary information will be provided with True sign. In order to simulate process model

operation interactively, a Play-Engine aware GUI application (Figure 16) is built enabling the

manual events triggering; moreover it provides all the information required to ensure correct

interaction with the Play-Engine.

Play-Engine supports such application type and plays-out the corresponding LSCs. Figure 16

shows the LSC of the PatientStatusEvaluation process model. Given the PatientId value as input

and external event introduced through the UbiqHospitalSimulationApp application, the Play-

Engine interface showcases how the system operates. The first diagram describes an operation

deprived of the MutEvent precondition effects. Thus, the system continues functioning and

along these lines it persists in providing information supposed to be inappropriate for the nurse.

However, the second chart reveals how the system changes its current operation as a result of

MutEvent triggering. Hence, the provided information is indeed the required one since the

operating model is presumed to be the suitable model describing the current situation.

220 Computer Science & Information Technology (CS & IT)

Figure 16. Comparison charts between normal functional modelling and dynamic functional modelling

6. RELATED WORK

In this section, we are going to be talking about the operational applications of both Petri-nets and

OWL-S concepts with a certain purpose. It should first be noted that the Petri-nets technology has

been used generally as a formal analyzing mechanism and they are mainly used as a modelling

tool, very efficient too [22]. However, combined together with OWL-S, the Petri-nets formalism

provides an operational semantics to OWL-S since it defines formal and executable specifications

to analyze, simulate check and validate OWL-S specifications [22][23]. In particular, Petri-nets

are intended to analyze model of web services composition and calculate service performance.

For example, [24] provides a translator from OWL-S description to Petri-nets that support formal

analysis of OWL-S services thanks to Petri-nets benefits. In addition to performance analyzing,

Petri-nets with objects (PNO) are used specifically for workflow service simulation and

verification [19] while providing rules to derive OWL-S specifications from PNO specifications.

Another example focuses on verifying the correctness of composite web services defined by

OWL-S. The verification is mainly based on rigid mathematical ground of Petri-nets [25].

Another type of using Petri-nets within this context is given in [26], where a Petri net-based

approach for modelling the choreography of OWL-S web services was described. Each control

construct of the OWL-S choreography is represented through a Petri net pattern that captures

formally its operational semantics. They also represent the flow of data, the outputs

transformations, the effects in the environment, in addition to the structures that control the

choreography of the services in their proposed Petri-nets models. However, to the best of our

knowledge no approach in literature makes use of the OWL-S to model man-system interaction in

ubiquitous environment in general, and modelling based on Petri-nets technology in particular.

Our objective scrutinizes more on giving a new approach to construct dynamically and at runtime

a Petri-nets based model toward deducing the user’s requirements at the appropriate moment and

according to his context of use. Many benefits of OWL-S allowed us to implement this modelling

technique i.e. model mutation including the dynamic aspect of Petri-nets models. In addition, this

Computer Science & Information Technology (CS & IT) 221

enables to publish the composite activity’s description thanks to OWL-S which is a semantic web

service description language.

7. CONCLUSION

The very dynamic aspect of ubiquitous environments has significantly altered the nature of

Human-System Interaction. Consequently, approaches of modelling these interactions have also

to be changed. The aims are to reflect better and more efficient models that can cope with the

dynamic aspect of such environments. A dynamic modelling approach is provided in this paper.

The main purpose is to monitor and control the realtime interaction of the users while they remain

in the ubiquitous environment. To make sure the users are provided with the most appropriate

information at runtime is the main goal of dynamically modelling their behaviours. Effective

implementation of this approach is mainly based on the web services technology specified in

OWL-S language. More precisely, a Petri-nets based model that represents an elementary action

is implemented through an atomic service. Then, we gradually compose a set of elementary

actions to formulate the whole Petri-nets based model that represents the current activity. This

mechanism is illustrated by a simulation tool suitable for the runtime visualization of OWL-S

processes in operation. Particular emphasis of the dynamic alteration of the model to provide

solution better suited to the real needs of the user is outlined. Future work will give further details

on the automatic elementary action discovery and automatic invocation of services. Besides,

future work will focus on implementing underlying data and functional system using techniques

compatible with ActiveX DLLs, e.g. ASP, .NET, Play-Engine may import the actual

implementation of the underlying system and perform the simulation. Formally, the work will

concentrate on the invocation mechanism, i.e. service-using requests service-provider while

determining whether the service meets its needs by exploring the service profile.

REFERENCES

[1] Kranz, M., Holleis, P., Schmidt, A.: Embedded Interaction: Interacting with the Internet of Things.

Internet Computing, IEEE, vol.14, no.2, pp.46-53 (2010)

[2] Tran, M.H., Han, J., Colman, A.: Social context: Supporting interaction awareness in ubiquitous

environments. In Mobile and Ubiquitous Systems: Networking & Services, MobiQuitous, pp 1- 10

(2009)

[3] Mark Weiser, some computer science issues in ubiquitous computing. CACM, vol 36, issue 7, 1993.

[4] Noêlle Carbonell. Ambient Multimodality: an Asset for Developing Universal Access to the

Information Society. International Conference on Universal Access in Human Computer Interaction

(August 2007).

[5] G J Doherty, M D Wilson. Modelling Ubiquitous Computing Applications. In Proceedings of

Workshop on Continuity in Future Computing Systems, Porto, Portugal, April 2001.

[6] A. Dey, D. Salber, and G. Abowd: “A Conceptual Framework and a Toolkit for Supporting the Rapid

Prototyping of Context-Aware Applications”, Special issue on Context-Aware Computing in the

Human-Computer Interaction (HCI) Journal, vol. 16 (2-4), pp. 97-166, 2001

[7] I. Ismail and F. Moussa: “A Pervasive System Architecture for Smart Environments”. In International

Journal of Artificial Intelligence & Applications (IJAIA), volume 3, Number 5 (pp113-126,

September 2012

[8] I. Ismail: “Contextual Data Management in Ubiquitous Environment”. International Conference on

Computing and Information Technology. Saudi Arabia 12-14 March 2012.

[9] C. A. Petri. “Kommunikation mit Automaten”. Bonn : Institut für Instrumentelle Mathematik,

Schriften des IIM Nr. 2, 1962 ; New York : Griffiss Air Force Base, Technical Report RADC-TR-65-

-377, Vol. 1, pp. Suppl. 1. 1966.

[10] Matej, P., Matej, K., Janez, P., Gašper, M., Goran, V., Stanislav, K.: Analysis of multi-agent activity

using Petri nets. In Pattern Recognition, 43 (4), p.1491-1501, (2010)

[11] R. Williem and V. Biljon. Extending Petri Nets for specifying Man-Machine dialogues, International

journal of Man-Machine Studies, vol. 28, 1988, pp. 437-45.

222 Computer Science & Information Technology (CS & IT)

[12] Decker, G., Weske, M.: Interaction-centric modelling of process choreographies. In Information

Systems Volume 36, Issue 2, (Special Issue: Semantic Integration of Data, Multimedia, and Services),

pp. 292–312 (2011)

[13] Moussa, F., Riahi, M., Kolski, C., Moalla, M.: Interpreted Petri Nets used for Human-Machine

Dialogue Specification in Process Control: principles and application to the Ergo-Conceptor+ tool. In

Integrated Computer-Aided Engineering, 9, pp. 87-98, (2002)

[14] Owl2 the Web Ontology Language: Structural Specification and Functional-Style Syntax Boris

Motik, Peter F. Patel-Schneider, Bijan Parsia, eds. W3C Recommendation, 27 October 2009, Latest

version available at http://www.w3.org/ TR/owl2-syntax/. Last consultation March 2012

[15] Owl-s: Semantic Markup for Web Services, available at: http://www.w3.org/Submission/OWL-S/.

Last update 22 November 2004. Last consultation May 2012

[16] Daniel Elenius, Grit Denker, David Martin, Fred Gilham, John Khouri, Shahin Sadaati, Rukman

Senanayake. The OWL-S Editor - A Development Tool for Semantic Web Services. In ESWC, pp 78-

92, 2005

[17] Quang, P., Tien, T.: Ontologies et Web Services. Activity Report. Institut de la Francophonie pour

l'Informatique (2005)

[18] Web Services Description Language (WSDL) 1.1 W3C Note 15 March 2001 Latest version:

http://www.w3.org/TR/wsdl Erik Christensen, Francisco Curbera, Greg Meredith and Sanjiva

Weerawarana Heidelberg. Last consultation May 2012

[19] Harel, D., Marelly R.: Specifying and Executing Behavioral Requirements: The Play In/Play-Out

Approach. In Software and System Modelling 2, 82–107 (2003)

[20] Sun, J., Li, Y., Wang, H.H.: Visualizing and Simulating Semantic Web Services Ontologies. In

ICFEM pp. 435-449 (2005)

[21] Ersoy, A. : An Evaluation of Live Sequence Charts and the Play-Engine. ; Master of Science Thesis,

Stockholm, Sweden 2006. KTH Computer Science and Communication

[22] Khadka, R., Sapkota, B.: An Evaluation of Dynamic Web Service Composition Approaches. (2010)

[23] Alonso, G.: Web services: concepts, architectures and applications. Springer Verlag (2004)

[24] Antonio Brogi, Sara Corfini and Stefano Iardella: From OWL-S Description to Petri Nets. E. Di Nitto

and M. Ripeanu (Eds.): ICSOC Workshops, pp. 427-438. Springer-Verlag (2009)

[25] Yu, B., Coll, S.: Verifying web services of OWL-S with Petri net. In: 5th IEEE International

Conference on Computer Science and Education (ICCSE), pp. 891- 896 (2010)

[26] Vidal, J.C., Lama, M., Bugarín, A. : Towards the use of Petri nets for the formalization of OWL-S

choreographies. In Knowledge and Information Systems. Springer-Ed (2011)

