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ABSTRACT 

 

Data mining algorithms are facing the challenge to deal with an increasing number of complex 

objects. Graph is a natural data structure used for modeling complex objects. Frequent subgraph 

mining is another active research topic in data mining . A graph is a general model to represent 

data and has been used in many domains like cheminformatics and bioinformatics. Mining 

patterns from graph databases is challenging since graph related operations, such as subgraph 

testing, generally have higher time complexity than the corresponding operations on   itemsets, 

sequences, and trees. Many frequent subgraph Mining algorithms have been proposed. SPIN,  

SUBDUE,  g_Span, FFSM, GREW are a few to mention. In this paper we  present a  detailed 

survey on frequent subgraph mining algorithms, which are used for knowledge discovery in 

complex objects and also propose a frame work for classification of these algorithms. The 

purpose is to help user to apply the techniques in a task specific manner in various application 

domains and to pave wave for further research. 
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1. INTRODUCTION 

 
Knowledge discovery in complex objects involves understanding the relationship between their 
components. Examples are the  Machine learning in domains such as bioinformatics, drug 
discovery, adverse drug events and web data mining. Graphs are natural data structures to model 
such relations, with nodes representing objects and edges the relationships between them. In this 
context, one often encounters the question: How similar are two graphs? Simple ways of 
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comparing graphs which are based on pair wise comparison of nodes or edges, are possible in 
quadratic time, yet may neglect information represented by the structure of the graph. 
 
As interaction networks are graphs, where each node represents for example, a protein and each 
edge represents the presence of an interaction, Conventionally there are two ways of measuring 
similarity between graphs. One approach is to perform a pair wise comparison of the nodes and/or 
edges in two networks, and calculate an overall similarity score for the two networks from the 
similarity of their components. This approach takes time quadratic in the number of nodes and 
edges, and is thus computationally feasible even for large graphs. However, this strategy is 
flawed in that it completely neglects the structure of the networks, treating them as sets of nodes 
and edges instead of graphs. A more principled alternative would be to deem two networks 
similar if they share many common substructures, or more technically, if they share many 
common subgraphs. To compute this, however, we would have to solve the so-called subgraph 
isomorphism problem which is known to be NP-complete, i.e., the computational cost of this 
problem increases exponentially with problem size, seriously limiting this approach to very small 
networks. Many heuristics have been developed to speed up sub graph isomorphism by using 
special canonical labelings of the graphs; none of them, however, can avoid an exponential worst-
case computation time. 
 

2. PRIMER ON GRAPH THEORY 

 
A graph G consists of a set of nodes (or vertices) V and edges E. Let  n denotes the number of 
nodes in a graph and m the number of edges in a graph. An attributed graph is a graph with labels 
on nodes and/or edges; we refer to labels as attributes.  In our case, attributes will consist of pairs 
of the form (attribute-name, value). The unnormalized  adjacency matrix A of G is defined as 
 

 

where vi and vj are nodes in G. If G is weighted then, A can contain non-negative entries other 
than zeroes and ones.  i.eAij e (0,¥) if (vi,vj) e E and zero otherwise. Let D be anxn diagonal 
matrix with entries Dii = SjAij.  The matrix P :=  AD-1 is called the normalized adjacency matrix. 
Let X be a set of labels which includes the special label  e. An edge labeled graph G is associated 
with a label matrix L e X nxn , such that Lij =  iff (vi,vj) . A walk w of length k − 1 in a graph is a 
sequence of nodes v1, v2, ·  ·  ·  ,vk where (vi−1, vi) e E for 1 < i £  k. w is a path if vi ¹ vjiff i ¹  j,  j 
e {1, . . . , k} . Alternatively, walks are often referred to as paths; paths are then named simple, 
unique or loopless paths, which may lead to some confusion. To clarify the difference for the 
remainder of this article, we define a path to be a walk without repetitions of nodes. A cycle is a 
walk with v1 = vk, a simple cycle does not have any repeated nodes except for v1. A Hamilton 
path is a path that visits every node in a graph exactly once. An Euler path is a path that visits 
every edge in a graph exactly once.If  a graph is undirected, and that the vertices and edges in a 
graph are labeled. The labels of an edge e and a vertex v are denoted by l(e) and l(v) respectively. 
Each vertex (or edge) of a graph is not required to have a unique label and the same label can be 
assigned to many vertices (or edges) in the same graph. Given a graph G = (V, E), a graph Gs = 
(Vs ,Es ) is a subgraph of G if Vs Í V and Es ÍE, and is denoted by Gs ÍG. The sub graph Gs is 
said to be covered by G. If a sub graph Gs Í G is isomorphic to another graph H, then Gs is called 
an embedding of H in G. In this report, a sub graph is often called a pattern. The total number of 
embeddings of Gs in a graph G is called the raw frequency of Gs . Two graphs G1 = (V1, E1) and 
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G2 = (V2, E2) are isomorphic  if they are topologically identical to each other, that is, there is a 
vertex mapping from V1 to V2 such that each edge in E1 is mapped to a single edge in E2 and 
vice versa. In the case of labeled graphs, this mapping must also preserve the labels on the 
vertices and edges. When a set of graphs {Gi } are isomorphic to each other, they all are said to 
belong to the same equivalence class. When the equivalence class of Gi represents an edge, the 
class is called an edge-type. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the problem of 
sub graph isomorphism is to find an isomorphism between G2 and a sub graph of G1. In other 
words, the sub graph isomorphism problem is to determine whether or not G2 is embedded in G1. 
 
Given a sub graph Gs and a graph G, two embeddings of Gs in G are called identical if they use 
the same set of edges of G, edge-disjoint if they do not have any edges of G in common, and 
vertex-disjoint if no vertices of G in common. Given a set of all embeddings of a particular sub 
graph Gs in a graph G, the overlap graph of Gs is a graph obtained by creating a vertex for each 
non-identical embedding and creating an edge for each pair of non-vertex-disjoint embeddings. 
Contraction of an edge e = uv of a graph G = (V, E) is to merge two endpoints u and v together 
into a new vertex w by removing the edge e, while keeping all the other edges incident to u and v. 
The remaining edges that used to be incident to either u or v are connected to w after the 
contraction. The newly added vertex w represents the original edge e. Note that, if there are 
multiple edges between two vertices u and v, the contraction of e removes only e. The rest of the 
multiple edges between u and v become loops around w after the contraction. A subtree of an 
undirected graph G is an acyclic connected subgraph of G. A subtree T is a spanning tree of G if 
T contains all nodes in G. Given a graph G, there are many spanning trees. A canonical spanning 
tree of G is a maximal spanning tree defined on a total order on the trees. A spanning tree is a tree 
that has paths connecting each node with every other node of the graph. A trie is a data structure 
that stores the information about the contents of each node in the path from the root to the node, 
rather than the node itself.  
 

3. OVERVIEW OF  FREQUENTSUBGRAPH MINING 

 
This section provides a generic overview of the process of FSM. Any frequent subgraph mining 
process involves 3 aspects , i) graph representation ii) subgraph Enumeration  and iii) frequency 
counting. 
 
3.1 Graph Representations 

 
The simplest mechanism whereby a graph structure can be represented is by employing an 
adjacency matrix or adjacency list. Using an adjacency matrix the rows and columns represent 
vertexes, and the intersection of row i and column j represents a potential edge connecting the 
vertexes vi and vj . The value held at intersection < i, j > typically indicates the number of links 
from vi to vj . However, the use of adjacency matrices, although straightforward, does not lend 
itself to isomorphism detection, because a graph can be represented in many different ways 
depending on how the vertexes (and edges) are enumerated (Washio&Motoda 2003). With 
respect to isomorphism testing it is therefore desirable to adopt a consistent labeling strategy that 
ensures that any two identical graphs are labeled in the same way regardless of the order in which 
vertexes and edges are presented (i.e. a canonical labeling strategy). A canonical labeling strategy 
defines a unique code for a given graph. 
 

Canonical labeling facilitates isomorphism checking because it ensures that if a pair of graphs are 
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isomorphic, then their canonical labeling will be identical [5] (Kuramochi&Karypis 2001). One 
simple way of generating a canonical labeling is to flatten the associated adjacency matrix by 
concatenating rows or columns to produce a code comprising a list of integers with a minimum 
(or maximum) lexicographical ordering imposed. To further reduce the computation resulting 
from the permutations of the matrix, canonical labeling are usually compressed, using what is 
known as a vertex invariant scheme (Read &Corneil 1977), that allows the content of an 
adjacency matrix to be partitioned according to the vertex labels. Various canonical labeling 
schemes have been proposed, some of the more significant are described in this subsection. 
 
Minimum DFS Code (M-DFSC): There are a number of variants of DFS encodings, but 
essentially each vertex is given a unique identifier generated from a DFS traversal of a graph 
(DFS subscripting). Each constituent edge of the graph in the DFS code is then represented by a 
5-tuple: (i, j, li, le, lj), where i and j are the vertex identifiers, li and lj are the labels for the 
corresponding vertexes, and le is the label for the edge connecting the vertexes. Based on the DFS 
lexicographic order, the M-DFSC of a graph g can be defined as the canonical labeling of g [11] 
(Yan & Han 2002).  
 
Canonical Adjacency Matrix (CAM): Given an adjacency matrix M of a graph g, an encoding of 
M can be obtained by the sequence obtained from concatenating the lower(or upper) triangular 
entries of M, including entries on the diagonal. Since different permutations of the set of vertexes 
correspond to different adjacency matrices, the canonical (CAM) form of g is defined as the 
maximal (or minimal) encoding. The adjacency matrix from which the canonical form 
isgenerated defines the Canonical Adjacency Matrix or CAM[4][5][8](Inokuchi et al. 2000,2002; 
Kuramochi&Karypis 2001; Huan et al. 2003).  
 
3.2  Subgraph Enumeration 

 
The current methods for enumerating all the subgraphs might be classified into two categories: 
one is the join operation adopted by FSG[5] and AGM [4] and another one is the extension 
operation . The major concerns for the join operation are that a single join might produce multiple 
candidates and that a candidate might be redundantly proposed by many join operations. The 
concern for the extension operation is to restrict the nodes that a newly introduced edge may 
attach to. Equivalence class based extension (Zaki 2002,2005) is founded on a DFS-LS 
representation for trees. Basically, a (k + 1)-subtree is generated by joining two frequent k-
subtrees. The two k subtrees must be in the same equivalence class . An equivalence class 
consists of the class prefix encoding, and a list of members. Each member of the class can be 
represented as a (l, p) pair, where l is the k-th vertex label and p is the depth-first position of the 
k-th vertex’s parent. It is verified, in Zaki (2002), that all potential (k + 1)-subtrees with the prefix 
[C] of size (k − 1) can be generated by joining each pair of members of the same equivalent class 
[C].Equivalence classes can be based on either prefix or suffix. 
 
3.3  Frequency Counting 

 
Two Methods are used for graph counting: Embedding lists (EL) and Recomputed 
embeddings(RE). For graphs with a single node we store an embedding list of all occurrences of 
its label in the database. For other graphs a list is stored of embedding tuples that consist of  (1) 
an index of an embedding tuple in the embedding list of the predecessor graph and (2) the 
identifier of a graph in the database and a node in that graph. The frequency of a structure is 
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determined from the number of different graphs in its embedding list.  Embedding lists are quick, 
but they do not scale very well to large databases. The other approach is based on maintaining a 
set of  active" graphs in which occurrences are repeatedly recomputed. 
 

4  A SURVEY OF FSM ALGORITHMS 
SNo Algorithm Input 

type 

Graph 

represen-

tation 

Subgraph 

generation 

Frequency 

counting 

Nature of 

output 

Limita- 

tions 

1. SUBDUE Single 
large 
graph 

Adjacenc
y matrix 

Level-wise 
search 

Minimum 
description 
code length 

Complete 
set of 
frequent 
subgraphs 

Extremely 
small no. of  
patterns 

2. GSpan Set of 
graphs 

Adjacenc
y list 
 

Rightmost 
extension 

Depth first 
search (DFS) 
lexicographic 
order 

frequent 
graphs 

Not 
scalable 

3. Close 
Graph 
 

Set of 
graphs 

Adjacenc
y list 

Rightmost 
extension 

DFS 
lexicographic 
order 

Closed 
Connected 
frequent 
graphs 

Failure 
detection 
takes lot of 
time 
overhead 

4. Gaston 
 

Set of 
graphs 

Hash 
table 

Extension Embedding 
lists 

Maximal 
frequent 
sugraphs 

Interesting 
patterns 
may be 
lost. 

5. TSP Set of 
graphs 

Adjacenc
y list 

Extension TSP tree Closed 
Temporal 
frequent 
sub 
graphs 

Extra 
overhead to 
check 
whether 
temporal 
patterns are 
closed 

6. MOFA Set of 
graphs 

Adjacenc
y list 

Rightmost 
extension 

DFS 
lexicographic 
order 

All 
frequent 
subgraphs 

Frequent 
graphs 
generated 
may not be 
exactly 
frequent. 

7. RP-FP Set of 
graphs 

Adjacenc
y list 

Rightmost 
extension 

DFS 
lexicographic 
order 

Represen- 
tative 
graphs 

Time for 
summari- 
zing the 
patterns is 
more than 
that for 
mining 

8. RP-GD Set of 
graphs 

Adjacenc
y list 

Rightmost 
extension 

DFS 
lexicographic 
order 

Represen- 
tative 
graphs 

Time for 
summari- 
zing the 
patterns is 
more than 
that for 
mining 
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The frequent subgraph discovery problem has been addressed from many directions using various 
approaches, including a priori strategy  and pattern growth approach. Also the  algorithms differ 
in the type of input graphs, search strategy they use and method of representation of graphs etc.  
Hence, there exist many algorithms based on different approaches. This makes the task of 
identifying a suitable algorithm for any given application scenario an involved process.  In this 
paper, we present a survey and propose to establish a framework for classification of these 
algorithms to help in understanding and analyzing various properties and limitations of few of 
these algorithms. A quick reference of 20 frequent subgraphmining  algorithms is presented in 
Table 1 and Table 2. 
 

Table 1. Classification of FSM algorithms based on Pattern growth approach 
 

 
Table 2. Classification of FSM algorithms based on Apriori based approach 

SNo Algorithm Input 

type 

Graph 

repre- 

sentation 

Candidate 

generation 

Frequency 

counting 

Nature of 

output 

Limitatio

ns 

1. FARMER Set of 
graphs 

Trie 
structure 

Level-wise 
search ILP 

Trie data 
structure 

Frequent 
subgraphs 

Inefficient 

2. FSG Set of 
graphs 

Adjacency 
list 

One edge 
extension 

Transaction 
identifier 
(TID) lists 

Frequent 
connected 
subgraphs 

Np-
complete 

3. HSIGRAM 
 

Single 
large  
graph 

Adjacency 
matrix 

Iterative 
merging 

Maximal 
indepen- 
dent set 

Frequent 
subgraphs 

 
Ineffecien
t 

4. GREW 
 

Single 
large  
graph 

Sparse 
graph 
representati
on. 

Iterative 
merging 

Maximal 
indepen- 
dent set 

Maximal 
frequent 
subgraphs 

Misses 
many 
interesting 
patterns 

5. FFSM 
 

 
Set of 
graphs 

Adjacency 
matrix 

Merging 
and 
extension 

Sub-
optimal 
canonical 
adjacency 
matrix tree 

Frequent 
subgraphs 

Np-
complete 

6. ISG 
 

Set of 
graphs 

Edge triplet Edgetriplet
extension 

TID lists Maximal 
Frequent 
subgraphs 

Incomplet
e set  of 
Graphs 

7. SPIN Set of 
graphs 

Adjacency 
matrix 

Join 
Operation 

Canonical 
Spanning 
Tree 

Maximal 
frequent 
subgraphs 

Non 
maximal 
graphs can 
also be 

9. JPMiner Set of 
graphs 

Adjacenc
y list 

Rightmost 
extension 

DFS 
lexicographic 
order 

Frequent 
jump 
patterns 

Some times 
much 
smaller set 
of  jump 
patterns. 

10. MSPAN Set of 
graphs 

Adjacenc
y list 

Rightmost 
extension 

DFS 
lexicographic 
order 

Frequent 
subgraphs 
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found but 
needs an 
entire 
database  
scan 

8. Dynamic 
GREW 
 

Dynami
c graphs 

Sparse 
graph 
representati
on. 

Iterative 
merging 

Suffix trees Dynamic 
patterns in 
frequent 
subgraphs
. 

Extra 
overhead 
to identify 
dynamic 
patterns 

9. AGM Graph 
databas
e 

Adjacency 
matrix 

Vertex 
extension 

Canonical 
labeling 

Frequent 
subgraphs 

 

10. MUSE Uncerta
in set of 
graphs 

Adjaceny 
Matrix 

Disjunctive 
normal 
forms 

DFS coding 
scheme 

Frequent 
subgraphs 

Frequent 
subgraphs 
are not 
exact. 

 

4.1 Classification based on Algorithmic approach. 
 
It is widely accepted that FSM techniques can be divided into two categories: (i) Apriori-based 
approaches, and (ii) pattern growth-based approach. 
 
4.1.1 Apriori Based Approach 
Apriori-based frequent substructure mining algorithms share similar characteristics with Apriori-
based frequent itemset mining algorithms. The search for frequent graphs starts with graphs of 
small “size”, and proceeds in a bottom-up manner. At each iteration, the size of newly discovered 
frequent substructures is increased by one. These new substructures are first generated by joining 
two similar but slightly different frequent subgraphs that were discovered already. The frequency 
of the newly formed graphs is then checked. The Apriori-based algorithms have considerable 
overhead when two size-k frequent substructures are joined to generate size-(k+1) graph 
candidates. Typical Apriori-based frequent substructure mining algorithms are discussed in the 
following paragraphs.  
 
The AGM[4] algorithm uses a vertex-based candidate generation method that increases the 
substructure size by one vertex at each iteration. Two size-k frequent graphs are joined only when 
the two graphs have the same size-(k − 1). 
 
ISG [ 15 ] represents graphs in an entirely different manner. It transforms the input set of graphs 
into item sets which are then represented using edge triplet. ISG uses a  approach known as edge 
triplet extension in which a discovered item set is extended by adding one edge triplet in each  
iteration. ISG carries out frequent subgraph discovery by transforming graphs into itemsets 
followed by frequent itemset discovery, which is also apriori-based. The resultant frequent 
itemsets are transformed back to subgraphs. In pattern-growth approach, the subgraph generation 
is carried out by extending the previously discovered subgraph by one node or one edge. ISG use 
transaction identifier (TID) lists for frequency counting. Each frequent subgraph has a list of 
transaction identifiers which support it. For computing frequency of a k subgraph, the intersection 
of the TID lists of (k – 1) subgraphs is computed. 
 
FARMER[18] uses trie for graph representation. In level-wise search, the algorithm finds a 
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subgraph and then enumerates the instances of the subgraph by one adjacent edge in all possible 
ways. FARMER follow this mechanism for subgraph generation. FARMER, which has been 
developed as an enhancement to WARMR, an earlier developed algorithm which works on the 
basis of ILP approach, is based on a combination of a priori and ILP approaches. FARMER uses 
the trie data structure for frequency computation also. 
 
HSIGRAM [22]  uses adjacency matrix representation of graph. HSIGRAM use iterative merging 
for subgraph generation. In case of HSIGRAM the aim is to find the maximal independentset of a 
graph which is constructed out of the embeddings of a frequent subgraph so as to evaluate its 
frequency. 
 
Huan, wang and Prince [7]  in 2003 proposed a novel subgraph mining algorithm: FFSM, which 
employs a vertical search scheme within an algebraic graph framework.It uses a restricted join 
operation to generate candidates and stores embeddings to avoid explicit subgraph isomorphism 
testing. It uses a sub-optimal canonical adjacency matrix tree for counting the frequency. Their 
studies on synthetic and real datasets demonstrated that FFSM achieves a substantial performance 
gain over the  start-of-the art subgraph mining algorithm gSpan. 
 
One fundamental challenge for mining recurring subgraphs from semi-structured data sets is the 
overwhelming abundance of suchpatternsc. In large graph databases, the total number of frequent 
subgraphs can become too large to allow a full enumeration using reasonable computational 
resources.  Jun Huan, Wei WangPrins, Jiong Yang, Jan [8] proposed  a new algorithm, Spin that 
mines only maximal frequent subgraphs, i.e. subgraphs that are not a part of any other frequent 
subgraphs. This may exponentially decrease the size of the output set in the best-case; in our 
experiments on practical data sets, mining maximal frequent subgraphs reduces the total number 
of mined patterns by two to three orders of magnitude. It first mines all frequent trees from a 
general graph database and then reconstructs all maximal subgraphs from the mined trees.  SPIN 
offered very good scalability to large graph databases and at least an order of magnitude 
performance improvement in synthetic graph data sets. The efficiency of the algorithm is also 
confirmed by a benchmark chemical data set. This algorithm of compressing large number of 
frequent subgraphs to a much smaller set of maximal subgraphs.lt is used to investigate 
demanding applications such as finding structure patterns from proteins in the future. 
 
MichihiroKuramochi and George Karypis [9] in 2004 proposed a heuristic algorithm called 
GREW to overcome the limitations of existing complete or heuristic frequent subgraph discovery 
algorithms. GREW is designed to operate on a large graph and to find patterns corresponding to 
connected subgraphs that have a large number of vertex-disjoint embeddings. Their experimental 
evaluation showed that GREW is efficient, can scale to very large graphs, and find non-trivial 
patterns that cover large  portions of the input graph and the lattice of frequent patterns. 
 
Karsten M. Borgwardt, Hans-Peter Kriegel, Peter Wackersreuther [28] investigated how pattern 
mining on static graphs can be extended to time series of graphs, ie. dynamic graphs. They 
proposed a framework into which  Existingsubgraph mining algorithms can be easily integrated 
and handle dynamic graphs. Experimental results on real-world data confirm the practical 
feasibility of their approach. In particular, we are looking for subgraphs that are topologically 
frequent within a large graph and that show insertions and deletions of edges in the same 
temporal order.  It might be used to study frequent motifs in protein-protein interaction dynamics, 
as well as in social or    telecommunication networks. 
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Lini T Thomas Satyanarayana R ValluriKamalakarKarlapalem [13] in 2006 proposed an 
algorithm MARGIN that mines maximal frequent subgraphs. MARGIN- Maximal frequent 
mining has triggered much interest since the size of the set of maximal frequent subgraphs is 
much smaller to that of the set of frequent subgraphs. The set of candidate subgraphs which are 
likely to bemaximally frequent are the set of -edge frequent subgraphs that have a z-edge 
infrequent supergraph. The Margin algorithm computessuch a candidate set efficiently and finds 
the maximal subgraphs by a post-processing step. They have proved that  the performance of the 
Margin algorithm is 20 times faster than gSpan for certain datasets. 
 
ZhaonianZou, Jianzhong Li,  andShuo Zhang  [17]  in 2010 proposed an algorithm for Mining 
Frequent SubgraphPatternsfrom Uncertain Graph Data. In many real applications, graph data is 
subject to uncertainties due to incompleteness and imprecision of data. Mining such uncertain 
graph data is semantically different from and computationally more challenging than mining 
conventional exact graphdata. A novel model of uncertain graphs is presented, and the frequent 
subgraph pattern mining problem is formalized by introducing a new measure, called expected 
support.  An approximate mining algorithm called MUSE (Mining Uncertain Sub graph 
pattErns),  is proposed to find a set of approximately frequent subgraph patterns by allowing an 
error tolerance on expected supports of discovered subgraph patterns. The algorithm uses 
efficient methods to determine whether a subgraph pattern can be output or not and new pruning 
method to reduce the complexity of examining subgraph patterns. Analytical and experimental 
results showed that the algorithm is very efficient, accurate, and scalable for large uncertain graph 
databases. This is the first algorithm to investigate the problem of mining frequent sub graph 
patterns from uncertain graph data. 
 
4.1.2 Pattern-growth approach 
In order to avoid the overhead of apriori algorithms, non-Apriority-based algorithms have been 
developed, most of which adopt the pattern-growth methodology, as discussed below. Pattern-
growth-based graph pattern mining algorithms include gSpan by Yan and Han (2002),MoFa by 
Borgelt andBerthold (2002), FFSM by Huan et al. (2003), SPIN by Huan et al. (2004), and 
Gaston by Nijssen andKok (2004). These algorithms are inspired by PrefixSpan(Pei et al. 
2001),TreeMinerV(Zaki 2002), and FREQT (Asai et al. 2002) at mining sequences and trees, 
respectively. The pattern-growth mining algorithm extends a frequent graph by adding a new 
edge, in every possible position. A potential problem with the edge extension is that the same 
graph can be discovered many times. The gSpan [11] algorithm solves this problem by 
introducing a right-most extension technique, where the only extensions take place on the right-
most path. A right-most path is the straight path from the starting vertex v0 to the last vertex vn, 
according to a depth-first search on the graph. Typical pattern growth algorithms are discussed in 
the following paragraphs. 
 
Frequency counting process for Gaston is carried out with the help of embedding lists, where all 
the occurrences of a particular label are stored in the embedding lists. 
 
Borgelt and Berthold [10] in 2002 presented an algorithm  Mofa to find fragments in a set of 
molecules that help to discriminate between different classes for instance, activity in a drug 
discovery context. Yan and Han [11] in 2002 investigated new approaches for frequent graph-
based pattern mining in graph datasets and proposed a novel algorithm called gSpan. gSpan is a 
graph-based substructure pattern mining. This discovered frequent substructures without 
candidate generation.  
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Yan and Han [12] in 2003 proposed to mine closed frequent graph patterns. A graph g is closed in 
a database if there exists no proper subgraph of g that has the same support as g. A closed graph 
pattern mining algorithm, CloseGraph, is developed by exploring several interesting looping 
methods. Their performance studies shown that CloseGraph not only dramatically reduces 
unnecessary subgraphs to be generated, but also substantially increases the efficiency of mining, 
especially in the presence of  large graph patterns.   
 
Yong Liu, Jianzhong Li, Hong Gao [23] in 2009 studied the  problem of mining frequent jump 
patterns from graph databases. They have showed that Mining frequent jump patterns can 
dramatically reduce the number of output graph patterns, and still capture interesting graph 
patterns. By integrating the operation of  checking jump patterns into the well-known DFS code 
tree enumeration framework, they presented  an efficient algorithm JPMiner for this new 
problem. Their  experimental evaluation of JPMiner using both real and synthetic datasets, 
showed that the number of frequent jump patterns is much smaller than that of closed frequent 
graph patterns, and also JPMiner is efficient and scalable in mining frequent jump patterns. 
 
Most of existing frequent subgraph mining algorithms are used to deal with undirected unlabeled 
marked graph. A few of them aim at directed graph or labeled graph because it is very complex to 
consider that. But in the real world, a lot of connections have directions and labels, so directed 
labeled graph mining is more meaningful. Yuhua Li Quan Lin and DuanYanan [25] Bi in 2009 
analyzed a financial network by modelling it as a directed weighted graph. They proposed a new 
algorithm mSpan for directed labeled graph frequent pattern mining. Based on FP-growth, the 
algorithm gets a minimum edge code and an abstract node code sequence to identify a directed 
graph pattern uniquely through minimum extension. It also solved  the graph pattern isomorphic 
problem and the redundant extension problem. Their experiment showed that mSpan can mine all 
frequent directed, labeled graph patterns. 
 
Cheng-Te Li, Hsun-Ping Hsieh [26] proposed a novel algorithm, TSP-algorithm (Temporal 
Subgraph Patterns algorithm) to mine the patterns which contain temporal information and forms 
a connective subgraph. The proposed method recursively grows the patterns in a depth-first 
search manner. Since the TSP-algorithm only needs to scan the database once and does not 
generate unnecessary candidates, the experiment results showed that the TSP-algorithm 
outperforms the modified Apriori on time-efficiency and memory usage in both synthetic and real 
datasets. 
 
Jianzhong Li, Yong Liu, and Hong GaoWe [27] in 2011 investigated  the problem of 
summarizing frequent subgraphs by a smaller set of representative patterns. They showed  that 
some special graph patterns, called _-jump patterns , must be representative patterns. Based on 
the fact,they  devised two algorithms, RP-FP and RP-GD, to mine a representative set that 
summarizes frequent subgraphs. RP-FP derives a representative set from frequent closed 
subgraphs, whereas RP-GD mines a representative set from graph databases directly. Three novel 
heuristic strategies, Last-Succeed-First-Check, Reverse-Path-Trace, and Nephew-Representative-
Based-Cover, are proposed to further improve the efficiency of RP-GD. RP-FP can provide a 
tight ratio bound but has heavy computation cost. RP-GD cannot provide a ratio bound guarantee 
but is more efficient than RP-FP. They also made use of  the similarity between sibling branches 
in the graph pattern space to devise another much more efficient algorithm, RP-Leap, for mining 
a representative set that can approximately summarize frequent subgraphs. Their  extensive 
experiments on both real and synthetic data sets verify the summarization quality and efficiency 
of the algorithms. patterns to classification. They also demonstrated  that the classification 
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accuracy achieved by representative pattern
graph pattern-based model. 
 
4.2 Classification based on  Search strategy 

 
There are two basic search strategies employed for finding out frequent subgraphs: the breadth 
first search (BFS) strategy and the depth first search (DFS) strategy.
 
4.3 Classification based on Nature of the input 
 
The algorithms are of two types based on the exactness of the input they take.  The first type takes 
in a exact graph sets as input, whereas the second type takes a uncertain set of  graphs as input. 
Another possibility is based on the type of the graph. The first type takes in a single large graph 
as input, whereas the second type takes a set of small graphs as input. The third 
correctness of the graph data where it can be accurate or uncertain.
 
4.4 Completeness of the output  

 

Based on the set of the frequent subgraphs discovered, the algorithms are of two types. The first 
type returns the complete set of  frequentsubgraphs, whereas the second type returns a partial set 
of frequent subgraphs. 

Figure 1. Classification of FSM algorithms
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are several critical research problems that need to be solved before frequent pattern mining can 
become a cornerstone approach in data mining applications. Fi
extensively studied topic in frequent pattern mining is perhaps scalable mining methods. Second 
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is the efficiency of the frequent subgraph mining algorithms. Third is not on whether we can 
derive the complete set of frequent patterns under certain constraints efficiently but on whether 
we can derive a compact but high quality set of patterns that are most useful in applications and 
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whether we can mine such patterns directly and efficiently. Fourth, to make frequent pattern 
mining an essential task in data mining. Classification is an essential task in data mining. We can 
generate frequent patterns in such a way that, they can become input for classification or 
clustering models. 
 

6. CONCLUSION 

 
In this paper, we present a brief overview of the current status and future directions  of frequent 
pattern mining. There are various inter-disciplinary domains like chemo informatics, 
bioinformatics etc. where mining of recurrent patterns across large collection of networks is 
required. Due to increasing size and complexity of patterns in there is a need for efficient graph 
mining algorithm.With over a decade of extensive research, there have been hundreds of research 
publications and tremendous research, development and application activities in this domain. 
Many algorithms for frequent subgraph mining have been proposed so far. Most of the 
algorithms, they focus only on a static set of graphs. Very few algorithms are for mining patterns 
from dynamic set of graphs. Also all the algorithms proposed so far, outperform each other, either 
in terms of memory requirements or in terms of few orders of magnitude of  computation time. 
None of them completely address the issue of NP-completeness of the subgraph mining problem. 
Also the algorithms mine either a specific set of patterns or  a complete set of patterns which may 
not be significant. So there is a need for an efficient algorithm which can mine significant 
patterns specific to the application, both from a static or dynamic set of graphs in less than 
polynomial time.  Also the mined interesting patterns can used as input to other data mining tasks 
such as for classification or clustering for further knowledge discovery. Hence lot of research is 
required towards the improvements suggested. 
 

7. REFERENCES 

 
[1] D. J. Cook and L. B. Holder, “Substructure discovery using minimum description length and 

background knowledge” Journal of Artificial intelligence Research, 1, 1994, 231-255. 
 
[2] S. Fortin. The graph isomorphism problem.Technical Report TR96-20, Department of Computing 

Science, University of Alberta, 1996. 
 
[3] L. Dehaspe, H. Toivonen, and R. D. King.Finding frequent substructures in chemical compounds. In 

R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro, editors, Proc. of the 4th ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining (KDD-98), pages 30–36. AAAI  
Press, 1998. 

 
[4] A. Inokuchi, T.Washio, and H. Motoda.An apriori-based algorithm for mining frequent substructures 

from graph data.In PKDD’00. 
 
[5] M.Kuramochi and G. Karypis .Frequent Subgraph Discovery.In ICDM’01. 
 
[6] M. Deshpande, M. Kuramochi, and G. Karypis. Frequent sub-structure based approaches for 

classifying chemical compounds. In Proc. of 2003 IEEE International Conference on Data Mining 
(ICDM), 2003. 

 
[7] J. Huan, W.Wang, and J. Prins.Efficient mining of frequent subgraph in the presence of 

isomorphism.UNC computer science technique report TR03-021, 2003.  
 



Computer Science & Information Technology (CS & IT)                                201 

 

[8] J. Huan, W. Wang, J. Prins, and J. Yang. Spin: Mining maximal frequent subgraphs from graph 
databases. UNC Technical Report TR04-018, 2004. 

 
[9] M. Kuramochi and G. Karypis. GREW A Scalable frequent subgraphdiscovery  algorithm. Technical 

Report 04-024, University of Minnesota, Department of Computer Science, 2004. 
 
[10] C. Borgelt and M. R. Berhold. Mining molecular fragments: Finding relevant substructures of 

molecules. Proc. 2nd IEEE Int’l Conf. Data Mining (ICDM ’02), pp. 51-58, 2002. 
 
[11] X. Yan and J. Han.gSpan: Graph-based substructure pattern mining. Proc. 2nd IEEE Int’l Conf. Data 

Mining (ICDM ’02), pp. 721-724, 2002. 
 
[12] X. Yan and J. Han.CloseGraph: Mining closed frequentgraph patterns. Proc. 9th ACM SIGKDD Int’l 

Conf. Knowledge Discov-ery and Data Mining (KDD ’03), pp. 286-295, 2003.(closegraph) 
 
[13] L. T. Thomas, S. R. Valluri, and K. Karlapalem. Margin:Maximal frequent subgraph mining. Proc. 

6th IEEE Int’l Conf. Data mining (ICDM ’06), pp. 1097-1101, 2006. 
 
[14] M. Kuramochi and G. Karypis.Grew-a scalable frequent subgraph discovery algorithm. In ICDM, 

pages 439–442,2004. 
 
[15] Thomas, L., Valluri, S. and Karlapalem, K., Isg: Itemset based subgraph mining. Technical Report, 

IIIT, Hyderabad, December2009. 
 
[16] Kuramochi, M. and Karypis, G., Finding frequent patterns in alarge sparse graph. Data Min. 

Knowledge Discovery, 2005, (3),243–271. 
 
[17] ZhaonianZou, Jianzhong Li, Hong Gao, and ShuoZhang : Frequent Subgraph Patterns from Uncertain 

Graph Data. IEEE Transactions On Knowledge And Data Engineering, Vol. 22, No. 9, September 
2010. 

 
[18] Nijssen, S. and Kok, J., Faster association rules for multiple relations. In IJCAI’01:  Seventeenth 

International Joint Conference on Artificial Intelligence, 2001, vol. 2, pp. 891–896. 
 
[19] Nijssen, S. and Kok, J., A quickstart in frequent structure mining can make a difference. In 

Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery andData 
Mining, ACM, 2004, pp. 647–652. 

 
[20] Chang Hun You, Lawrence B. Holder and Diane J. Cook :Graph-based Data Mining in Dynamic 

Networks: Empirical Comparison of Compression-based and Frequency-based Subgraph Mining in 
IEEE International Conference on Data Mining Workshops, 2004. 

 
[21] Cordella, L.P., Foggia, P., Sansone, C. and Vento, M. 2001. An Improved Algorithm for Matching 

Large Graphs, In Proceedings of the 3rd IAPR-TC15 Workshop on Graph-based Representation in 
Pattern Recognition, 149–159. 

 
[22] Chuntao Jiang, FransCoenen and Michele Zito, A Survey of Frequent Subgraph Mining 

Algorithms:The Knowledge Engineering Review, Vol. 00:0, 1–31.c 2004. 
 
[23] Yong Liu, Jianzhong Li, Hong Gao, JPMiner: Mining Frequent Jump Patterns From Graph 

Databases. In the proceedings of Sixth International Conference on Fuzzy Systems and Knowledge 
Discovery 2009. 

 



202                                     Computer Science & Information Technology (CS & IT) 

 

[24] Varun Krishna, N. N. R. RangaSuri and G. Athithan,A comparative survey of algorithms for frequent 
subgraph discovery, Current Science, Vol. 100, No. 2, 25 January 2011 

 
[25] Yuhua Li Quan Lin Gang ZhongDongshengDuanYanan Jin Wei Bi, A Directed Labeled Graph 

Frequent Pattern Mining Algorithm based on Minimum Code. In the proceedings of Third 
International Conference on Multimedia and Ubiquitous Engineering 2009. 

 
[26] Hsun-Ping Hsieh, Cheng-Te Li, Mining Temporal Subgraph Patterns in Heterogeneous Information 

Networks: In the proceedings of IEEE International Conference on Social Computing / IEEE 
International Conference on Privacy, Security, Risk and Trust. 

 
[27] Jianzhong Li, Yong Liu, and Hong Gao, Efficient Algorithms for Summarizing Graph Patterns: IEEE 

Transactions On Knowledge And Data Engineering, Vol. 23, No. 9, September 2011. 
 
[28] Bianca Wackersreuther, Peter Wackersreuther, AnnahitaOswald : Frequent Subgraph Discovery in 

Dynamic Networks,  ACM 978-1-4503-0214-2 2010. 
 
Authors 

 
1. K.Lakshmi, Asst. Prof /Dept of MCA, Sir M.Visvesvaraya Institute of Technology, Bangalore, has 

more 12 years of experience in teaching. 
 

2. Dr. T. Meyyappan, M.Sc., M.Phil., M.B.A., Ph.D.,Associate Professor,Department of Computer 
Science and Engineering, AlagappaUniversity,Karaikudi, Tamilnadu. 
 


