

Natarajan Meghanathan, et al. (Eds): ITCS, SIP, JSE-2012, CS & IT 04, pp. 189–202, 2012.
© CS & IT-CSCP 2012 DOI : 10.5121/csit.2012.2117

FREQUENT SUBGRAPH MINING ALGORITHMS -

A SURVEY AND FRAMEWORK FOR

CLASSIFICATION

K.Lakshmi1 and Dr. T. Meyyappan2

1. Department of MCA, Sir M.Visvesvaraya Institute of Technology, Bangalore.

lakshmi_kes@rediffmail.com
2.Department of Computer Science and Engineering,

AlagappaUniversity,Karaikudi.
meyslotus@yahoo.com

ABSTRACT

Data mining algorithms are facing the challenge to deal with an increasing number of complex

objects. Graph is a natural data structure used for modeling complex objects. Frequent subgraph

mining is another active research topic in data mining . A graph is a general model to represent

data and has been used in many domains like cheminformatics and bioinformatics. Mining

patterns from graph databases is challenging since graph related operations, such as subgraph

testing, generally have higher time complexity than the corresponding operations on itemsets,

sequences, and trees. Many frequent subgraph Mining algorithms have been proposed. SPIN,

SUBDUE, g_Span, FFSM, GREW are a few to mention. In this paper we present a detailed

survey on frequent subgraph mining algorithms, which are used for knowledge discovery in

complex objects and also propose a frame work for classification of these algorithms. The

purpose is to help user to apply the techniques in a task specific manner in various application

domains and to pave wave for further research.

KEYWORDS

Frequent subgraph mining, Isomorphism, Pattern growth, Apriori

1. INTRODUCTION

Knowledge discovery in complex objects involves understanding the relationship between their
components. Examples are the Machine learning in domains such as bioinformatics, drug
discovery, adverse drug events and web data mining. Graphs are natural data structures to model
such relations, with nodes representing objects and edges the relationships between them. In this
context, one often encounters the question: How similar are two graphs? Simple ways of

190 Computer Science & Information Technology (CS & IT)

comparing graphs which are based on pair wise comparison of nodes or edges, are possible in
quadratic time, yet may neglect information represented by the structure of the graph.

As interaction networks are graphs, where each node represents for example, a protein and each
edge represents the presence of an interaction, Conventionally there are two ways of measuring
similarity between graphs. One approach is to perform a pair wise comparison of the nodes and/or
edges in two networks, and calculate an overall similarity score for the two networks from the
similarity of their components. This approach takes time quadratic in the number of nodes and
edges, and is thus computationally feasible even for large graphs. However, this strategy is
flawed in that it completely neglects the structure of the networks, treating them as sets of nodes
and edges instead of graphs. A more principled alternative would be to deem two networks
similar if they share many common substructures, or more technically, if they share many
common subgraphs. To compute this, however, we would have to solve the so-called subgraph
isomorphism problem which is known to be NP-complete, i.e., the computational cost of this
problem increases exponentially with problem size, seriously limiting this approach to very small
networks. Many heuristics have been developed to speed up sub graph isomorphism by using
special canonical labelings of the graphs; none of them, however, can avoid an exponential worst-
case computation time.

2. PRIMER ON GRAPH THEORY

A graph G consists of a set of nodes (or vertices) V and edges E. Let n denotes the number of
nodes in a graph and m the number of edges in a graph. An attributed graph is a graph with labels
on nodes and/or edges; we refer to labels as attributes. In our case, attributes will consist of pairs
of the form (attribute-name, value). The unnormalized adjacency matrix A of G is defined as

where vi and vj are nodes in G. If G is weighted then, A can contain non-negative entries other
than zeroes and ones. i.eAij e (0,¥) if (vi,vj) e E and zero otherwise. Let D be anxn diagonal
matrix with entries Dii = SjAij. The matrix P := AD-1 is called the normalized adjacency matrix.
Let X be a set of labels which includes the special label e. An edge labeled graph G is associated
with a label matrix L e X nxn , such that Lij = iff (vi,vj) . A walk w of length k − 1 in a graph is a
sequence of nodes v1, v2, · · · ,vk where (vi−1, vi) e E for 1 < i £ k. w is a path if vi ¹ vjiff i ¹ j, j
e {1, . . . , k} . Alternatively, walks are often referred to as paths; paths are then named simple,
unique or loopless paths, which may lead to some confusion. To clarify the difference for the
remainder of this article, we define a path to be a walk without repetitions of nodes. A cycle is a
walk with v1 = vk, a simple cycle does not have any repeated nodes except for v1. A Hamilton
path is a path that visits every node in a graph exactly once. An Euler path is a path that visits
every edge in a graph exactly once.If a graph is undirected, and that the vertices and edges in a
graph are labeled. The labels of an edge e and a vertex v are denoted by l(e) and l(v) respectively.
Each vertex (or edge) of a graph is not required to have a unique label and the same label can be
assigned to many vertices (or edges) in the same graph. Given a graph G = (V, E), a graph Gs =
(Vs ,Es) is a subgraph of G if Vs Í V and Es ÍE, and is denoted by Gs ÍG. The sub graph Gs is
said to be covered by G. If a sub graph Gs Í G is isomorphic to another graph H, then Gs is called
an embedding of H in G. In this report, a sub graph is often called a pattern. The total number of
embeddings of Gs in a graph G is called the raw frequency of Gs . Two graphs G1 = (V1, E1) and

Computer Science & Information Technology (CS & IT) 191

G2 = (V2, E2) are isomorphic if they are topologically identical to each other, that is, there is a
vertex mapping from V1 to V2 such that each edge in E1 is mapped to a single edge in E2 and
vice versa. In the case of labeled graphs, this mapping must also preserve the labels on the
vertices and edges. When a set of graphs {Gi } are isomorphic to each other, they all are said to
belong to the same equivalence class. When the equivalence class of Gi represents an edge, the
class is called an edge-type. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the problem of
sub graph isomorphism is to find an isomorphism between G2 and a sub graph of G1. In other
words, the sub graph isomorphism problem is to determine whether or not G2 is embedded in G1.

Given a sub graph Gs and a graph G, two embeddings of Gs in G are called identical if they use
the same set of edges of G, edge-disjoint if they do not have any edges of G in common, and
vertex-disjoint if no vertices of G in common. Given a set of all embeddings of a particular sub
graph Gs in a graph G, the overlap graph of Gs is a graph obtained by creating a vertex for each
non-identical embedding and creating an edge for each pair of non-vertex-disjoint embeddings.
Contraction of an edge e = uv of a graph G = (V, E) is to merge two endpoints u and v together
into a new vertex w by removing the edge e, while keeping all the other edges incident to u and v.
The remaining edges that used to be incident to either u or v are connected to w after the
contraction. The newly added vertex w represents the original edge e. Note that, if there are
multiple edges between two vertices u and v, the contraction of e removes only e. The rest of the
multiple edges between u and v become loops around w after the contraction. A subtree of an
undirected graph G is an acyclic connected subgraph of G. A subtree T is a spanning tree of G if
T contains all nodes in G. Given a graph G, there are many spanning trees. A canonical spanning
tree of G is a maximal spanning tree defined on a total order on the trees. A spanning tree is a tree
that has paths connecting each node with every other node of the graph. A trie is a data structure
that stores the information about the contents of each node in the path from the root to the node,
rather than the node itself.

3. OVERVIEW OF FREQUENTSUBGRAPH MINING

This section provides a generic overview of the process of FSM. Any frequent subgraph mining
process involves 3 aspects , i) graph representation ii) subgraph Enumeration and iii) frequency
counting.

3.1 Graph Representations

The simplest mechanism whereby a graph structure can be represented is by employing an
adjacency matrix or adjacency list. Using an adjacency matrix the rows and columns represent
vertexes, and the intersection of row i and column j represents a potential edge connecting the
vertexes vi and vj . The value held at intersection < i, j > typically indicates the number of links
from vi to vj . However, the use of adjacency matrices, although straightforward, does not lend
itself to isomorphism detection, because a graph can be represented in many different ways
depending on how the vertexes (and edges) are enumerated (Washio&Motoda 2003). With
respect to isomorphism testing it is therefore desirable to adopt a consistent labeling strategy that
ensures that any two identical graphs are labeled in the same way regardless of the order in which
vertexes and edges are presented (i.e. a canonical labeling strategy). A canonical labeling strategy
defines a unique code for a given graph.

Canonical labeling facilitates isomorphism checking because it ensures that if a pair of graphs are

192 Computer Science & Information Technology (CS & IT)

isomorphic, then their canonical labeling will be identical [5] (Kuramochi&Karypis 2001). One
simple way of generating a canonical labeling is to flatten the associated adjacency matrix by
concatenating rows or columns to produce a code comprising a list of integers with a minimum
(or maximum) lexicographical ordering imposed. To further reduce the computation resulting
from the permutations of the matrix, canonical labeling are usually compressed, using what is
known as a vertex invariant scheme (Read &Corneil 1977), that allows the content of an
adjacency matrix to be partitioned according to the vertex labels. Various canonical labeling
schemes have been proposed, some of the more significant are described in this subsection.

Minimum DFS Code (M-DFSC): There are a number of variants of DFS encodings, but
essentially each vertex is given a unique identifier generated from a DFS traversal of a graph
(DFS subscripting). Each constituent edge of the graph in the DFS code is then represented by a
5-tuple: (i, j, li, le, lj), where i and j are the vertex identifiers, li and lj are the labels for the
corresponding vertexes, and le is the label for the edge connecting the vertexes. Based on the DFS
lexicographic order, the M-DFSC of a graph g can be defined as the canonical labeling of g [11]
(Yan & Han 2002).

Canonical Adjacency Matrix (CAM): Given an adjacency matrix M of a graph g, an encoding of
M can be obtained by the sequence obtained from concatenating the lower(or upper) triangular
entries of M, including entries on the diagonal. Since different permutations of the set of vertexes
correspond to different adjacency matrices, the canonical (CAM) form of g is defined as the
maximal (or minimal) encoding. The adjacency matrix from which the canonical form
isgenerated defines the Canonical Adjacency Matrix or CAM[4][5][8](Inokuchi et al. 2000,2002;
Kuramochi&Karypis 2001; Huan et al. 2003).

3.2 Subgraph Enumeration

The current methods for enumerating all the subgraphs might be classified into two categories:
one is the join operation adopted by FSG[5] and AGM [4] and another one is the extension
operation . The major concerns for the join operation are that a single join might produce multiple
candidates and that a candidate might be redundantly proposed by many join operations. The
concern for the extension operation is to restrict the nodes that a newly introduced edge may
attach to. Equivalence class based extension (Zaki 2002,2005) is founded on a DFS-LS
representation for trees. Basically, a (k + 1)-subtree is generated by joining two frequent k-
subtrees. The two k subtrees must be in the same equivalence class . An equivalence class
consists of the class prefix encoding, and a list of members. Each member of the class can be
represented as a (l, p) pair, where l is the k-th vertex label and p is the depth-first position of the
k-th vertex’s parent. It is verified, in Zaki (2002), that all potential (k + 1)-subtrees with the prefix
[C] of size (k − 1) can be generated by joining each pair of members of the same equivalent class
[C].Equivalence classes can be based on either prefix or suffix.

3.3 Frequency Counting

Two Methods are used for graph counting: Embedding lists (EL) and Recomputed
embeddings(RE). For graphs with a single node we store an embedding list of all occurrences of
its label in the database. For other graphs a list is stored of embedding tuples that consist of (1)
an index of an embedding tuple in the embedding list of the predecessor graph and (2) the
identifier of a graph in the database and a node in that graph. The frequency of a structure is

Computer Science & Information Technology (CS & IT) 193

determined from the number of different graphs in its embedding list. Embedding lists are quick,
but they do not scale very well to large databases. The other approach is based on maintaining a
set of active" graphs in which occurrences are repeatedly recomputed.

4 A SURVEY OF FSM ALGORITHMS
SNo Algorithm Input

type

Graph

represen-

tation

Subgraph

generation

Frequency

counting

Nature of

output

Limita-

tions

1. SUBDUE Single
large
graph

Adjacenc
y matrix

Level-wise
search

Minimum
description
code length

Complete
set of
frequent
subgraphs

Extremely
small no. of
patterns

2. GSpan Set of
graphs

Adjacenc
y list

Rightmost
extension

Depth first
search (DFS)
lexicographic
order

frequent
graphs

Not
scalable

3. Close
Graph

Set of
graphs

Adjacenc
y list

Rightmost
extension

DFS
lexicographic
order

Closed
Connected
frequent
graphs

Failure
detection
takes lot of
time
overhead

4. Gaston

Set of
graphs

Hash
table

Extension Embedding
lists

Maximal
frequent
sugraphs

Interesting
patterns
may be
lost.

5. TSP Set of
graphs

Adjacenc
y list

Extension TSP tree Closed
Temporal
frequent
sub
graphs

Extra
overhead to
check
whether
temporal
patterns are
closed

6. MOFA Set of
graphs

Adjacenc
y list

Rightmost
extension

DFS
lexicographic
order

All
frequent
subgraphs

Frequent
graphs
generated
may not be
exactly
frequent.

7. RP-FP Set of
graphs

Adjacenc
y list

Rightmost
extension

DFS
lexicographic
order

Represen-
tative
graphs

Time for
summari-
zing the
patterns is
more than
that for
mining

8. RP-GD Set of
graphs

Adjacenc
y list

Rightmost
extension

DFS
lexicographic
order

Represen-
tative
graphs

Time for
summari-
zing the
patterns is
more than
that for
mining

194 Computer Science & Information Technology (CS & IT)

The frequent subgraph discovery problem has been addressed from many directions using various
approaches, including a priori strategy and pattern growth approach. Also the algorithms differ
in the type of input graphs, search strategy they use and method of representation of graphs etc.
Hence, there exist many algorithms based on different approaches. This makes the task of
identifying a suitable algorithm for any given application scenario an involved process. In this
paper, we present a survey and propose to establish a framework for classification of these
algorithms to help in understanding and analyzing various properties and limitations of few of
these algorithms. A quick reference of 20 frequent subgraphmining algorithms is presented in
Table 1 and Table 2.

Table 1. Classification of FSM algorithms based on Pattern growth approach

Table 2. Classification of FSM algorithms based on Apriori based approach

SNo Algorithm Input

type

Graph

repre-

sentation

Candidate

generation

Frequency

counting

Nature of

output

Limitatio

ns

1. FARMER Set of
graphs

Trie
structure

Level-wise
search ILP

Trie data
structure

Frequent
subgraphs

Inefficient

2. FSG Set of
graphs

Adjacency
list

One edge
extension

Transaction
identifier
(TID) lists

Frequent
connected
subgraphs

Np-
complete

3. HSIGRAM

Single
large
graph

Adjacency
matrix

Iterative
merging

Maximal
indepen-
dent set

Frequent
subgraphs

Ineffecien
t

4. GREW

Single
large
graph

Sparse
graph
representati
on.

Iterative
merging

Maximal
indepen-
dent set

Maximal
frequent
subgraphs

Misses
many
interesting
patterns

5. FFSM

Set of
graphs

Adjacency
matrix

Merging
and
extension

Sub-
optimal
canonical
adjacency
matrix tree

Frequent
subgraphs

Np-
complete

6. ISG

Set of
graphs

Edge triplet Edgetriplet
extension

TID lists Maximal
Frequent
subgraphs

Incomplet
e set of
Graphs

7. SPIN Set of
graphs

Adjacency
matrix

Join
Operation

Canonical
Spanning
Tree

Maximal
frequent
subgraphs

Non
maximal
graphs can
also be

9. JPMiner Set of
graphs

Adjacenc
y list

Rightmost
extension

DFS
lexicographic
order

Frequent
jump
patterns

Some times
much
smaller set
of jump
patterns.

10. MSPAN Set of
graphs

Adjacenc
y list

Rightmost
extension

DFS
lexicographic
order

Frequent
subgraphs

Computer Science & Information Technology (CS & IT) 195

found but
needs an
entire
database
scan

8. Dynamic
GREW

Dynami
c graphs

Sparse
graph
representati
on.

Iterative
merging

Suffix trees Dynamic
patterns in
frequent
subgraphs
.

Extra
overhead
to identify
dynamic
patterns

9. AGM Graph
databas
e

Adjacency
matrix

Vertex
extension

Canonical
labeling

Frequent
subgraphs

10. MUSE Uncerta
in set of
graphs

Adjaceny
Matrix

Disjunctive
normal
forms

DFS coding
scheme

Frequent
subgraphs

Frequent
subgraphs
are not
exact.

4.1 Classification based on Algorithmic approach.

It is widely accepted that FSM techniques can be divided into two categories: (i) Apriori-based
approaches, and (ii) pattern growth-based approach.

4.1.1 Apriori Based Approach
Apriori-based frequent substructure mining algorithms share similar characteristics with Apriori-
based frequent itemset mining algorithms. The search for frequent graphs starts with graphs of
small “size”, and proceeds in a bottom-up manner. At each iteration, the size of newly discovered
frequent substructures is increased by one. These new substructures are first generated by joining
two similar but slightly different frequent subgraphs that were discovered already. The frequency
of the newly formed graphs is then checked. The Apriori-based algorithms have considerable
overhead when two size-k frequent substructures are joined to generate size-(k+1) graph
candidates. Typical Apriori-based frequent substructure mining algorithms are discussed in the
following paragraphs.

The AGM[4] algorithm uses a vertex-based candidate generation method that increases the
substructure size by one vertex at each iteration. Two size-k frequent graphs are joined only when
the two graphs have the same size-(k − 1).

ISG [15] represents graphs in an entirely different manner. It transforms the input set of graphs
into item sets which are then represented using edge triplet. ISG uses a approach known as edge
triplet extension in which a discovered item set is extended by adding one edge triplet in each
iteration. ISG carries out frequent subgraph discovery by transforming graphs into itemsets
followed by frequent itemset discovery, which is also apriori-based. The resultant frequent
itemsets are transformed back to subgraphs. In pattern-growth approach, the subgraph generation
is carried out by extending the previously discovered subgraph by one node or one edge. ISG use
transaction identifier (TID) lists for frequency counting. Each frequent subgraph has a list of
transaction identifiers which support it. For computing frequency of a k subgraph, the intersection
of the TID lists of (k – 1) subgraphs is computed.

FARMER[18] uses trie for graph representation. In level-wise search, the algorithm finds a

196 Computer Science & Information Technology (CS & IT)

subgraph and then enumerates the instances of the subgraph by one adjacent edge in all possible
ways. FARMER follow this mechanism for subgraph generation. FARMER, which has been
developed as an enhancement to WARMR, an earlier developed algorithm which works on the
basis of ILP approach, is based on a combination of a priori and ILP approaches. FARMER uses
the trie data structure for frequency computation also.

HSIGRAM [22] uses adjacency matrix representation of graph. HSIGRAM use iterative merging
for subgraph generation. In case of HSIGRAM the aim is to find the maximal independentset of a
graph which is constructed out of the embeddings of a frequent subgraph so as to evaluate its
frequency.

Huan, wang and Prince [7] in 2003 proposed a novel subgraph mining algorithm: FFSM, which
employs a vertical search scheme within an algebraic graph framework.It uses a restricted join
operation to generate candidates and stores embeddings to avoid explicit subgraph isomorphism
testing. It uses a sub-optimal canonical adjacency matrix tree for counting the frequency. Their
studies on synthetic and real datasets demonstrated that FFSM achieves a substantial performance
gain over the start-of-the art subgraph mining algorithm gSpan.

One fundamental challenge for mining recurring subgraphs from semi-structured data sets is the
overwhelming abundance of suchpatternsc. In large graph databases, the total number of frequent
subgraphs can become too large to allow a full enumeration using reasonable computational
resources. Jun Huan, Wei WangPrins, Jiong Yang, Jan [8] proposed a new algorithm, Spin that
mines only maximal frequent subgraphs, i.e. subgraphs that are not a part of any other frequent
subgraphs. This may exponentially decrease the size of the output set in the best-case; in our
experiments on practical data sets, mining maximal frequent subgraphs reduces the total number
of mined patterns by two to three orders of magnitude. It first mines all frequent trees from a
general graph database and then reconstructs all maximal subgraphs from the mined trees. SPIN
offered very good scalability to large graph databases and at least an order of magnitude
performance improvement in synthetic graph data sets. The efficiency of the algorithm is also
confirmed by a benchmark chemical data set. This algorithm of compressing large number of
frequent subgraphs to a much smaller set of maximal subgraphs.lt is used to investigate
demanding applications such as finding structure patterns from proteins in the future.

MichihiroKuramochi and George Karypis [9] in 2004 proposed a heuristic algorithm called
GREW to overcome the limitations of existing complete or heuristic frequent subgraph discovery
algorithms. GREW is designed to operate on a large graph and to find patterns corresponding to
connected subgraphs that have a large number of vertex-disjoint embeddings. Their experimental
evaluation showed that GREW is efficient, can scale to very large graphs, and find non-trivial
patterns that cover large portions of the input graph and the lattice of frequent patterns.

Karsten M. Borgwardt, Hans-Peter Kriegel, Peter Wackersreuther [28] investigated how pattern
mining on static graphs can be extended to time series of graphs, ie. dynamic graphs. They
proposed a framework into which Existingsubgraph mining algorithms can be easily integrated
and handle dynamic graphs. Experimental results on real-world data confirm the practical
feasibility of their approach. In particular, we are looking for subgraphs that are topologically
frequent within a large graph and that show insertions and deletions of edges in the same
temporal order. It might be used to study frequent motifs in protein-protein interaction dynamics,
as well as in social or telecommunication networks.

Computer Science & Information Technology (CS & IT) 197

Lini T Thomas Satyanarayana R ValluriKamalakarKarlapalem [13] in 2006 proposed an
algorithm MARGIN that mines maximal frequent subgraphs. MARGIN- Maximal frequent
mining has triggered much interest since the size of the set of maximal frequent subgraphs is
much smaller to that of the set of frequent subgraphs. The set of candidate subgraphs which are
likely to bemaximally frequent are the set of -edge frequent subgraphs that have a z-edge
infrequent supergraph. The Margin algorithm computessuch a candidate set efficiently and finds
the maximal subgraphs by a post-processing step. They have proved that the performance of the
Margin algorithm is 20 times faster than gSpan for certain datasets.

ZhaonianZou, Jianzhong Li, andShuo Zhang [17] in 2010 proposed an algorithm for Mining
Frequent SubgraphPatternsfrom Uncertain Graph Data. In many real applications, graph data is
subject to uncertainties due to incompleteness and imprecision of data. Mining such uncertain
graph data is semantically different from and computationally more challenging than mining
conventional exact graphdata. A novel model of uncertain graphs is presented, and the frequent
subgraph pattern mining problem is formalized by introducing a new measure, called expected
support. An approximate mining algorithm called MUSE (Mining Uncertain Sub graph
pattErns), is proposed to find a set of approximately frequent subgraph patterns by allowing an
error tolerance on expected supports of discovered subgraph patterns. The algorithm uses
efficient methods to determine whether a subgraph pattern can be output or not and new pruning
method to reduce the complexity of examining subgraph patterns. Analytical and experimental
results showed that the algorithm is very efficient, accurate, and scalable for large uncertain graph
databases. This is the first algorithm to investigate the problem of mining frequent sub graph
patterns from uncertain graph data.

4.1.2 Pattern-growth approach
In order to avoid the overhead of apriori algorithms, non-Apriority-based algorithms have been
developed, most of which adopt the pattern-growth methodology, as discussed below. Pattern-
growth-based graph pattern mining algorithms include gSpan by Yan and Han (2002),MoFa by
Borgelt andBerthold (2002), FFSM by Huan et al. (2003), SPIN by Huan et al. (2004), and
Gaston by Nijssen andKok (2004). These algorithms are inspired by PrefixSpan(Pei et al.
2001),TreeMinerV(Zaki 2002), and FREQT (Asai et al. 2002) at mining sequences and trees,
respectively. The pattern-growth mining algorithm extends a frequent graph by adding a new
edge, in every possible position. A potential problem with the edge extension is that the same
graph can be discovered many times. The gSpan [11] algorithm solves this problem by
introducing a right-most extension technique, where the only extensions take place on the right-
most path. A right-most path is the straight path from the starting vertex v0 to the last vertex vn,
according to a depth-first search on the graph. Typical pattern growth algorithms are discussed in
the following paragraphs.

Frequency counting process for Gaston is carried out with the help of embedding lists, where all
the occurrences of a particular label are stored in the embedding lists.

Borgelt and Berthold [10] in 2002 presented an algorithm Mofa to find fragments in a set of
molecules that help to discriminate between different classes for instance, activity in a drug
discovery context. Yan and Han [11] in 2002 investigated new approaches for frequent graph-
based pattern mining in graph datasets and proposed a novel algorithm called gSpan. gSpan is a
graph-based substructure pattern mining. This discovered frequent substructures without
candidate generation.

198 Computer Science & Information Technology (CS & IT)

Yan and Han [12] in 2003 proposed to mine closed frequent graph patterns. A graph g is closed in
a database if there exists no proper subgraph of g that has the same support as g. A closed graph
pattern mining algorithm, CloseGraph, is developed by exploring several interesting looping
methods. Their performance studies shown that CloseGraph not only dramatically reduces
unnecessary subgraphs to be generated, but also substantially increases the efficiency of mining,
especially in the presence of large graph patterns.

Yong Liu, Jianzhong Li, Hong Gao [23] in 2009 studied the problem of mining frequent jump
patterns from graph databases. They have showed that Mining frequent jump patterns can
dramatically reduce the number of output graph patterns, and still capture interesting graph
patterns. By integrating the operation of checking jump patterns into the well-known DFS code
tree enumeration framework, they presented an efficient algorithm JPMiner for this new
problem. Their experimental evaluation of JPMiner using both real and synthetic datasets,
showed that the number of frequent jump patterns is much smaller than that of closed frequent
graph patterns, and also JPMiner is efficient and scalable in mining frequent jump patterns.

Most of existing frequent subgraph mining algorithms are used to deal with undirected unlabeled
marked graph. A few of them aim at directed graph or labeled graph because it is very complex to
consider that. But in the real world, a lot of connections have directions and labels, so directed
labeled graph mining is more meaningful. Yuhua Li Quan Lin and DuanYanan [25] Bi in 2009
analyzed a financial network by modelling it as a directed weighted graph. They proposed a new
algorithm mSpan for directed labeled graph frequent pattern mining. Based on FP-growth, the
algorithm gets a minimum edge code and an abstract node code sequence to identify a directed
graph pattern uniquely through minimum extension. It also solved the graph pattern isomorphic
problem and the redundant extension problem. Their experiment showed that mSpan can mine all
frequent directed, labeled graph patterns.

Cheng-Te Li, Hsun-Ping Hsieh [26] proposed a novel algorithm, TSP-algorithm (Temporal
Subgraph Patterns algorithm) to mine the patterns which contain temporal information and forms
a connective subgraph. The proposed method recursively grows the patterns in a depth-first
search manner. Since the TSP-algorithm only needs to scan the database once and does not
generate unnecessary candidates, the experiment results showed that the TSP-algorithm
outperforms the modified Apriori on time-efficiency and memory usage in both synthetic and real
datasets.

Jianzhong Li, Yong Liu, and Hong GaoWe [27] in 2011 investigated the problem of
summarizing frequent subgraphs by a smaller set of representative patterns. They showed that
some special graph patterns, called _-jump patterns , must be representative patterns. Based on
the fact,they devised two algorithms, RP-FP and RP-GD, to mine a representative set that
summarizes frequent subgraphs. RP-FP derives a representative set from frequent closed
subgraphs, whereas RP-GD mines a representative set from graph databases directly. Three novel
heuristic strategies, Last-Succeed-First-Check, Reverse-Path-Trace, and Nephew-Representative-
Based-Cover, are proposed to further improve the efficiency of RP-GD. RP-FP can provide a
tight ratio bound but has heavy computation cost. RP-GD cannot provide a ratio bound guarantee
but is more efficient than RP-FP. They also made use of the similarity between sibling branches
in the graph pattern space to devise another much more efficient algorithm, RP-Leap, for mining
a representative set that can approximately summarize frequent subgraphs. Their extensive
experiments on both real and synthetic data sets verify the summarization quality and efficiency
of the algorithms. patterns to classification. They also demonstrated that the classification

Computer Science & Information Technology (CS & IT)

accuracy achieved by representative pattern
graph pattern-based model.

4.2 Classification based on Search strategy

There are two basic search strategies employed for finding out frequent subgraphs: the breadth
first search (BFS) strategy and the depth first search (DFS) strategy.

4.3 Classification based on Nature of the input

The algorithms are of two types based on the exactness of the input they take. The first type takes
in a exact graph sets as input, whereas the second type takes a uncertain set of graphs as input.
Another possibility is based on the type of the graph. The first type takes in a single large graph
as input, whereas the second type takes a set of small graphs as input. The third
correctness of the graph data where it can be accurate or uncertain.

4.4 Completeness of the output

Based on the set of the frequent subgraphs discovered, the algorithms are of two types. The first
type returns the complete set of frequentsubgraphs, whereas the second type returns a partial set
of frequent subgraphs.

Figure 1. Classification of FSM algorithms

5. RESEARCH DIRECTIONS

We have abundant literature published in research into frequent pattern mining. But still there
are several critical research problems that need to be solved before frequent pattern mining can
become a cornerstone approach in data mining applications. Fi
extensively studied topic in frequent pattern mining is perhaps scalable mining methods. Second
is the efficiency of the frequent subgraph mining algorithms. Third is not on whether we can
derive the complete set of frequent patte
we can derive a compact but high quality set of patterns that are most useful in applications and

Computer Science & Information Technology (CS & IT)

accuracy achieved by representative pattern-based model is no less than that achieved by c

4.2 Classification based on Search strategy

There are two basic search strategies employed for finding out frequent subgraphs: the breadth
first search (BFS) strategy and the depth first search (DFS) strategy.

sification based on Nature of the input

The algorithms are of two types based on the exactness of the input they take. The first type takes
in a exact graph sets as input, whereas the second type takes a uncertain set of graphs as input.

ility is based on the type of the graph. The first type takes in a single large graph
as input, whereas the second type takes a set of small graphs as input. The third is based on the
correctness of the graph data where it can be accurate or uncertain.

Based on the set of the frequent subgraphs discovered, the algorithms are of two types. The first
type returns the complete set of frequentsubgraphs, whereas the second type returns a partial set

igure 1. Classification of FSM algorithms

ESEARCH DIRECTIONS

We have abundant literature published in research into frequent pattern mining. But still there
are several critical research problems that need to be solved before frequent pattern mining can
become a cornerstone approach in data mining applications. First, the most focused and
extensively studied topic in frequent pattern mining is perhaps scalable mining methods. Second
is the efficiency of the frequent subgraph mining algorithms. Third is not on whether we can
derive the complete set of frequent patterns under certain constraints efficiently but on whether
we can derive a compact but high quality set of patterns that are most useful in applications and

 199

based model is no less than that achieved by closed

There are two basic search strategies employed for finding out frequent subgraphs: the breadth

The algorithms are of two types based on the exactness of the input they take. The first type takes
in a exact graph sets as input, whereas the second type takes a uncertain set of graphs as input.

ility is based on the type of the graph. The first type takes in a single large graph
is based on the

Based on the set of the frequent subgraphs discovered, the algorithms are of two types. The first
type returns the complete set of frequentsubgraphs, whereas the second type returns a partial set

We have abundant literature published in research into frequent pattern mining. But still there
are several critical research problems that need to be solved before frequent pattern mining can

rst, the most focused and
extensively studied topic in frequent pattern mining is perhaps scalable mining methods. Second
is the efficiency of the frequent subgraph mining algorithms. Third is not on whether we can

rns under certain constraints efficiently but on whether
we can derive a compact but high quality set of patterns that are most useful in applications and

200 Computer Science & Information Technology (CS & IT)

whether we can mine such patterns directly and efficiently. Fourth, to make frequent pattern
mining an essential task in data mining. Classification is an essential task in data mining. We can
generate frequent patterns in such a way that, they can become input for classification or
clustering models.

6. CONCLUSION

In this paper, we present a brief overview of the current status and future directions of frequent
pattern mining. There are various inter-disciplinary domains like chemo informatics,
bioinformatics etc. where mining of recurrent patterns across large collection of networks is
required. Due to increasing size and complexity of patterns in there is a need for efficient graph
mining algorithm.With over a decade of extensive research, there have been hundreds of research
publications and tremendous research, development and application activities in this domain.
Many algorithms for frequent subgraph mining have been proposed so far. Most of the
algorithms, they focus only on a static set of graphs. Very few algorithms are for mining patterns
from dynamic set of graphs. Also all the algorithms proposed so far, outperform each other, either
in terms of memory requirements or in terms of few orders of magnitude of computation time.
None of them completely address the issue of NP-completeness of the subgraph mining problem.
Also the algorithms mine either a specific set of patterns or a complete set of patterns which may
not be significant. So there is a need for an efficient algorithm which can mine significant
patterns specific to the application, both from a static or dynamic set of graphs in less than
polynomial time. Also the mined interesting patterns can used as input to other data mining tasks
such as for classification or clustering for further knowledge discovery. Hence lot of research is
required towards the improvements suggested.

7. REFERENCES

[1] D. J. Cook and L. B. Holder, “Substructure discovery using minimum description length and

background knowledge” Journal of Artificial intelligence Research, 1, 1994, 231-255.

[2] S. Fortin. The graph isomorphism problem.Technical Report TR96-20, Department of Computing

Science, University of Alberta, 1996.

[3] L. Dehaspe, H. Toivonen, and R. D. King.Finding frequent substructures in chemical compounds. In

R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro, editors, Proc. of the 4th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD-98), pages 30–36. AAAI
Press, 1998.

[4] A. Inokuchi, T.Washio, and H. Motoda.An apriori-based algorithm for mining frequent substructures

from graph data.In PKDD’00.

[5] M.Kuramochi and G. Karypis .Frequent Subgraph Discovery.In ICDM’01.

[6] M. Deshpande, M. Kuramochi, and G. Karypis. Frequent sub-structure based approaches for

classifying chemical compounds. In Proc. of 2003 IEEE International Conference on Data Mining
(ICDM), 2003.

[7] J. Huan, W.Wang, and J. Prins.Efficient mining of frequent subgraph in the presence of

isomorphism.UNC computer science technique report TR03-021, 2003.

Computer Science & Information Technology (CS & IT) 201

[8] J. Huan, W. Wang, J. Prins, and J. Yang. Spin: Mining maximal frequent subgraphs from graph
databases. UNC Technical Report TR04-018, 2004.

[9] M. Kuramochi and G. Karypis. GREW A Scalable frequent subgraphdiscovery algorithm. Technical

Report 04-024, University of Minnesota, Department of Computer Science, 2004.

[10] C. Borgelt and M. R. Berhold. Mining molecular fragments: Finding relevant substructures of

molecules. Proc. 2nd IEEE Int’l Conf. Data Mining (ICDM ’02), pp. 51-58, 2002.

[11] X. Yan and J. Han.gSpan: Graph-based substructure pattern mining. Proc. 2nd IEEE Int’l Conf. Data

Mining (ICDM ’02), pp. 721-724, 2002.

[12] X. Yan and J. Han.CloseGraph: Mining closed frequentgraph patterns. Proc. 9th ACM SIGKDD Int’l

Conf. Knowledge Discov-ery and Data Mining (KDD ’03), pp. 286-295, 2003.(closegraph)

[13] L. T. Thomas, S. R. Valluri, and K. Karlapalem. Margin:Maximal frequent subgraph mining. Proc.

6th IEEE Int’l Conf. Data mining (ICDM ’06), pp. 1097-1101, 2006.

[14] M. Kuramochi and G. Karypis.Grew-a scalable frequent subgraph discovery algorithm. In ICDM,

pages 439–442,2004.

[15] Thomas, L., Valluri, S. and Karlapalem, K., Isg: Itemset based subgraph mining. Technical Report,

IIIT, Hyderabad, December2009.

[16] Kuramochi, M. and Karypis, G., Finding frequent patterns in alarge sparse graph. Data Min.

Knowledge Discovery, 2005, (3),243–271.

[17] ZhaonianZou, Jianzhong Li, Hong Gao, and ShuoZhang : Frequent Subgraph Patterns from Uncertain

Graph Data. IEEE Transactions On Knowledge And Data Engineering, Vol. 22, No. 9, September
2010.

[18] Nijssen, S. and Kok, J., Faster association rules for multiple relations. In IJCAI’01: Seventeenth

International Joint Conference on Artificial Intelligence, 2001, vol. 2, pp. 891–896.

[19] Nijssen, S. and Kok, J., A quickstart in frequent structure mining can make a difference. In

Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery andData
Mining, ACM, 2004, pp. 647–652.

[20] Chang Hun You, Lawrence B. Holder and Diane J. Cook :Graph-based Data Mining in Dynamic

Networks: Empirical Comparison of Compression-based and Frequency-based Subgraph Mining in
IEEE International Conference on Data Mining Workshops, 2004.

[21] Cordella, L.P., Foggia, P., Sansone, C. and Vento, M. 2001. An Improved Algorithm for Matching

Large Graphs, In Proceedings of the 3rd IAPR-TC15 Workshop on Graph-based Representation in
Pattern Recognition, 149–159.

[22] Chuntao Jiang, FransCoenen and Michele Zito, A Survey of Frequent Subgraph Mining

Algorithms:The Knowledge Engineering Review, Vol. 00:0, 1–31.c 2004.

[23] Yong Liu, Jianzhong Li, Hong Gao, JPMiner: Mining Frequent Jump Patterns From Graph

Databases. In the proceedings of Sixth International Conference on Fuzzy Systems and Knowledge
Discovery 2009.

202 Computer Science & Information Technology (CS & IT)

[24] Varun Krishna, N. N. R. RangaSuri and G. Athithan,A comparative survey of algorithms for frequent
subgraph discovery, Current Science, Vol. 100, No. 2, 25 January 2011

[25] Yuhua Li Quan Lin Gang ZhongDongshengDuanYanan Jin Wei Bi, A Directed Labeled Graph

Frequent Pattern Mining Algorithm based on Minimum Code. In the proceedings of Third
International Conference on Multimedia and Ubiquitous Engineering 2009.

[26] Hsun-Ping Hsieh, Cheng-Te Li, Mining Temporal Subgraph Patterns in Heterogeneous Information

Networks: In the proceedings of IEEE International Conference on Social Computing / IEEE
International Conference on Privacy, Security, Risk and Trust.

[27] Jianzhong Li, Yong Liu, and Hong Gao, Efficient Algorithms for Summarizing Graph Patterns: IEEE

Transactions On Knowledge And Data Engineering, Vol. 23, No. 9, September 2011.

[28] Bianca Wackersreuther, Peter Wackersreuther, AnnahitaOswald : Frequent Subgraph Discovery in

Dynamic Networks, ACM 978-1-4503-0214-2 2010.

Authors

1. K.Lakshmi, Asst. Prof /Dept of MCA, Sir M.Visvesvaraya Institute of Technology, Bangalore, has

more 12 years of experience in teaching.

2. Dr. T. Meyyappan, M.Sc., M.Phil., M.B.A., Ph.D.,Associate Professor,Department of Computer
Science and Engineering, AlagappaUniversity,Karaikudi, Tamilnadu.

