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ABSTRACT 
 
High-dimensional complex multi-parameter problems are commonly in engineering, while the 

traditional approximate modeling is limited to low or medium dimensional problems, which 
cannot overcome the dimensional disaster and greatly reduce the modelling accuracy with the 

increase of design parameter space. Therefore, this paper combined Kriging with Cut-HDMR, 

proposed a developed Kriging-HDMR method based on adaptive proportional sampling 

strategy, and made full use of Kriging's own interpolation prediction advantages and 

corresponding errors to improve modelling efficiency. Three numerical tests including coupling 

test, high-dimensional nonlinear test and calculation cost test were used to verify the 

effectiveness of the algorithm, and compared with the traditional Kriging-HDMR and RBF-

HDMR in R2, REEA and RMEA measuring the approximate accuracy, results show that the 

improved Kriging-HDMR greatly reduces the sampling cost and avoids falling into local 

optima. In addition, at the same calculation cost, when the scale coefficient is 1/2, Kriging-

HDMR has higher global approximate accuracy and stronger algorithm robustness, while 
preserving the hierarchical characteristics of coupling between input variables. 
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1.  INTRODUCTION 
 
Approximate modelling technique is an integrated application of experimental design, 

mathematical statistics and optimization techniques. Its basic principle is to construct a 

mathematical model which meets the accuracy requirements to simulate the input-output 
relationship of problems to replace the complex and time-consuming original model, so as to 

realize the purpose of accelerating design and improving analysis efficiency [1].  It is precisely 

because of the excellent characteristics of approximate modeling, such as repeatability and 

foresight, that it has aroused strong research interest of researchers at home and abroad [2-3]. 
However, most of the existing approximation models, such as Radial Basis Function (RBF) and 

Kriging surrogate model, are limited to solve low or medium dimensional problems, and cannot 

overcome the "curse of dimensionality", that is, the amount of computation will increase 
exponentially with the increase of dimensionality [4]. As one of the methods to solve high-

dimensional problems, High Dimensional Model Representation (HDMR) has a complete 

mathematical expression form, which can clarify the coupling characteristics between input 
variables, and can be used to construct a global surrogate model [5]. The model complexity is 
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reduced from exponential growth to polynomial growth, which has a very broad application 
prospect. 

 

HDMR is a multi-parameter decoupling technique, which was first proposed by the Russian 

scholar Sobol [6] in 1993. Rabitz [7] and Li [8] subsequently perfected the theory: for any 
integrable function in the field, there is a unique HDMR expression. This lays the foundation for 

establishing approximate model methods in high-dimensional problems. Later Rabitz [7] 

elaborated on the basic composition principle and characteristics of HDMR and pointed out two 
variants of HDMR: ANOVA-HDMR and Cut-HDMR, and also pointed out that HDMR can be 

well applied to global uncertainty analysis and risk assessment. In other practical applications of 

HDMR, Omer and Rabitz [9] applied HDMR to sensitivity analysis and timing analysis. Banerjee 
[10] applied HDMR to the design optimization of black-box models with uncertain parameters. 

Shan and Wang [11] described the construction method of RBF-HDMR in detail and applied it to 

high-dimensional complex black-box problems. Based on RBF-HDMR, researchers have carried 

out a series of studies, most of which focus on replacing RBF with other surrogate models to 
construct the meta-model of Cut-HDMR. In 2011, H. Wang et al. [12-13] proposed a high-

dimensional model representation method based on Moving Least Square (MLS-HDMR), and 

applied the DIRECT method to the sampling when constructing the meta-surrogate model.  In the 
same year, L. Tang [14-15] proposed Kriging-HDMR to preliminary apply to nonlinear 

engineering problems. In 2013, L. Li [16] introduced Least Squares Support Vector Machine 

(LS-SVM) into Cut-HDMR, proposing SVM-HDMR, and gave the corresponding adaptive 
sampling and model construction algorithm. In 2015, H. Qiu et al. [17] enhanced AERBF-HDMR 

method, which can automatically explore the degree of linear/nonlinear relationship and 

correlation of design variables without prior information. Due to the completeness of the 

representation theory of high-dimensional models and the convenience of constructing models, 
the surrogate model method based on HDMR has attracted extensive attention from academic and 

engineering communities in recent years.  

 
Up to now, HMDR multi-parameter decoupling technology is not mature to solve high-

dimensional complex problems: a) Traditional surrogate models are often limited to medium or 

low dimensional problems, and it is difficult to achieve high-precision modeling and poor 

generalization in high-dimensional problems. b) The design variables of engineering optimization 
problems often have complex cross-coupling relationships. However, the existing approximate 

model techniques lack parameter decoupling mechanisms, and cannot well identify the coupling 

between design variables, which is difficult to reflect the essence of the problem. c)For problems 
with high nonlinearity, traditional surrogate models are easy to fall into local optimum, the 

efficiency and global search performance of this kind of methods depend heavily on the accuracy 

of the near-similar model, so it is difficult to find the true global optimal solution. In general, the 
key to the construction of the surrogate model-based Cut-HDMR method is the selection of the 

metamodel and the corresponding adaptive sequence sampling method. In order to achieve high 

precision global approximation for high-dimensional complex problems and use the minimum 

cost to construct sample points as much as possible, this paper developed Kriging-HDMR 
method which combining Kriging and Cut-HDMR based on adaptive proportional sampling 

strategy. Compared with original Kriging-HDMR and RBF-HDMR, it passed the coupling test 

and had the significant improvement in computational cost and approximation accuracy.  
 

The reminder of this paper is organized as follows: In section 2, the basic principle of HDMR and 

the construction method of its derivative form Cut-HDMR are introduced. In section 3, A 
Kriging-HDMR combining with adaptive proportional sampling for multi-parameter approximate 

modeling was proposed. In section 4, numerical experiments are carried out, including three 

experiments of coupling test, high-dimensional nonlinear function test and computational cost 

test. The approximation accuracy was measured in R2, REEA and RMEA with the traditional 
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Kriging and RBF-HDMR surrogate models. Finally, the conclusion and outlook of this paper are 
given in Section 5.  

 

2. HDMR FOR MULTI-PARAMETER DECOUPLING TECHNOLOGY 
 

2.1. High Dimensional Model Representation 
 

High Dimensional Model Representation (HDMR) decomposes a multi-parameter function into 
the sum of several functions with fewer parameters according to the coupling between variables.  

Set   1 2Ω , , , 0 1, 1,2, ,p

p ix x x x i p     ∣ be a subset of the p dimensional Euclidean space 

pR , and   1 2( ) , , , , Ωp

pX f f f x x x   x x∣  is the linear space of all functions defined on 

Ω p
. Define a measure μ on Ω p such that: 
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The inner product on the linear space X can be defined by the measure μ as follows: 
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It can be shown from [7-8] that X can be the direct sum of the specific subspaces, i.e. 
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Based on the above theoretical, HDMR is described as follows: the output response 

corresponding to the input variable 1 2, ,...,
T

px x x   x  in the p dimensional design space 

is  f x , and the mapping relationship between them is expressed as: 
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where, 
0f  represents a zero-order tuple term and is a constant term;  i if x  is the influence of 

variable 
ix  on the output response ( )f x  when acting alone, which is called a first-order tuple 

term, also called an uncoupled term.  ,ij i jf x x  is the influence of 
ix  and 

jx  coupling on the 

output response, which is called the second-order coupling term.  12 1 2, , ,p pf x x x  is the 

influence on the output response ( )f x  when all input variables act together in coupling. HDMR 
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reveals a hierarchy of couplings between input variables, each of which has a specific 
mathematical meaning. 

 

2.2. Cut-HDMR 
 

There are two main forms of HDMR: ANOVA-HDMR and Cut-HDMR. The former is mainly 

used for sensitivity analysis and determination of key design variables, while the latter is widely 
used to predict high-dimensional valuable black-box problems due to its high computational 

efficiency and no need to calculate gradient information [17]. Cut-HDMR also comes in many 

forms, such as Kriging-HDMR, RBF-HDMR, SVR-HDMR and MLS-HDMR. 

 
Cut-HDMR mainly includes three core technical which are test design method, construction basis 

function and Cut-HDMR decoupling models. The high-dimensional modal expression of ( )f X  

is written as the sum of a series of lines, planes and hyperplanes passing through the point cut-

center point  0 1 2 3, , ,..., pc c c cx . In Cut-HDMR, turn the measure μ in (1) into: 
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where  0 1 2 3, , ,..., pc c c cx is a specified point in Ω p , also known as the cut-center point.     

is the Dirac function formed from: 

  
 

 

0  

 0
 

0x
x

x


 
 

 

and   1x dx




                                      (6) 

So, Cut-HDMR is expanded as follows: 
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Where,
0f  is the output value of the cut-center point in the original model.  0, i

ix x  is 

 1 2 1 1, ,..., , , ,...,i i i pc c c x c c  , whose entries are known and equal to the values corresponding to 

the 0x , except for the independent variable 
ix . In this vein, the central basis of higher order terms 

has a similar meaning. Therefore, each first-order member function  i if x  is computed 

according to the cut-center point in the direction of the corresponding 
ix line. Each second-order 

component  ,ij i jf x x  is evaluated on the plane formed by the corresponding
ix and 

jx according 

to the cut-center, as shown in Figure 1: 
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 Figure 1. Cut-HDMR sampling distribution diagram 

 

3. KRIGING-HDMR COMBINING WITH ADAPTIVE PROPORTIONAL 

SAMPLING 
 

In this section, Kriging-HDMR is used as a technical framework to construct an approximate 

modeling method for high-dimensional nonlinear problems. The biggest advantage of Kriging-
HDMR is that it can clarify the coupling characteristics of input parameters, and reduce the 

complexity of constructing the model from exponential growth to polynomial growth. For most 

practical engineering problems, the uncoupled term and the lower order coupling term are 

sensitive to the response function. Therefore, the developing Kriging-HDMR constructed in this 
paper takes into account the second-order coupling terms, and the form is as follows: 
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that is: 
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Among it, the term representation with ^ is calculated by the Kriging-surrogate model. 

 

The flow chart of Kriging-HDMR approximate modeling combined with adaptive proportional 
sampling is shown in Figure 2, and the construction process is as follows:  
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Figure 2. Flow chart of Kriging-HDMR based on adaptive proportional sampling 

 

1) Take an arbitrary point  0 1 2 3, , ,..., pc c c cx  as the cut-center point. We then compute 

the response of the true output function at 0x to get 0f . 

2) Construct Kriging models consisting of first-order uncoupled terms dimensionally. The 

points of the first-order uncoupled term    1 2 1 1 0, ,..., , , ..,
T

i i ii pc c c ff c cf x 
   ix  are 

arranged on the value interval of the single variable  1 2 1 1, ,..., , , ..,
T

i i i pc c c x c c 
  ix .That 

is, two sample points are randomly generated in the upper and lower boundary 

neighborhood of the i -th dimension design variable, and their target response values are 

calculated: 
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   1 2 1_ 1_ 0, ,..., , , .., ;i lower i lower

T

i i pc c c xf cf c f 
   x  

   1 2 1_ _ 1 0, ,..., , , .., .i up

T

i i upper pe ip r c c c xf cf c f 
   x  

Then  ˆ
i if x  is constructed by constructing the corresponding Kriging surrogate model using 

the above two sampling points. 

 

3) Determine whether  i if x  is linear or non-linear. If the initial Kriging-surrogate model 

 ˆ
i if x  passes through the cut-center point 0x , it is regarded as a linear term and the 

construction terminates. Otherwise,  i if x is a nonlinear term and proceed to the next 

step. 
 

4) Construct nonlinear first-order terms based on adaptive proportional sampling strategy. 

The cut-center point 0x  is first added to the set of constructed sample set. Then the 

existing first-order constructed sample set  _ 0 _, , ...i i lower i upperX  x x x  is arranged in 

ascending order to obtain  1 2, ,...,i i i inX  r r r , where 1 _i i lowerr x  and so on. Find two 

adjacent points ikr  and ( 1)i kr  so that their corresponding first-order Kriging 

corresponding deviation is the maximum interval:      1
1,2,...,

max i i iki k
k n

f f f
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
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a new sample point inewx  as: 
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is inserted in the above range.  0 1C C   is the scale coefficient in the scale sampling. By 

changing the value of the scale coefficient, a series of first-order structured sample points 

with different distributions can be obtained.  If 
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x
 is satisfied or the 

number of sample points constructed by the first-order term is greater than a given 

threshold, the construction of the first-order uncoupled term  ˆ
i if x  terminates. 

Otherwise, continue using the adaptive proportional sampling to construct  ˆ
i if x  until 

the convergence criterion is satisfied. 
 

5) Iterate through steps (2) to (4) until all first-order uncoupled terms (for each 1,2,...,i p ) 

are constructed. 
 

6) Determine whether there is a second-order coupling term in the model. Construct a new 

sample point 
1 2
, ,..., ,..., ,...,

i j p

T

e e e e e ex x x x x 
 

x and without loss of generality, one of the 

sample point components _i lowerx  and  1,...,i p  used in the construction of the first-

order uncoupled term is randomly chosen as the i -th dimensional component 
iex of the 

new sample point. Within the error range allowed by the accuracy criterion, if 
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ˆ
ii
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e e
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f f f
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 x x  is satisfied, it is considered that there is no second-order 
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coupling term in the model, and the construction process is finished. Otherwise, proceed 
to step (7). 

 

7) Construct the second-order coupling terms. Firstly, the existence of second-order terms 

on the cutting plane composed of each dimension variable is judged one by one. If so, the 
grid lattice formed by the sample points set of first-order construction on the 

corresponding cutting line on the two-dimensional plane is used for the construction of 

second-order terms. Specifically, the sample  0 1 2, ,..., ,..,, ..,,
i j i j

T

e e p

ij

e ex x x c c x x c 
 

  is 

randomly selected from the second-order alternative point set. Within the error range 

allowed by the precision criterion, if      0 0
ˆ ˆ, ,

i j i je e e

j

e

if x x x f f x f x    1 i j p   , 

the input variables ix  and jx are considered to be uncoupled or their coupling terms are 

invalid to the output response. Otherwise, it is considered that their coupling terms are 

valid for the output response, and Kriging second-order coupling terms are constructed 

with all the first-order constructed sample points  0, i

ix x  ,  0, j

jx x  and  
1

ˆ ,i j

i j p

p

j if x x
  

 . 

Re-randomly select points from the second-order alternative set until all second-order 

variable combinations have been identified. 
8) The high-order coupling function contributes little to the expression, thus Kriging-

HDMR is constructed to the second-order coupling terms. 

 

On one hand, Kriging-HDMR makes full use of the HDMR hierarchy to divide the problem 
domain into multiple subdomains and avoids the difficulty of high-dimensional modeling. On the 

other hand, it reveals the characteristics of design variables, including linearity and nonlinearity, 

coupling and global distribution, which can better reflect the global characteristics of the output 
function. 

 

4. NUMERICAL COMPARISON TEST 
 

4.1. Experimental Evaluation Index 
 

In practical engineering application, the performance indexes of approximate models for high 
dimensional problems usually mainly consider the approximate accuracy and modeling efficiency 

of the models. In this paper, R2, RAAE and RMAE are used to test the function approximation 

ability of the approximate model, and the computational efficiency was represented by sample 
points required for modeling.  

 

Let  1,2,...,i siX be s  test sample points in the design space. In order to obtain global and 

robust test results, s  is set to a larger value, and all test sample points are randomly generated 

with uniform distribution on the design space. 
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Where,    ˆ, ,f f fi iX X respectively represents the average value of the actual response 

value of the i -th test sample and the average value of s actual responses of the approximate 

model.  The closer the value of R2 is to 1, the more accurate the approximate model is. 

 

b) Relative Average Absolute Error, RAAE 
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RAAE is, the higher the global accuracy of the approximate model will be. 

 

c) Relative Maximum Absolute Error, RMAE 
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RMAE is a local index, which describes the error in a local domain where the accuracy of 

the approximate model is relatively poor. Therefore, the smaller the RMAE value, the better. 
 

4.2. Three Numerical Tests and Results 
 

4.2.1. Test for Coupling 

 

As one of the strengths of Kriging-HDMR is that the coupling characteristic between input 
variables can be clearly defined, then the coupling test function of this time selected the non-

convex Rosenbrock function proposed by Howard Harry Rosenbrock in 1960 to test the 

performance of the algorithm, and the form is selected by test function 1: 
 

     
8

2 22
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1

100 1 , 2 2i i i

i

f x x x x


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  x . 

 

We used Kriging-HDMR based on adaptive proportional sampling to construct the approximate 

model. The scale coefficient  0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9C  were tested for several 

times to compare the accuracy results, so as to judge the quantization accuracy of three indexes, 

namely coefficient R2, RAAE and RMAE. The coupling test results are shown in Table 1, and 

precision results are shown in Figure 3 and Table 2: 
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Figure 3. Box graph of precision results of 10 tests for Rosenbrock function 

 
Table 1. Coupling test results         Table 2. The median results corresponding to figure 3 

 

 
 

The results show that Kriging-HDMR based on the proportional sampling strategy passes the 

coupling test, and the coupling relationship between the variables of the Rosenbrock test function 
is correct. In addition, according to the box figure and corresponding result table of the accuracy 

results of 10 tests, it can be seen that when the proportion coefficient C=1/2, the performance is 

the best, and the closer the proportion coefficient is to the middle value 0.5, the better the 

approximate ability of the positive distribution trend. That is, the maximum R2 is 0.68785, the 
RAAE and RMAE are 0.41745 and 2.16925 respectively, which are the smallest. Therefore, for 

the adaptive proportional sampling strategy, we default the maximum effect of the 

hyperparameter C=1/2, and there is no special explanation for the default value in the following  
tests. 
 

4.2.2. Test for High-Dimensional Nonlinear Functions 

 
This test mainly focuses on high-dimensional nonlinear functions, using Kriging-HDMR 

combined with Adaptive proportional sampling, which compares with similar algorithms as 

C R2 RAAE RMAE 

0.1 0.67240 0.43240 2.42815 

0.2 0.67390 0.43010 2.42060 

0.3 0.67640 0.42895 2.41625 
0.4 0.68065 0.42355 2.37005 

0.5 0.68785 0.41745 2.16925 

0.6 0.67975 0.42020 2.37945 

0.7 0.67760 0.42405 2.44545 

0.8 0.67515 0.42660 2.55645 

0.9 0.67075 0.42685 2.78590 
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Kriging, RBF-HDMR and Kriging-HDMR(unimproved using random sampling) by citing 4 test 
examples in literature [17]. The results are shown in Table 3: 

 

i. test fuction2: 
     

2
2 2 2 2 2 2

1 2 1 3 3 4 2 4 2 4( ) 100 90 10.1 19.8

            1, 1,2,3,4

,

i i

f x x a a x x a a a a

where a x

X

i

        

  
 

ii. test fuction3:  
10

1,...,10

10
1

1

-6.089,-17.164,-34.054,-5.914,-24.721,
ln , where

          -14.986,-24.100,-10.708,-26.662,-22.179.
( )

ii

i i

i

k

k

cx
f X x c

x







  
     
        

  
  




; 

iii. test fuction4:
     

       

2 2 22 2

1 2 1 2 1 2 3 4 5

2 2 2 22

6 7 8 9 10         

( ) 14 16 10 4 5 3

2 1 5 7 11 2 10 7 45

f X x x x x x x x x x

x x x x x

          

         

 

iv. test fuction5:    
2

22 2

1 1

16

( ) 1 2
i

i if x i x xX


     

 

Table 3. High-dimensional nonlinear test results table 

 

Test Function Method R2 RAAE RMAE 

test fuction2(p=4) 

 10,10 , 1,2,3,4ix i    

Kriging 0.8994 0.5007 0.6765 
RBF-HDMR 0.9937 0.0501 0.2766 

Kriging-HDMR-1 0.9967 0.0397 0.1997 

Kriging-HDMR-2 0.9998 0.0255 0.1005 

test fuction3(p=10) 

 5,5 , 1,...,10ix i    

Kriging 0.8665 0.1003 0.9980 

RBF-HDMR 0.9901 0.0740 0.5033 

Kriging-HDMR-1 0.9975 0.0344 0.3310 

Kriging-HDMR-2 0.9999 0.0137 0.2563 

test fuction4(p=10) 

 10,11 , 1,...,10ix i    

Kriging 0.8779 0.1024 0.9445 

RBF-HDMR 0.9935 0.0723 0.1974 
aKriging-HDMR-1 0.9928 0.0708 0.2570 

bKriging-HDMR-2 0.9987 0.0473 0.1010 

test fuction5(p=16) 

 5,5 , 1,...,16ix i    

Kriging 0.8340 0.3466 1.7890 

RBF-HDMR 0.9496 0.1714 1.3368 

Kriging-HDMR-1 0.9635 0.1457 1.0097 

Kriging-HDMR-2 0.9778 0.1012 0.9887 

 

Note: aKriging-HDMR-1 represents the original Kriging-HDMR approximate modeling method using 

the original random sampling; bKriging-HDMR-2 represents the improved Kriging-HDMR modeling 

method using adaptive proportional sampling in this paper. 

 

The results show that the performance of Kriging in high-dimensional nonlinear problems is 

obviously the worst of the combination methods. For RBF-HDMR and Kriging-HDMR, the 

performance in R2 index is almost 1, and Kriging-HDMR is more prominent. The developed 
Kriging-HDMR global approximation error in RAAE and RMAE is also relatively small. This 

indicates that Kriging-HDMR based on adaptive proportional sampling strategy makes full use of 

the predictive response value difference information of the component Kriging surrogate models, 
which have wider applicability and stronger approximation ability to high-dimensional complex 

problems. 
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4.2.3. Test for Computational Cost  
 

The test function4:  
 

 
 2 2

1 1
1

1
2 2

1

1( ) ,0 1
i ix x

i i

p

i

if x x x
  







 
     
x  is used to prove the optimized 

performance of the improved Kriging-HDMR on the calculation cost. 15,25,35p   and 8 

sampling points were taken for each dimension in the test (meeting the expected error 

requirements). Table 4 lists the comparison of calculation costs of different levels. 
 

Table 4. Test results for calculating cost 

 

Dimension Kriging-HDMR 

Full second-order expansion of 

HDMR 

 
 

21
1 ( 1) 1

2

p p
p s s


     

(polynomial) 

Full factorial design 
ps  

(exponential) 

10 144 2276 1.07*109 

15 234 5251 3.52*1013 

20 376 9451 1.15*1018 

25 534 14876 3.78*1022 

30 722 21526 1.24*1027 

35 997 29401 4.01*1031 

 

From the experimental results, it is proved that the number of samples required by Kriging-
HDMR modeling increases polynomially with the increase of the dimension of the objective 

function, rather than the exponential increase of the traditional method, which greatly reduces the 

calculation cost. 
 

5. CONCLUSIONS AND OUTLOOKS 
 

Multi-parameter nonlinear optimization is a common problem in engineering. The bottleneck of 

traditional approximate model technology is that with the increase of design parameters, the 
number of sample points required for modeling will increase on a large scale, resulting in very 

low modeling efficiency. In this paper, the approximate modeling of high-dimensional complex 

multi-parameter problems is studied, and a Kriging-HDMR approximate modeling method based 
on adaptive proportional sampling is proposed, which greatly reduces the sampling cost and 

avoids falling into local optimal. In addition, at the same calculation cost, when the scale 

coefficient is 1/2, Kriging-HDMR has higher global approximate accuracy and stronger 

algorithm robustness, while preserving the hierarchical characteristics of coupling between input 
variables. The work done in this paper is only preliminary exploration and research, and there are 

still a lot of problems to be further studied. For example, the Kriging-HDMR approximate model 

technology proposed in this paper is mainly aimed at the case of low parameter coupling order. 
When the high- order coupling term is completely ignored, which may cause large errors. How to 

estimate the above errors correctly and add appropriate correction items to further improve the 

accuracy of the model is a problem that needs to be solved in the future. 
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