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Abstract. Embedded devices are omnipresent in modern networks, including those facilitating mission-
critical applications. However, due to their constrained nature, novel mechanisms are required to provide
external, and non-intrusive defenses. Among such approaches, one that has gained traction is based on
analyzing the emanated electromagnetic (EM) signals. Unfortunately, one of the most neglected challenges
of this approach is the manual gathering and fingerprinting of the corresponding EM signals. Indeed, even
simple programs are comprised of numerous branches, making the fingerprinting stage extremely time-
consuming, and requiring the manual labor of an expert. To address this issue, we propose a framework for
generating synthetic EM signals directly from machine code. These subsequent signals can be used to train
an anomaly detection system. The advantage of this approach is that it completely removes the need for an
elaborate and error-prone fingerprinting stage, thus, increasing the scalability of the protection mechanisms.
The experimental evaluations indicate that our method provides above 90% detection accuracy against
code injection attacks. Moreover, the proposed methodology inflicts only -1.3% penalty in accuracy for
detecting injections of as little as four malicious instructions when compared to the same methods of
training on real signals.
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1 Introduction

Nowadays, a large portion of corporate, government, military and critical infrastruc-
tures consists of embedded devices. Typically, these mission-critical assets are severely
constrained in terms of processing, memory, and energy resources. Since standard cryp-
tographic algorithms were designed according to the hardware specification of high-end
systems, traditional crypto libraries and the corresponding protection tools are not appli-
cable to such environments (at least not without modifications). At the same time, in many
cases, embedded devices are directly exposed to the Internet and its cyber threats. There-
fore, there is a dire need for the development of novel security mechanisms specifically
designed to respect the limitations and peculiarities of such critical systems.

As a potential solution to this problem, researchers have relied on the analysis of pat-
terns of analog signals emitted by the CPU of embedded devices. In this context, such
signals are considered a side-channel because they get emitted involuntarily by devices
during their regular operation. Even though these analog signals are often treated as noise
in most applications, they may bear valuable information. In principle, certain charac-
teristics of the emitted analog signals have a strong correlation to the instructions being
executed by the CPU. Thus, numerous side-channel-based anomaly detection approaches
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have been proposed particularly to provide external protection for embedded devices [1],
[2], [3], [4], [5].

Today, the dominant methods of side-channel-based anomaly detection rely on the
analysis of power-consumption patterns [2], [5]. This is primarily due to the ease of data
collection and the robustness of this modality against environmental noise. Nevertheless,
when compared to power-based approaches, electromagnetic (EM) based methods are the-
oretically more advantageous because the EM spectrum offers higher bandwidth, and the
EM signals can be sampled at higher rates [3], [6]. Moreover, depending on the type of
antenna, the approach can be less invasive as the monitoring can be performed from a
distance in real time. In fact, EM-based anomaly detection tools have proven to be suc-
cessful for the detection of extensive [7], [8], or even minimal modifications, say, down to
the injection of a few instructions (at the assembly level) [9], [10].

Nevertheless, the development of EM-based defenses and the deployment of corre-
sponding real-life solutions remain stagnant due to the limitations of traditional workflows.
More specifically, a well-known challenge of these approaches revolves around the require-
ment for exhaustive fingerprinting of all normal execution states of the targeted program.
This issue is severely neglected by the research community although it may be one of the
most important practical roadblocks that prevent the deployment of corresponding tools
in real life environments. To address this issue, we introduce a novel framework for gen-
erating synthetic EM signals directly from machine code. Most importantly, the generated
synthetic signals can be used instead of real ones for anomaly detection purposes as part of
the model training/fingerprinting stages. In further detail, our approach relies upon first
constructing a library of the EM signatures of minimum execution units (i.e., in this case,
assembly instructions) that can be used to synthesize the EM footprint of longer sequences
of code. The advantage of the proposed approach is that it completely removes the need
for an elaborate and error-prone fingerprinting stage. The EM signals used for training do
not need to be captured, but rather they are inferred directly from a model that accepts
ASM code as input in an offline step. This fact alone makes the entire process extremely
scalable.

In summary, the main contributions of this work are (a) the identification of the re-
quirements and structure of a database of signal blocks that can be used for the generation
of synthetic EM sequences, as well as (b) a methodology for properly synthesizing such
sequences of instructions corresponding to entire execution paths/code-sequences, further-
more (c) the creation of a fingerprinting process that is more scalable than traditional
methods, and thus can be applied to various device types and other side-channel classes,
and finally (d) an anomaly detection method that can identify multiple programs and/or
execution paths as benign.

The remainder of the paper is organized as follows: Section 2, includes related work. In
Section 3, we depict the current problem with EM fingerprinting. In Section 4, we outline
our framework for achieving anomaly detection for embedded devices through synthetic
EM fingerprinting. In Section 5, we experimentally evaluate our framework, including the
use of synthetic EM signals for training purposes and our proposed anomaly detection
method. Additionally, Section 6, presents a discussion about the requirements towards
creating a library of reusable basic blocks and the similarity between the synthetic and
real EM signals. Finally, in Section 7, we provide some future directions and we conclude
the paper.
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2 Related Work

While critical mass of works exists in the field of anomaly detection based on EMs, limited
work currently exists for synthesizing EMs specifically for embedded systems. Additionally,
other works in the area of conversion generation have similar goals to ours of transforming
ASM code-to-signals.
Anomaly Detection Based on EM: Works that relate to EM-based anomaly detection
include [11], which tests the limits of EM-based approaches by demonstrating the ability
to identify the control flow of a given program, and showcase how it can be used to identify
anomalous behaviors. Our end goal is to use synthetic signals for similar purposes, and as
such, provide a method that is faster at obtaining EM signals for fingerprinting purposes
that is scalable.

An approach using anomaly detection of EM signals is given in [6], which presents a
methodology for contactless security monitoring for programmable logic controllers (PLC),
to ensure control flow integrity. The method proposed in this paper is based on a traditional
framework that performs fingerprinting of benign cases by manually capturing EM signals,
a tactic that is error-prone and time-consuming.

Furthermore, Boggs et al. [12] demonstrate the efficiency of EM-based anomaly detec-
tion systems using commercial off-the-shelf (COTS) hardware. They showcase the feasi-
bility of such approaches being applied to a wide range of critical infrastructure devices.

The researchers behind the IDEA EM-based IDS [13] conducted their anomaly de-
tection analysis fully in the time domain. The EM emanation from an uncompromised
device is used to create a baseline dictionary. During the monitoring stage, the EM signal
is split into windows and matched against words in that dictionary. The signal is then
reconstructed using the matched words, and it is compared with the monitoring signal.

Additionally, Miller et al. [10] provide a novel approach to removing random phenom-
ena produced by environmental noise. With the use of SVD the performance of EM-based
anomaly detection has increased, when considering real world scenarios.
Conversion Generation: Our goal is to create a method for converting machine code
to synthetic EM signals. Similar concepts can be seen in other areas. In [14], Li et al.
introduce a transformer-based text-to-speech model that outperforms many other methods
such as WaveNet [15] and Tacotron2 [16]. Another method that perform cross-domain
transformation, is presented in [17], where descriptive text is converted into images using
a generative adversarial network (GANs). Furthermore, [18] and [19] propose GAN-based
models for image-to-image translation.
Generating Synthetic EMs: One mechanism for generating synthetic EM signals (EM
simulation) is presented in [20]. The authors propose a cycle-by-cycle method to syn-
thetically generate EM signals for embedded devices by analyzing the CPU architecture.
While they achieve great accuracy when comparing real and synthetically generated sig-
nals, their process requires manual analysis, is time-consuming, is CPU specific, and is
not easily transferable to other types of devices.

To the best of our knowledge, this work is the first to produce a framework for gen-
erating synthetic EMs that can be used in a variety of security applications e.g., anomaly
detection systems.

3 Problem Statement and Threat Model

Typically, software supporting embedded devices designed to control critical processes is
considered of low complexity when compared to the analogous software running on servers
and desktop systems. Indeed, corresponding workflows involve cycles of sensing, processing,
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and then acting, all executed in a loop fashion. However, realistically, even the simplest
examples of this family of software may be comprised of hundreds if not thousands of
execution paths spawned by conditional branching instructions. When the objective is to
model the characteristics of normalcy then all of these execution paths must be observed
and fingerprinted. Particularly, EM-based fingerprinting is mainly a human-expert centric
process revolving around tasks such as the correct positioning of probes, deciding the
optimal recording parameters like the sampling rate, and synchronizing EM signals, among
others. This, in turn, renders EM fingerprinting an extremely time-consuming, error-prone,
and costly process.

This challenge is further amplified by two real-life restrictions. Firstly, execution branch-
es may exist in a program that are meant to be rarely followed. Even techniques such as
the forceful execution [21] of specified branches might not be an option as such paths
may be associated with critical failures. For this reason, these branches are likely to be
left out of the fingerprinting phase. In this case, the resulting models will yield wrong
predictions for these normal-yet-rare-situations. Secondly, embedded devices occasionally
receive firmware/software updates. These modifications in the executable generate the re-
quirement for fingerprinting the behavior of the device from scratch. These challenges are
illustrated in Figure 1.

Fig. 1: Scenarios where fingerprinting which is based on synthetic data could be valuable.
Rare execution paths of programs are depicted in red and orange (left). New states/com-
mands introduced after software updates are depicted in red (right).

As a solution, this work proposes a methodology for conducting the fingerprinting stage
completely offline through the use of synthetically generated EM signals. More formally,
our approach assumes that a mapping of instructions to signals M exists such that:

M =


I1 SI1

1

I2 SI2
2

. . . . . .
In SIn

n

 (1)
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where In is an instruction supported by a specific processor architecture and SIn = {s1, s2,
. . . , sm} is the corresponding EM signal observed when the instruction In gets executed by
the CPU. The signal is described by a sequence of samples sm whose number depends on
the sampling rate and the duration of the corresponding instruction (most architectures
support instructions of variable duration).

The task at hand is to discover a function f such that when given a sequence of
instructions Ij , Ij+1, Ij+2, ..., it produces a version S

′
that is similar to the real signal S

observed when I is executed in the CPU. In other words, f(I) = S
′
with the constraint

that

D(S, S
′
) ≈ 0 (2)

where D is the distance metric.
Theoretically, there are two main challenges of this approach. Firstly, the number of

instructions contained in M must be exhaustive. Secondly, a large number of signals cor-
responding to the same instruction Ii must be captured because the phenotype of signals
corresponding to the same sequence of instructions is not static.

In this work, we examine a specific application that can be supported by the proposed
approach, namely anomaly detection. More specifically, we consider the situation where
the attacker has discovered a vulnerability in the code that allows them to perform a
code injection attack. In practice, this is typically achieved by exploiting buffer overflow
vulnerabilities. We assume that the attacker can inject an arbitrary number of instructions
at any position of a target branch. Moreover, even a minimal number of instructions can
have a meaningful malicious impact. We recognize, that in reality, while this situation is
possible the attacker will usually have less flexibility.

Compared to the generalized version of the task, this problem has a more relaxed
constraint i.e., assuming that the malicious version of the corresponding EM signal Sm and
an unmodified (normal) version Sn, then the following condition D(Sm, Sn) > D(Sn, S

′
n)

must be true.
Regardless, the same concept can be applied to applications beyond anomaly detection

such as side-channel analysis for inferring cryptographic keys.

4 Proposed Framework

The purpose of the proposed framework is to conduct anomaly detection with high ac-
curacy using synthetically generated versions of the EM signals that correspond to the
normal execution branches only. A high-level overview of the proposed framework is given
in Figure 2. In summary, the main steps involved in the process are as follows. During an
offline step, a database of instructions-to-signal correlations is created (this is denoted as
step 1 in Figure 2). Next, synthetic signals are created using the database of EM signals
and the target binary (step 2 in Figure 2). Then, these sequences are used to train the
baseline during the fingerprinting phase (step 3 ). After this phase, the target device is
expected to be deployed on the field. At this point, the anomaly detection phase takes
place (step 4 ). Afterwards, real EM signals emanated by the device are captured once
again, this time to be evaluated for anomalies. This process also capitalizes on the baseline
that was already created during the previous step. Under the hood, the process involves
the execution of machine learning algorithms that judge whether the new signal bears
significant morphological similarities with the synthetic ones that were used to construct
the baseline. Hereunder, we shall analyze the basic steps of the process in further detail.

This framework assumes that a reliable mechanism for capturing EM signals from
the elements of devices (e.g., CPU) is available. Today, this can be achieved by solely
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Fig. 2: Workflow of the proposed framework.

relying on COTS components. Such an assembly of components typically consists of (a)
a near-field antenna for gathering the raw signals, (b) an amplifier for increasing the
strength of the captured signal, (c) an oscilloscope for digitizing the collected analog
signals, and finally (d) hard disks for storing the captured signals in their discrete form. In
this framework, the process of capturing signals is performed in two separate stages i.e.,
during the construction of the library of basic building blocks (step 1 ), a process that
is completed offline, and during run-time for actively monitoring the health status of a
target device (step 4 ). Typically, the signals are collected by placing the antenna in close
proximity to the CPU. However, in more advanced settings signals can be collected from
multiple onboard components (e.g., the network module), and create more sophisticated
correlations regarding the behavior of the device. Particularly for the latter case, an extra
step of pre-processing that may involve noise elimination procedures may be included as
part of steps 3 and/or 4 In this work, we have omitted such processes for purposes of
simplicity.

4.1 Building a Library of Signal Blocks

A library of basic building blocks of signals is assumed to have been created a priori in an
offline step. This library should be available during the fingerprinting of any program, or
more accurately any subsequence of any execution path inside a program. Theoretically,
the term basic building block corresponds to the EM signature, in our case we relied on
any frequently used sequence e.g., a function of each assembly level instruction, e.g., and,
nop, etc.

Experimentally, we have identified that the main challenge with this approach is that
one instruction in a sequence influences the shape and amplitude characteristics of the EM
wave the subsequent instructions. Typically, the directly next instruction is influenced
only. However, depending on the type of instruction (e.g., instructions involved in I/O
operations) multiple subsequent instructions may also be affected but to a lesser extent. In
this work, we have assumed that only one instruction gets affected for reasons of simplicity,
but further investigation is required. Therefore, the structure of the database introduced
previously can be more accurately redefined as:
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M =


(I0 | I1) S

(I0|I1)
1

(I1 | I2) S
(I1|I2)
2

. . . . . .

(In−1 | In) S(In−1|In)
n

 (3)

where the (In−1 | In) operation indicates that instruction In has been observed after In−1.
The reader should notice that an entry S(In−1|In) is comprised by the same number of
samples as SIn would.

Let us examine the requirements for the construction of such a database through a
simple example. The x86 architecture supports 981 [22] unique instructions while a sim-
pler CPU architecture like AVR includes unique 123 instructions [23]. Let us focus on the
AVR architecture since it is widely deployed in embedded systems. Let us assume that
1000 examples of each instruction are captured then the original size of the database is
estimated to have 1000 ∗ 123 = 123K entries. Under the lieu of the described restriction,
the database needs to have a total of 1, 000 ∗ 1232 ≈ 15M entries which is approximately
two orders of magnitude larger than the original estimation. It is obvious, that the process
of creating a database of all possible instructions is time-consuming. Regardless, this needs
to be conducted only once. One can argue that once constructed, a database for a spe-
cific architecture can be open-sourced and made publicly available. Moreover, in practice,
certain instructions are never observed together, while there are certain combinations of
instructions that are much more commonly executed together. Thus, the requirements of
constructing such a database are not prohibitive.

4.2 Generating Synthetic EM Signals

The process of generating synthetic signals for anomaly detection is as follows: (a) based
on the sequence of instructions included in the binary, identify the next instruction that
will be executed, (b) fetch a random EM sample that is associated with this instruction
from the library, and (c) append the EM at the end of a collective synthetic signal. The
above steps are repeated until no more instructions are contained in the target sequence.

4.3 Fingerprinting Phase

In this work the discovery of malicious EM signals was approached as a semi-supervised
anomaly detection problem as opposed to a supervised classification one. The reason for
this decision is that nearly infinite alterations to a benign program can be performed by
an attacker. This makes collecting instances of all possible known and unknown malicious
versions of a program unrealistic. However, since the normal modes of operation of a device
are finite, it is valid to assume that the corresponding EM signals can be collected, or in
the context of this work, be synthetically generated. Therefore, we relied on and extended
an existing semi-supervised anomaly detection method [24]. This method is based on the
principles of transduction and hypothesis testing. Transduction is a technique of placing an
example in a set of known normal observations and understanding whether that sample
is a good fit in the set. From the perspective of our experiment, the terms example and
observations refer to EM signals that corresponds to a repetitive operation e.g., a loop.

The method calculates a distribution of normalcy, namely, a baseline, between all the
known benign cases corresponding to the same operational mode (i.e., an entire or parts
of the same execution path). Realistically, a program can have several execution paths,
with each execution path corresponding to a different aspect of normal operation. This in
turn, creates a unique EM signal.
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Algorithm 1 Fingerprinting Phase

1: function calc strangeness:(benign dataset X, set of query signals Q, number of neighbors κ):
2: Strangeness Scores = []
3: for ∀q ∈ Q do
4: D = []
5: for ∀x ∈ X do
6: D ← distance(x, q)
7: end for
8: Nearest Neighbors = get min(D,κ)
9: Strangeness Scores← Sum(Nearest Neighbors)
10: end for

return Strangeness Scores
11: end function
12: function Fingerprint:(benign dataset Xs, number of neighbors κ, number of benign execution paths

s):
13: Baselines = []
14: for ∀X ∈ Xs do
15: Baselines← calc strangeness(X,X, κ)
16: end for

return Baselines
17: end function

In further detail, during this phase, a set of benign signals, X, is provided for each
execution path. X must contain a significantly large number of EM signals because as
explained in previous sections, observations of the same path can deviate due to ran-
dom phenomena occurring during the capture. In order to calculate the distribution, the
strangeness (similarity) score of each sample point x with the rest in X must be calcu-
lated. Any algorithm that calculates the similarity (e.g., euclidean distance) can be used
to estimate the strangeness. These include rudimentary approaches such as the mean of
distances, or more sophisticated metrics like the Local Outlier Factor [25] (which internally
relies on euclidean distance). The processes involved in the fingerprinting phase are given
in Algorithm 1. We relied on the sum of the κ-nearest (most similar) neighbors (signals)
and the euclidean distance metric. The outcome of this process is one (or multiple) lists
that contains the similarity scores, referred to as Strangeness Scores, (lines 5-9) in the
algorithm. The Strangeness Scores reflect the distribution of normalcy or simply put a
baseline, (lines 13-16). This process is repeated for all possible execution paths.

4.4 Anomaly Detection Phase

The deployment phase assumes that the baselines, Bs, have already been produced success-
fully during the fingerprinting phase. Furthermore, the original sets of benign signals used
to create the baselines, Xs, and the number of benign execution paths, s, are provided.
Additionally, a signal for evaluation, q, is available. Finally, user-provided parameters that
correspond to the number of neighbors (κ) and the threshold used to separate the normal
from abnormal (τ) signals are given. The overall process is provided in Algorithm 2.

During this process, a benign set of each execution path, X, is obtained from Xs.
Then the strangeness of the new observation, scoreq, is evaluated by comparing q to X
using the same algorithm implemented in the fingerprinting phase, (line 5). Afterward,
scoreq is compared against the respective baseline, Bi, that was created from X in the
fingerprinting phase. The comparison process is executed using transduction, creating a
p value for q, (lines 8-13). If the p value is above the threshold τ , then q is considered
within the norm of the execution path and a vote is saved as normal. Otherwise, the vote
is saved as abnormal, (lines 14-19). This process is repeated for all execution paths in Xs
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Algorithm 2 Anomaly detection Phase

1: function Detect:(sets of benign signals Xs, strangeness baselines Bs, signal for evaluation q, number
of neighbors κ, threshold τ , number of benign execution paths s ):

2: V otes = []
3: for ∀X ∈ Xs do
4: size = length(Bi)
5: scoreq = calc strangeness(X, q, κ)
6: Sorted Baselinei = sort(Bi, ascending)
7: index = 0
8: for ∀scorex ∈ Sorted Baselinei do
9: if scoreq < scorex then
10: index = index+ 1
11: end if
12: end for
13: V ote = anomalous
14: p value← 1+size−index

1+size

15: if p value > τ then
16: V ote = normal
17: end if
18: V otes← V ote
19: end for
20: status = anomalous
21: for ∀vote ∈ V otesq do
22: if vote = normal then
23: status = normal
24: end if
25: end for

return status
26: end function

to check if q falls within the norm of any of the benign execution paths. Under normal
conditions, benign signals are expected to be considered normal for one execution path.
As such, only one vote for the unknown signal q being normal is required to flag it as
benign. If no vote is given as normal, then q is flagged as anomalous, (lines 21-26).

The voting mechanism was an extension to the original algorithm implemented to ac-
count for the certainty of a program being comprised of numerous paths. A comprehensive
fingerprinting of a target program must consider, as normal, all possible paths inside that
program.

5 Experimental Evaluation

The proposed framework was evaluated by determining the accuracy of the anomaly de-
tection approach for multiple benign cases. Furthermore, the usability of our generated
synthetic signals is determined by comparing the detection accuracy when using only Real
versus Synthetic signals for fingerprinting.

5.1 Testbed

The target platform used, was an Arduino Mega device. This device is equipped with an
8-bit ATmega2560 AVR microcontroller unit (MCU). This family of MCUs is a popular
choice for both research as well as real-time control applications [26]. To acquire EM
signals, we made use of an EMRSS RF Explorer H-Loop EM probe, which was placed
exactly on top of the CPU. Since emanations from the CPU have a very low amplitude,
each signal that we acquired was first amplified using a Beehive 150A EMC probe amplifier
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and then saved in a digital format using a PicoScope 3403D oscilloscope and a laptop. The
chosen sampling rate was 500 MSamples/sec, the sampling interval is 2nsec, and the
average duration of the programs considered (loop portion only) was less than 1µsec.
Notice that we obtained each sample in a virtually noise-free environment. In accordance
to Vedros et al. [9], these sampling rates are able to detect the corruption of a program
through the injection of even a single instruction in relatively noisy environments without
the need for noise reduction pre-processing. The experimental setup can be seen in Figure
3.

Fig. 3: Experimental setup used for all the signals acquisition described in this paper.

5.2 Test Cases

For evaluating purposes, we considered the following scenario: a benign program with just
one execution path is already installed in the target platform. The original software is
comprised of just 17 instructions being executed inside a loop. At some point there was a
need to modify the original program. In the update several instructions were substituted,
a new one was added and one was removed from the original sequence. The task is to
synthetically generate EM signals of the modified version of the program directly from the
assembly (ASM) code so that we do not have to engage in the data gathering process from
scratch. The original (Program A) and the updated version of the program (Program B)
are given in Figure 4.

Next, we assumed that a malicious entity performs a modification (i.e., code injec-
tion) to our program. To illustrate the occurrence of such an attack, we developed two
contaminated versions of the updated program (Program B), each with differing amounts
of injected code. The first contaminated version assumes that four malicious instructions
were injected, while in the second case we have the injection of only two instructions.
Consequently, the second version will be harder to detect due to the shorter length of the
foreign code. The point of injection for both contaminated versions is in the middle of the
sequence of the ASM instructions. The two malicious programs (easy and hard) are given
in Figure 5.
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1 setup:

2 sbi ddrb , 6 ; set pb6 as output (our sync

artifact)

3 l o o p :

4 sbi pinb , 6

5 ; simulates a decision

6 clr r20

7 ldi r20 , 1

8 ; Will go to the first_label

9 ldi r22 , 1

10 cp r20 , r22

11 breq first_label

12 rjmp l o o p

13
14 first_label:

15 clr r2

16 ldi r23 , 1

17 m o v r1, r23

18 cp r1 , r2

19 l s l r1 ; multiply r1 by 2 with logical

shift left

20 lsr r2 ; divide r2 by 2 with logical

shift right

21 ses ; Set signed flag

22 cls ; Clear signed flag

23 sev ; Set Overflow Flag

24 clv ; Clear Overflow Flag

25
26 rjmp l o o p

1 setup:

2 sbi ddrb , 6 ; set pb6 as output (our sync

artifact)

3 l o o p :

4 sbi pinb , 6

5 ; simulates a decision

6 clr r20

7 ldi r20 , 1

8 ; Will go to the first_label

9 ldi r22 , 1

10 cp r20 , r22

11 breq first_label

12 rjmp l o o p

13
14 first_label:

15 ldi r23 , 0

16 a n d r2, r3 ; Bitwise AND (result in

stored r2)

17 a d d r1, r2 ; Add r2 to r1 (r1=r1+r2)

18 eor r2 , r3 ; Bitwise exclusive or between

r2 and r3

19 s u b r1, r2 ; Subtract r2 from r1

20 ses ; Set signed flag

21 cls ; Clear signed flag

22 sev ; Set Overflow Flag

23 clv ; Clear Overflow Flag

24 clr r1

25
26 rjmp l o o p

Fig. 4: The original version of the program (left) and the version of the program after the
update (right). Different instructions are highlighted in red.

1 ...

2 ; up to here , same as "Program B"

3
4 a d d r1, r2 ; Add r2 to r1 (r1=r1+r2)

5 ;====== 4 injected instructions ========

6 asr r3 ; r3=r3/2

7 com r3 ; Take one’s complement of r3

8 a d c r3, r2

9 sbc r3, r2

10 ;==============

11 eor r2 , r3 ; Bitwise exclusive or between

r2 and r3

12
13 ; the rest are same as "Program B"

14 ...

1 ...

2 ; up to here , same as "Program B"

3
4 a d d r1, r2 ; Add r2 to r1 (r1=r1+r2)

5 ;====== 2 injected instructions ========

6 asr r3 ; r3=r3/2

7 com r3 ; Take one’s complement of r3

8 ;

9 ;

10 ;==============

11 eor r2 , r3 ; Bitwise exclusive or between

r2 and r3

12
13 ; the rest are same as "Program B"

14 ...

Fig. 5: Version of the Program B after the injection of four malicious instructions (left)
and the same program after the injecting two malicious instructions (right). The latter is
considered a harder case.
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5.3 Dataset Structure

We captured 1000 instances of each one of the programs (four in total) using the setup
mentioned in Subsection 5. Due to the difference in the number of instructions in each
program, the total number of samples varied among the captured sets. Details about the
records in the datasets are included in Table 1.

Table 1: Number of samples and number of time indexes in each set.
No. observations Samples per observation

Program A 1000 1261
Program B 1000 1261
Synthetic B 1000 1261

Malicious B Easy 1000 1511
Malicious B Hard 1000 1386

According to the task, we synthetically generated instances of Program B i.e., the
benign modified version of the program. The reader should note that we also captured real
EM samples for Program B, to provide the ground truth for our comparative evaluation.
Examples of the captured signals, and their corresponding instructions, are illustrated in
Figure 6. These sets of data were split into certain combinations for evaluation purposes
and were subjected to pre-processing.

Fig. 6: EM samples of the two normal (top row) and malicious (bottom row) programs. In
the bottom row the highlighted areas are the instructions injected into the base code of
Program B.

5.4 Experimental Results

As a first experiment, we relied upon only real examples of signals. More specifically, the
real signals that correspond to the normal programs (before and after the update) were
used to train the baseline. Thus, at this phase, no malicious observations were used. During
the testing phase, examples of both normal and malicious cases were utilized. In fact, we
performed two rounds of evaluation, for the first round the examples of malicious signals
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were drawn from the pool of signals that correspond to the easier case. For the second
round, the malicious signals were chosen from the pool of harder-to-detect anomalies. The
goal of this experiment was to estimate the accuracy of the anomaly detection method in
the ideal situation where real signals are available.

A second experiment was performed in a similar fashion to the first, except real exam-
ples for the original program and synthetic data for the modified version were used to train
the baseline. The goal when utilizing synthetic signals is to approximate the predictive
performance.

The two experiments were evaluated using the 10-fold cross-validation method. For
experiment one, for each fold, the training set was comprised of 450 examples of Program
A, and 450 of Program B. Furthermore, to evaluate with a balanced testing set, the testing
dataset considered for each fold only 50 observations of each benign (original and modified)
case along with 100 anomalous examples. For the second round, the number of signals of
each different type of program used for the training/testing set was the same except that
the training set contained synthetic EMs for Program B.
Preprocessing: Before the training and testing phases, feature engineering was per-
formed. First, every signal was reduced to the size of the benign execution paths. The
reader should keep in mind that the size of the benign sequence is known in advance.
As such, we assume that every signal that is being evaluated should only be the size of
the benign case if it is truly benign. The reader should recall that each instruction is
amplitude modulated. Therefore, the main indicator for identifying various instructions is
the difference in the amplitude of the signal at certain time frames (i.e., cycles). In fact,
one challenge that we observed in raw signals is that occasionally there are minor clock
drifts. By maintaining only the peaks, we effectively deal with this issue without relying
on computationally heavy techniques such as dynamic time warping (DTW).
Considered Parameters: After performing a grid search we identified the optimal near-
est neighbors parameter to be 10. Moreover, the anomaly detection process made use of
thresholds τ ranging from zero to one, with a step of 0.001.
Evaluation Metrics: Given the confusion matrix results, we obtained the area under the
curve (AUC) of the receiver operating characteristic (ROC), and among the thresholds
tested the one that gives the best accuracy (ACC) and F1 score for each fold was con-
sidered. ROC is common metric used for evaluating the efficiency of anomaly detection
systems. It graphs the true-positive rate (TPR) vs. the false positive rate (FPR) for under
various thresholds. The formulas for calculating the TPR and the FPR respecitively are:

TPR =
TP

TP + FN
(4)

FPR =
FP

FP + FN
(5)

Where TP is the amount of true positives, FP is the amount of false positives, and FN is
the number of false negatives. The resulting graph usually creates a curve, and the AUC
is a common metric for comparing ROCs. The ACC and the F1 scores are is computed as
follows:

ACC =
TP + TN

TP + TN + FP + FN
(6)

where TN is the number of true negatives.

F1 = 2 ∗ PPV ∗ TPR

PPV + TPR
(7)
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Fig. 7: ROC graphs for the anomaly detection experiment. In the upper row the results
obtained when using the synthetic signals for training. In the lower row the results obtained
when using only real signals for training (ideal case). The drop in AUC score observed is
only 1.3% for the injection of 4 instructions (easy case) and 4.2% for the injection of 2
instructions (hard case).

where, in turn the precision (PPV) is defined as:

PPV =
TP

TP + TN
(8)

The final reported metrics are the average among all folds. The max, minimum, and
average ROC curves observed across all folds are given in Figure 7.

Results: The results achieved for each of the experiments can be seen in Table 2. Using
synthetic data gives above 90% AUC score for all considered metrics. More specifically,
the AUC score achieved when using the easy malicious case is 98%, and 95.1% when using
the hard version. The AUC score achieved for the same tests when real signals were used
is 99.3% for both the easy and hard cases. In other words, the use of synthetic signals
had a negative impact in the predictive AUC but it was relatively low i.e., 1.3% and 4.2%
respectively. The reader should recall that despite the malicious programs being labeled
easy and hard both cases correspond to exceptionally minimal injections and in reality,
the attacker probably would try to inject much larger lengths of instructions.

In terms of ACC and F1 score, the use of synthetic signals achieved 90.1% and 90.6%
respectively when using the hard malicious case. Furthermore, these metrics reach to 95.4%
for the ACC and 95.5% for the F1 score when evaluating against the easy version. When
the same tests are performed using the real signals, the ACC and F1 is near perfect, that
is 99.9% and 99.5% for the hard case and 99.9% and 99.8% for the easy version. Overall
the difference in the use of synthetic signals was 4.5% to 9.8% for the ACC and 4.3% to
8.9% for the F1.
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Table 2: Anomaly detection results.
Training Test-Normal Test-Anomaly Scores (Avg.)

AUC ACC F1

Real (Program A)
and Synthetic (Synthetic B)

Real
(Program A and Program B)

Malicious B (Easy) 0.980 0.954 0.955
Malicious B (Hard) 0.951 0.901 0.906

Only Real
(Program A and Program B)

Real
(Program A and Program B)

Malicious B (Easy) 0.993 0.999 0.998
Malicious B (Hard) 0.993 0.999 0.995

Conclusion:While using real captured EM samples may provide near-perfect detection
of even minimal code injections, synthetic fingerprinting can still effectively train models
to distinguish between benign and anomalous cases with high accuracy. For example, the
penalty in terms of AUC score is -1.3% for detection of only four malicious instructions.

6 Discussion

One of the most important challenges with respect to the synthetic reconstruction of
signals from code is that the morphological characteristics of isolated ASM instructions
are not static but rather depend on prior instructions. Moreover, instructions possibly get
influenced by other random events that occur at the hardware level or due to parallel
processes that are executed at the same time (software), as well as environmental noise.
Studying the first two factors lies outside the scope of this paper while the latter has been
studied in [9] [10]. However, regarding the impact of previous instructions to subsequent
ones, we have made the following observations:

– Although the same instructions may have roughly the same amplitude and general
phenotype when observed within the same sequence, they may appear different when
preceded by different previous instructions or tracked within a different sequence.

– The directly previous instruction Ii−1 impacts the examined instruction Ii significantly
but in some cases even previous instructions . . . , Ii−2 may impact Ii to a lesser extent.

– Certain instructions impact subsequent instructions less than others.

– Instructions that perform similar operations may similarly impact subsequent instruc-
tions.

Example 1: The sequence . . . , ses, cls, ser, clv, . . . is observed in both our benign
programs. However, for Program A the instruction ses is preceded by the lsr instruction
while in Program B the ses instruction is preceded by the sub instruction. Nevertheless,
both the lsr and sub instructions perform similar (i.e., mathematical) operations. The
former performs division and then shift, while the latter performs subtraction. Therefore,
the amplitude of the first instruction in that sequence, (i.e., the ses instruction) is only
marginally impacted.

Example 2: The sequence . . . , rjmp, sbi, . . . is observed in both the considered benign
programs. In this case, for Program A the rjmp is preceded by the clv instruction, while
in Program B the same instruction is preceded by the clr instruction. The former simply
clears the value of a flag while the latter resets the values of all registers. The reader can
understand that the two instructions perform drastically different operations thus, it does
not come as a surprise that the amplitude of the signal that corresponds to the rjmp
instruction looks significantly different in the two programs. A comparison between the
signals corresponding to the two programs at the sections of interest is given in Figure 8.

Computer Science & Information Technology (CS & IT)                                              75



Fig. 8: Comparison of peaks between EM signals of Program A and Program B around the
common instruction sequences for example 1 (top) and example 2 (bottom).

6.1 Evaluation of Similarity of Synthetic Signals

The following experiment evaluates the similarity of the 1000 EM signals that were synthet-
ically generated against each of the type of the sets that contain real signals (i.e., Program
A, Program B, Malicious Easy, and Malicious Hard). For each set, the comparison process
yields 1000 similarity scores. The scores of the 25 nearest neighbors were averaged. The
pre-processing method adopted; was the same as in all previous experiments. The distance
used to compare the two signals was the normalized euclidean distance (NED), which is
calculated as:

NED(A,B) =

√
0.5

V ar(A−B)

V ar(A) + V ar(B)
(9)

where A and B are two EM instances, and Var is the variance between the two signals.
The distances produced as a result of this experiment are given in Figure 9. By observing
the boxplot in Figure 9, the reader should notice that the average distance (i.e., orange
line) between Program B is lower compared to any other program. This indicates that
our method generates signals that are closer to the real instances of Program B although
clearly not identical to them. Furthermore,Malicious Easy and Hard cases have on average
a much higher distance (difference) to Synthetic B, despite being polluted with only a few
instructions. This is primarily because the injection of instructions causes a displacement
to the right of all instructions after the point of injection. For this reason, all peaks after
that point are expected to be different. On the other hand, the difference between Program
A and Program B lies primarily in the (benign) substitution of some instructions. In this
way, only the substituted instructions are expected to be different.
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Fig. 9: Distance between the synthetically generated version of Program B and (a) the real
Program A, (b) the real Program B, (c) the maliciously modified version of Program B (four
instructions), and (d) the maliciously modified version of Program B (two instructions).
Lower is better (more similar).

6.2 Considerations Regarding the Library of Reusable Basic Blocks

Let us suppose that the previous observations were not true. Then, it would be possi-
ble to construct a set of programs P comprised of the instruction to be fingerprinted Ii
surrounded by sequences of nop instructions as:

Pi = {. . . , nopn−2, nopn−1, nopn, Ii, nopn+1, nopn+2, . . .} (10)

Notice nop instructions are considered neutral as they do not perform any function but
simply consume a cycle thus, they are an ideal choice for this fingerprinting task. For the
considered CPU architecture this would amount to creating 123 unique programs i.e., the
same as the number of unique instructions. At a subsequent step, the instruction Ii would
be stripped from surrounding the nop and entered in a database. In the future, for any
given sequence of instructions, it would be possible to consult this database and retrieve
the corresponding EM sequences. In this scenario, the entire workflow is deemed trivial,
and the task of EM synthesis is reduced merely to a simple mapping.

However, as explained in the previous subsection, in reality, the task is not trivial
because each instruction Ii in a sequence is influenced mainly by the previous instruction
Ii−1. Thus, the database of reusable components must be constructed by considering at
least two instructions. The situation becomes more challenging because in turn instruction
Ii−1 is expected to have been altered by Ii−2. Thus, when creating the database the
previous instruction must be specified.

To put things into perspective, for our considered CPU architecture the number of
possible instruction combinations is 123x123 which is more than two orders of magnitude
larger than the näıve case. Alternative CPU architectures may support a significantly
higher number of instructions. It is obvious that this approach does not scale. However,
particularly for the embedded realm, creating a database of this type should not be con-
sidered prohibitive because (a) the majority of CPU architectures adopt a reduced set,
(b) it is possible to identify similar instructions and cluster them, (c) in practice, not all
combinations of certain instructions make sense.
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7 Conclusion

In this paper, we introduced a comprehensive framework for generating synthetic EM
signals from machine code and used it for EM-based anomaly detection in embedded
devices. This framework includes, amongst others, the creation of a database of signal
blocks that correspond to ASM instructions, and can be reused for generating synthetic
sequences and a methodology for properly synthesizing such sequences of instructions to
recreate entire code execution paths. Compared to the state-of-the-art in the area, our
approach remains non-intrusive and is highly scalable. We experimentally proved that our
method can generate synthetic signals that are highly similar to the real EM signals that
get emanated by the CPU of embedded devices during run-time. Our method inflicts only
a small penalty in accuracy when employed for anomaly detection purposes. While the
experiments included were performed based on a limited number of instructions, a limited
number of test cases, and just one CPU architecture, the achieved results hold great
promise for the utilization of synthetically generated signals as part of typical anomaly
detection workflows in the area.

Our near-term research plans are geared towards quantifying the impact of various
instructions on subsequent ones. This study will help to create more accurate synthetic
signals. In the future, to further automate the process and achieve even more accurate re-
sults we are considering incorporating generative adversarial networks (GANs) specifically
for the task of translating text (ASM code) to signal (EM).
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