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ABSTRACT 
 
Magnetic resonance imaging (MRI) is one of the best imaging techniques that produce high-

quality images of objects. The long scan time is one of the biggest challenges in MRI 

acquisitions. To address this challenge, many researchers have aimed at finding methods to 

speed up the process. Faster MRI can reduce patient discomfort and motion artifacts. Many 

reconstruction methods are used in this matter, like deep learning-based MRI reconstruction, 

parallel MRI, and compressive sensing. Among these techniques, the convolutional neural 

network (CNN) generates high-quality images with faster scan and reconstruction procedures 

compared to the other techniques. The Inception module proposed by Google inspires the 

algorithm of this study for MRI reconstruction. In other words, we introduce a new MRI U-Net 

modification by using the Inception module. Our method is more flexible and robust compared 

to the standard U-Net. 
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1. INTRODUCTION 
 

Magnetic Resonance Imaging (MRI) is an imaging modality that takes advantage of the proton 

density of the hydrogen atoms inside the objects [4]. MRI acquires signals from spinning protons 

that are caused by a magnetic field [5]. Although damaging ionizing radiation like x-ray is not 

used in MRI, the duration of MRI scan time is so long that it limits its application [6-7]. The long 

time of the MRI scan increases patient discomfort, generates motion artifacts, and increases the 

medical cost [8].  MRI acquires the data and encodes it in a frequency domain, k-space. MRI 

acquires each line in k-space at the time. As scanning these lines in k-space individually is time-

consuming, researchers have made many efforts to skip some signals in k-space to speed up MRI. 

Skipping the signals results in the serious consequence of Nyquist criterion violation and causes 

artifacts in reconstructed images [9]. There are techniques like Compressed Sensing MRI and 

Parallel MRI which show good results in reconstructing the original image. Parallel MRI works 

with an array of multiple receiver coils by receiving much less amount of k-space data [1], [7], 

[10-11]. MRI acceleration includes two parts of subsampling and reconstruction. The goal of MRI 

acceleration is to find an optimal reconstruction function f. The function f represents  to , : 

 , which  is the reconstructed image with undersampling artifacts and y is the 

reconstructed image [12]. In Figure 1, the fully sampled k-space data is shown as  and x is 
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undersampled data in k-space. If x is undersampled, y will be corrupted images, and if x is fully 

sampled, then y will be an image with no artifact. The inverse Fourier transform of  

produces y, which is an artifact-free reconstructed MRI image. This figure shows the general 

strategy and the flow of the undersampled MRI reconstruction problem [12]. 

 

 
 

Figure 1. The strategy of the undersampled MRI reconstruction problem. 

 

In this figure, F represents the Fourier transform and  represents the inverse Fourier 

transform. We can use deep learning models as a reconstruction strategy to remove artifacts from 

the corrupted images. Undersampled data causes these artifacts in corrupted images. U-Net is one 

of the convolutional neural networks that is able to reconstruct reference images [12]. Moreover, 

U-Net can work as the function  with some parameters. The model trains these parameters 

during the training procedure. This reconstruction function  helps to find a reconstructed image 

y from the aliased image . 

 

We use Mean square error (MSE), normalized mean square error (NMSE), structural similarity 

index measure (SSIM), and peak signal-to-noise ratio (PSNR) to evaluate our model. Moreover, 

we improve scan speed by 3.2 times. We show that the proposed architecture in this work creates 

a better-reconstructed image compared to the standard U-Net. The U-Net architecture employs 

encoding and decoding sections in order to reduce complexity. Reducing complexity prevents 

overfitting in the network and, consequently, improves image quality. 

 

The rest of this paper is as organized as follows. In section 2 we discuss background. In section 3 

we review our proposed methodology. In section 4, we discuss the experimental results. In 

section 5 we offer concluding remarks. 

 

2. BACKGROUND 

 
2.1. UNDERSAMPLING 
 

In order to accelerate the MRI scan procedure, one of the approaches is undersampling the data 

[12]. Undersampling reduces the amount of data in k-space and results in information loss. 

According to the Nyquist criterion, the scan frequency should be twice the expected maximum 

frequency [9]. However, undersampling does not meet this criterion as for undersampling we skip 

some of the signals in the k-space. Therefore, it leads to artifacts appearing in images called 
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aliasing artifacts. Recovering the missed signals can be done in the frequency or image domains. 

In this study, we focus on the image domain and try to recover reference images from corrupted 

images caused by undersampling artifacts. In order to obtain images from the frequency domain 

dataset, we need a transformation technique. As we do the sampling in the Cartesian scheme, we 

use fast Fourier transformation (FFT) [4]. 

 

MRI reconstruction in deep learning-based image reconstruction is a method of reconstructing 

the original image from undersampled data [4]. There are different methods of reconstructing the 

images from corrupted images like deep learning-based MRI reconstruction, parallel MRI, and 

compressive sensing [4], [13]. These image reconstruction methods show that undersampling can 

speed up the procedure of MRI scans by using a large training dataset [4]. The goal is to 

minimize the loss function for reconstructing the original image from corrupted images [4]. 

 

2.2. U-NET 
 

U-Net is used for Biomedical Image Segmentation [14]. U-Net network is a fully Convolutional 

Neural Network (CNN) that uses kernels. The network trains the weights of the kernels during 

the training procedure [15]. U-Net is a U-shaped network that includes encoder and decoder 

sections and uses down-sampling and up-sampling strategies. In the down-sampling operation, 

we decrease the spatial dimensions and increase the feature channels (the number of filters). 

However, in the up-sampling procedure, we increase the spatial dimensions, and reduce the 

number of filters [14]. Figure 2 shows one example of a U-Net architecture. 

 

In this network, there are two 3 3 convolutions in each encoder block. We use an activation 

function like Rectified Linear Unit (ReLU) after each convolution for better generalization of the 

training data [16]. The output of each encoder block can get concatenated with the decoder block 

on the other side of the network [14]. The goal of concatenation or skip connections in U-Net is 

to prevent information loss and make the output richer. As the encoding blocks have more 

information about the images, the output of the encoding blocks can be concatenated to the input 

of the decoding blocks with the same size of the images to prevent information loss. Figure 2 

shows the architecture of a U-Net used in MRI reconstructions [12]. 

 

 
 

Figure 2. The architecture of the U-Net. [12]. 
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2.3. Inception Module 
 

In deep learning study, there is always a question of which combination of convolutions can be 

used to get the best result [17]. Different architectures use convolutions with different kernel 

sizes to extract features from the images. Each kernel can play a different role in designing the 

networks. For example, 1 1 convolution means convolution with a kernel size 1 1. This is fast 

and needs less memory but cannot solve complicated problems. On the other hand, 5 5 

convolutions involve so many multiplications. They need more parameters but is computationally 

expensive with regards to the number of parameters it adds to the function. Therefore, using a 

combination of convolutions and pooling layers in various convolutional blocks can benefit from 

all the convolutions used in the network [18]. This combination of convolutions and max-pooling 

layers helps to reduce computation costs while using memory more efficiently. The Inception 

module was first proposed in GoogLeNet [3]. After that, researchers used this module in different 

applications, including Alzheimer’s disease diagnosis [19]. The idea behind the Inception module 

is to make the architecture wider instead of deeper. Deeper architectures tend to overfit. By 

combining different convolutions in just one layer, the model is able to extract more information 

from the images. 

 

 
 

Figure 3. The Inception Block. 

 

Figure 3 illustrates one example of Inception block [12]. Using the combination of the 

convolutions and pooling layers in a block helps to extract more information from the images, 

which leads to better reconstructed images [18]. Figure 3 is one of the examples of an Inception 

block and can be the combination of any of convolution layers or max pooling layers. In this 

study we combine 3 3 convolutions with 5 5 convolutions. 

 

3. METHODOLOGY 

 
3.1. Proposed Methodology 
 

In MRI reconstructions, researchers use different deep learning algorithms [4]. U-Net is one of 

the practical and straightforward techniques in MRI reconstruction as it removes most of the 

folding artifacts. In this study, we use the Inception module integrated with U-Net. Inception 

module has been studied in Image classification and object detection, however, to the best of our 
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knowledge, researchers have not studied the application of the Inception module in U-Net for 

MRI reconstruction. 

 

In this study, we use an inspired Inception module integrated with the U-Net model for the 

architecture. Combining different convolutions in various convolutional blocks helps to reduce 

computation costs and increase the quality of the undersampled image [18]. Figure 4 shows the 

architecture of the proposed model. The architecture shows how we use the Inception module in 

the U-Net. We combine 5 5 convolutions with 3 3 convolutions into two blocks. Then, the 

combination of convolution layers can be concatenated or summed. 

 

 
 

Figure 4. The architecture of proposed methods. 

 

Figure 4 shows what the inspired Inception module looks like. Instead of having a simple 3 3 

convolution, we have a combination of 3 3 and 5 5 convolutions. The architecture seems 

complicated, but in the end, the total number of parameters, errors, and image distortion is 

smaller than the standard U-Net. The combination of these convolution layers and max-pool 

layers can be added in each of the blocks in both encoder and decoder and we can make the 

architecture wider than this. In encoder path we have max-pool layer with strides (2,2) which half 

the size of the images, and then in decoder path we apply up-sample with strides (2,2) which 

double the size of the images as we need the output images to be the same size of the input 

images. 

 

3.2. Dataset 
 

The dataset is obtained from the NYU fastMRI database [21-23]. NYU fastMRI investigators 

provided data but did not participate in the analysis or writing of this paper [21-23]. The dataset 

includes raw k-space data in two types of MRI scans: knee MRIs and brain (neuro) MRIs. The 

brain dataset comprises 6,970 T1, T2, and FLAIR fully sampled k-space which obtained on 1.5 

and 3 Tesla magnets and consists of multi-channel data with the sizes 320, 320, 16, 16 (phase 

encoding, frequency encoding, slices, channels) [21-23]. The number of each imaging scans of 

the brain raw dataset is shown in table 1. In this study, we only use the T2 brain dataset with 

1500 data for training and 450 data for testing. 
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Table 1. The fastMRI NYU Brain dataset (https://fastmri.med.nyu.edu/) 

 

Field Strength 1.5T 3T  

T1 382 409  

T1 post contrast 849 646   

T2 1655 2524  

FLAIR 126 411  

Total 3012 3990 7002 

 

3.3. Data Preparation 
 

This study uses the T2 brain single channel dataset. The T2 dataset includes 2250 fully sampled 

k-spaces. We use IFFT to produce the images from fully sampled data and generate the target 

images or the ground truth. On the encoding section of the architecture, we need corrupted 

images for the inputs. Therefore, we do undersampling on the fully sampled data to reduce the 

amount of data for generating the corrupted images. For undersampling, there are different 

techniques like Cartesian, Radial and Spiral to store data in the K-space. We use Cartesian sub-

sampling which fills the K-space row by row. The center signals have the highest energy and the 

most important information of the image. Therefore, we add the high-energy signals or namely 

low-frequency (LF) signals, in the center of the k-space to preserve the information on the 

location of the small anomalies [12]. 
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Figure 5. Low Frequency and High Frequency Components in K-space. 

 

Figure 5 shows the differences between low frequency components and high frequency 

components in the k-space. Low frequency components are located in the center of k-space and 

high frequency components are located in the peripheries of k-space. The center of k-space has 

information about contrast, brightness, and general shapes, while peripheries have information 

about edges and details. Therefore, the center of k-space has more energy and information about 

images. 

 

As the images are large with the size of 320×320, in order to reduce the computation time and 

cost, the magnitude images are cropped to 256 by 256. We do sub-sampling in the phase 

encoding direction by 4 as the goal is to speed up the scan by 4. Therefore, we generate 64 256 

images from 256 256 images. 

 

In the k-space matrix, there are two directions which are called phase and frequency directions. 

The phase-encoding direction is along the y-axis in k-space and the frequency-encoding direction 

is along the x-axis in K-space. Once we add 8% and the other time, 20% of the acquired lines in 

the phase encoding direction to the center as the low frequency. We need these lines in the phase 

encoding direction to recognize the location of the missed small object due to the aliasing effect. 

The data will be zero-filled after undersampling to increase the dimensions. Then we use IFFT to 

produce the corrupted images with an undersampling artifact [4]. The obtained aliased images 

will work as the inputs, and the targets are the images constructed from IFFT of the full k-space 

[21-23], [4]. 
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3.4. Implementation & Evaluation 
 

3.4.1. Implementation 

 

In this study, we use Python 3.8 for the programming and implement CNN with TensorFlow 2.4 

[4], [24]. The long run time is one of the challenges in this work which per run took around 3 

days. We used a personal computer with Processor Intel Core i7-4790 CPU 3.60 GHz, 16GB 

Ram. 

 

After taking the Fast Fourier Transform (FFT), we apply undersampling by 4 with a uniform 

undersampling pattern [4]. In the center of the k-space, 8% of the phase encoding signals that are 

equal to the low-frequency signals will remain during the undersampling. The decoding section is 

the mirror of the encoding section, but instead of max pooling, we have upsampling layers. The 

upsampling layers add feature maps, which help the U-Net network to have the same size in both 

the encoder and decoder path [25]. 

 

We double the number of layers in the encoder to add the decoder section to the architecture to 

complete the network. To encode the input, we combine the CNN kernels or filters with the input 

elements. 

 

The kernel size is odd because we can have a central pixel in the input image and can decode the 

other pixels. Also, to reduce the dimensionality of the network, we use max-pooling for encoding 

the inputs. The reason for max pooling is to prevent overfitting the model and to reduce the 

computational cost. We use a max filter in max-pooling. Max filter means the maximum number 

of each patch of the feature map. 

 

Also, in the implementation procedure, we skip layers with concatenation in the network. The 

skipped layer can be summation or concatenation. Concatenation means feeding a layer's output 

to another layer's input. When using a skip connection, we connect the encoder layers to the 

corresponding layer in the upsampling path. We also have batch normalization before we pass it 

to the activation function. Batch normalization makes our network more stable, and our model 

can learn faster due to scaling the values down to between -1 and 1. 

 

First, we speed up the model by 2.5 times and then by 3.2 times, with 1000 epochs. Early 

stopping with patience 20 is considered as part of our code to stop the run process at the best 

epoch. 

 

3.4.2. Evaluation 

 

We evaluate the model with 4 metrics. The metrics are mean square error (MSE), normalized 

mean square error (NMSE), structural similarity index (SSIM), and peak signal-to-noise ratio 

(PSNR). Equation 1 shows the MSE formula [4]. 

 

 
(1) 

 

, is the ground truth and  is the reconstructed image which m and n are pixel locations, 

with size M N. MSE of an image is the pixel-wised error estimation and derived from  [4]. 

Equation 2 shows the NMSE formula [4]. 
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(2) 

 

MSE ( , ) is the MSE of the reference and the reconstructed image, and MSE ( ,0) is 

the MSE of the reference and zero. The MSE and NMSE define the error, and the lower the MSE 

and NMSE, the higher the image quality. 

 

The other metric which shows the similarities of the reference and the reconstructed images, is 

SSIM, and measures image similarities from brightness, structure, and contrast. Equation below 

shows the formula of SSIM [4]. 

 

 
(3) 

 

In this equation,  and   show the average in x, and average in y respectively.  and  

show the variance of x and the variance of y, and  shows the covariance of x and y. C1 and 

C2 are the stabilize variables and are constants [4]. 

 

Another metric is PSNR which measures the quality of the image. The higher the value of PSNR 

the higher the image quality. Equation 4 shows the formula of PSNR [4]. 

 

 
(4) 

 

In this formula, xmax is the maximum possible pixel value in the image and Equation 1 shows the 

MSE formula. 

 

4. EXPERIMENTAL RESULT 
 

Table 2 shows the comparison between the standard U-Net network with the proposed method at 

the low frequency of 8% and 20% by 4 different metrics. 

 
Table 2. Quantitative comparison. 

 

 Model/Metrics MSE (1e-3) NMSE (1e-2) SSIM (1e-1) PSNR 

LF 

8/100 

U-Net 1.5 4.05 8.85 28.6 

Proposed model 1.4 3.78 8.90 28.9 

LF 

20/100 

U-Net 0.69 1.80 9.430 32.25 

Proposed model 0.68 1.75 9.432 32.25 

 

In MSE and NMSE, the lower the value shows, the lower the error and, consequently, the higher 

the image quality. The proposed model decreases the value of MSE and NMSE in both low 

frequencies. Also, SSIM measures image similarities in brightness, structure, and contrast. The 

higher the value, the higher the similarities. The comparison clearly shows that we increase the 

value of SSIM in the proposed method. The last metric in the table is PSNR which measures the 

quality of the image. The higher the value of PSNR, the higher the image quality. The value of 

PSNR is the same in LF of 20%, but by decreasing the low frequency, which leads to the higher 
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speed, the value of PSNR increases. Overall, by looking at the quantitative comparison table, we 

can easily conclude that the proposed model decreases the error and increases the image quality 

compared to the standard U-Net. 

 

Ground-truth image 

 

U-Net model-LF 20/100 

NMSE: 1.80e-2 

Proposed model-LF 20/100 

NMSE: 1.75e-2 

   

a b c 

 
Figure 6. Reconstruction results in LF 20%. 

 

Figure 6 shows the reconstruction results by (a) Ground truth (original), (b) U-Net and (c) 

proposed model with the low frequency (LF) of 20%. Big boxes show the enlarged view of the 

small boxes. The NMSE shows the normalized mean square error value in both models. The 

lower the value, the lower the error. The enlarged images and the value of NMSE show that the 

similarity is higher, and the error is less in the proposed model compared to the U-Net. 
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Ground-truth image U-Net LF 8/100 

NMSE: 4.05e-2 

Proposed model LF 8/100 

NMSE: 3.78e-2 

   

   

   

   
a b c 

 
Figure 7. Reconstruction results in LF 8%. 

 

Figure 7 shows the reconstruction results by (a) Ground truth (original), (b) U-Net, and (c) 

proposed model at various views of reconstruction. We compare these results in a low frequency 

(LF) of 8%. The Bottom right boxes show the enlarged view of the images, and the top right big 

boxes illustrate the enlarged view of the error images. The enlarged images indicate a higher 

similarity and less error in the proposed model than the U-Net. 

 

In this study, we also compare the training and validation loss curves. Figure 8 shows the 

comparison of learning curves in both frequencies. The vertical axis shows training and 
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validation loss, and the horizontal axis illustrates the number of epochs. In U-Net, the validation 

loss is higher than the training loss in higher iterations. We conclude that the model is slightly 

leaning toward overfitting, especially at higher speeds. Overfitting means that the model learns 

the noise and details to the extent that it impacts the model’s performance on new data. In 

contrast, the proposed model reduces the validation loss in higher iterations compared to U-Net. 

The reason for the better performance in the proposed model is that by combining 5 5 

convolutions with 3 3 convolutions, the model involves more multiplications. These 

multiplications help to extract more information from the images and result in less validation loss 

in the new architecture. 

 

 LF 8% LF 20% 

U-Net 

 
 

 LF 8% LF 20% 

Proposed 

Model 

  

 
Figure 8. Learning curves comparison. 

 

5. CONCLUSION 
 

One of the biggest challenges in MRI reconstruction is choosing an optimal architecture. There 

are many deep learning methods to reconstruct the corrupted images [8], [13]. The different size 

of the input images, different number of training datasets, and the computer hardware 

specifications can make this choice challenging [12]. In this study, we implemented the U-Net 

model and the Inception U-Net model using deep learning methods in MRI reconstruction and 

then compared these two models. The model's architecture differs in different datasets as it has a 

different kernel size and a different number of outputs [4]. So, when the dataset type and 

dimensions change, the model should be updated accordingly. The proposed model is trained for 

brain T2 images with 2200 datasets; however, it works for any brain dataset with the same data 

size. 
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We integrated the architecture of the standard U-Net with an inspired Inception module proposed 

by Google [3]. As deeper models have the probability of overfitting, we made the architecture 

wider instead of deeper by adding 5 5 convolutions to the blocks. The new architecture with 

different kernel sizes prevents overfitting than U-Net in the same speed of 3.2 times as the model 

can extract more information from the images. In this study, the value of MSE and NMSE are 

decreased by 6.7%, the value of SSIM is increased by 0.6% and the value of PSNR is increased 

by 1.05% compared to U-Net. In conclusion, according to the results and analytical 

quantification, we showed that the proposed method eliminates more folding artifacts compared 

to the widely used state-of-the-art U-Net. Consequently, removing more artifacts leads to better-

visualized images and lower reconstruction errors. 

 

For our future work we suggest comparing the proposed methodology with more complex 

methods and providing more detailed theoretical analysis in order to provide insight. An 

alternative is to investigate the impact of adding more inception layers by adding more 

convolutions and max pool layers to the different blocks. 
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