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ABSTRACT 
 

Particle packings are used to simulate granular matter, which has various uses in industry. The 

most outstanding characteristics of these are their density and their construction time, the 

density refers to the percentage of the space of the object filled with particles, this is also known 

as compaction or solid fraction. Particle packing seeks to be as dense as possible, work on any 

object, and have a low build time. Currently there are proposals that have significantly reduced 

the construction time of a packing and have also managed to increase the density of these, 

however, they have certain restrictions, such as working on a single type of object and being 

widely affected by the characteristics of the object. The objective of this work is to present the 

improvement of a parallel sphere packing for arbitrary domains. The packing to improve was 

directly affected in time by the number of triangles in the mesh of object. This enhancement 

focuses on creating a parallel data structure to reduce build time. The proposed method reduces 
execution time with a high number of triangles, but it takes up a significant amount of memory 

for the data structure. However, to obtain high densities, that is, densities between 60% and 

70%, the sphere packing construction does not overwhelm the memory. 
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1. INTRODUCTION 
 
Things that surround us usually are mostly granular matter, this is a set of solid particles that is 

widely used in industry and its behaviour is widely studied in physics [1][2]. Granular matter is 

virtually represented by particle packings. Particle packings are represented by an object filled 

with particles, where the object is a 3D mesh, this is called a container, and the particles are 3D 
objects of known volumes, for example, spheres, cubes, tetrahedrons, etc. Within the particles 

used, the most used are the spheres due to their simple representation of four real numbers, the 

first three, the centre, referring to its position and the last, the radius, referring to the space it 
occupies. That is why in this research we work with a sphere packing. 

 

A particle packing seeks to be as dense as possible, work on any object, and have a low build 
time. The density of a packing is the percentage of the container space occupied by particles, this 

is also called compaction or solid fraction. Particle packings have two approaches, dynamic and 

geometric packings, the former focused on physical simulations and the latter on geometric 

constructions. There are also some particle packings that we will call overlapping packings, these 
use overlapping particles, that is, they do not take into account their collisions, what they do is 

accommodate the particles in some containers covering the largest possible space, they are 

mostly used to detect collisions between objects, these packings are not taken into account in this 
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research since they move away from its purpose by not having collisions between particles of the 
same container. 

 

The shortcomings of particle packing are mostly the use of a single container and the density 

achieved. The objective of this work is to improve a method that already solves the problems 
mentioned above, the method on which we worked is the method proposed by Cuba and Loaiza 

[3], which is a method that works in parallel, but does not count with a wide analysis of said 

parallelism, in addition to having a high delay with 3D meshes that have many triangles. To solve 
these problems, a data structure will be used which is also parallelized, and the method will be 

tested on different graphics cards. 

 
This article is organized as follows: Section 2 presents the best particle packing methods today 

along with their limitations. In Section 3 the proposed sphere packing method is presented. 

Section 4 shows the tests performed, as well as their results. Finally, we present the conclusions 

in Section 5. 
 

2. RELATED WORK 
 

Particle packings are varied and seek to be dense. These can be classified into dynamic and 
geometric. Dynamic packings use the Discrete Element Method (DEM), they are stable and 

provide the necessary information to perform physical simulations, however, they take a long 

time, which restricts the number of particles in the packing. Geometric packings do not take as 

long as dynamic packings and provide more control of particle distribution in the container. 
 

2.1. Dynamic Packings 
 

These methods seek to carry out physical simulations, for which they work with different forms 

of particles, in this way they are more similar to reality, encompassing a broader study. By 

vibrating a container full of particles the density increases, with this in mind it was proposed to 
use composite cubes with superimposed spheres subjected to mechanical vibration to increase the 

density of the packing, resulting in a maximum density of approximately 70% in a cylindrical 

container [4]; tetrahedrons composed of superimposed spheres subjected to vibration were also 
used, but unlike the previous one, a study of the effects of vibration conditions was made, in this 

study a maximum density of 74.02% was obtained in a cylindrical container [5]. 

 

Cylinders composed of superimposed spheres were also used as particles, in this packing it must 
be fulfilled that the diameter of the container must be larger than the size of the particle, several 

filling methods were carried out, where in one of them, specifically drop filling, it was observed 

that the density of the packing is sensitive to height, this packing reached an approximate 
maximum density of 55% [6]. As you can see, particles composed of spheres are used, this time it 

was decided to use ellipsoids that are similar to spheres, in this study by using a horizontal 

orientation in the particles, that is, the elongated part is horizontal, and by increasing the size of 
the particles increases the density, something interesting, since it is mostly by reducing the size of 

a particle that greater density is achieved, the maximum density reached in this study was a 

density of 70% in a cylindrical container [7]. 

 
In particle packings, modifying the size of the particles to achieve a higher density is common, 

taking it further, it was that Zhao et al. [8] proposed to modify the shape of the particles to 

achieve a higher density, the particles used in this packing are ellipsoids that change shape, this 
research had a maximum density of about 80% in a rectangular container, which is very good, 

however, the shape of the ellipsoid that achieved such compaction is similar to a cube. If a cube 
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is filled with cubes, it can be intuited that it will be a compact packing. As the particles take 
different shapes to get closer to reality, Rakotonirina et al. [9] carried out research on this, this 

proposal joins convex particles to build non-convex particles, the distribution and detection of 

collisions of the particles are based on the convex particles that form the non-convex particles to 

speed up the calculation, however, the computational cost is increased as well. 
 

The spheres are widely seen in particle packing, Campello and Casares [10] use the spheres as 

particles, proposing a layered filling together with a compaction system for the spheres used in 
rectangular containers, the maximum density was 60%. Dynamic packings when focusing on 

physical simulations is that they only work with rectangular or cylindrical containers and 

sometimes both, that is, dynamic packings use at most two domains, this restricts the approach 
that is desired in this research, which is to cover any domain. Currently there are more dynamic 

packing, but their results are similar to those mentioned previously, for example, the proposal by 

Wang et al. [11] that uses octahedrons for vibration experiments. 

 

2.2. Geometric Packings 
 
These methods leave aside physical simulations to focus on the distribution of particles and thus 

build a dense packing. The most used particles in this type of packing are the spheres. The 

spheres are widely used, since for all the calculations that involve them, only four numbers must 

be known, three are their position and the other is their size. These types of packings seek to 
work in any container. A common and widely used method for geometric packing is the 

advancing front approach, this generates an initial set of spheres and new spheres are inserted 

with a strategy based on the previously inserted spheres. 
 

Among the geometric methods, the proposal of Wang et al. [12] stands out, since it is currently a 

geometric method that plans to be dynamic, this method works in a cubic container, and uses 
various geometric methods in the construction of a package of non-spherical particles with 

controllable shapes, this to have realistic particles. 

 

Lozano et al. [13] proposed a method to fill arbitrary containers, this method is based on a 2D 
advancing front approach using a distance field to achieve contact spheres tangent to the triangles 

of the container mesh. This method reaches a maximum density of approximately 60% in 

arbitrary containers. 
 

Li and Ji [14] proposed a method also based on the advancing front approach for arbitrary 

containers. It is proposed to change the size of the particles while building the packing, the new 

particles adjust to the previously inserted neighbouring particles according to the trilateration 
equations. It uses a spatial grid to optimize the detection of particles and accelerate their 

positioning, reaching a maximum density of 73% in a cubic container. 

 
Weller and Zachmann [15] proposed a parallel method using GPU to rapidly pack spheres, 

successively inserting spheres of the largest possible size to fit into the empty spaces. However, 

this method does not display geometric data such as the radii of the spheres or the densities of the 
packings. Also due to its behaviour, relevant data cannot be input apart from the container mesh. 

This method was used for object collisions [16]. 

 

Cuba and Loaiza [3] proposed a sequential and parallel method using GPU, unlike the previous 
method, taking into account geometric data such as the radii and densities of the generated 

packing, this study shows a significant number of results that support their proposal, however, 

these results have shortcomings such as the time it takes to build the packing when working with 
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meshes of high number of triangles, and the shortage of tests of the parallel method, so in this 
research this method is improved and more tests of the parallel methods are carried out. 

 

3. PACKING GENERATION 
 

The proposed method is the improvement of an existing method, this method is the method 
proposed by Cuba and Loaiza [3] called Parallel Sphere Packing for Arbitrary Domains, for 

which this method will be explained in a simplified way, and then the improvements made will 

be explained. 
 

3.1. Parallel Sphere Packing for Arbitrary Domains 
 
This method is the method of Cuba and Loaiza [3], which works with four radii, these are called 

𝑟𝑚𝑎𝑥 , 𝑟𝑚𝑖𝑛, 𝑟𝑚𝑒𝑑, 𝑟𝑚𝑖𝑑. The positions of the spheres are given by a hexagon of spheres, which 

can be seen in Figure 1. The input data for this method is the radius 𝑟𝑚𝑎𝑥  and the mesh of the 
arbitrary container. This parallel packing of spheres leaves randomness aside, therefore, it 

eliminates the need to detect collisions between spheres, it works in two phases, in the first phase 

a box is filled, the box is a rectangular container that surrounds the 3D object to be filled, in the 

second phase a verification is performed on all the spheres to see if they are inside the arbitrary 
container or not, this verification is performed in parallel. 

 

 
 

Figure 1. Spheres hexagon [3]. 

 

3.1.1. First Phase 

 

First the 3D mesh of the arbitrary container is stored, then the radii 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑒𝑑 are calculated 

based on the input radius 𝑟𝑚𝑎𝑥 . To calculate 𝑟𝑚𝑖𝑛, Equation 1 is used, where 𝑏 is the barycentre 

of the upper right triangle and 𝑐 is the centre of the central sphere, this can also be seen in 

Figure2a. To calculate 𝑟𝑚𝑒𝑑 two points are used, 𝑟𝑚𝑎𝑥  and 𝑟𝑚𝑖𝑛, the two points are 𝑝 =
(𝑠𝑚𝑖𝑛. 𝑥, 𝑠𝑚𝑖𝑛. 𝑦, 𝑠𝑚𝑖𝑛. 𝑧 + 𝑟𝑚𝑖𝑛) and 𝑞 = (𝑠𝑚𝑎𝑥 . 𝑥, 𝑠𝑚𝑎𝑥 . 𝑦, 𝑠𝑚𝑎𝑥 . 𝑧 − 𝑟𝑚𝑎𝑥), where 

𝑠𝑚𝑖𝑛represents the sphere with radius 𝑟𝑚𝑖𝑛 that must be added and 𝑠𝑚𝑎𝑥  represents the sphere 

with radius 𝑟𝑚𝑎𝑥  that only varies its position 𝑧 in relation to the sphere with radius 𝑟𝑚𝑖𝑛, this can 

be seen in Equation 2 and Figure 2b. The position of the sphere with radius 𝑟𝑚𝑖𝑛 is the barycentre 

of the upper right triangle. The position of the sphere with radius 𝑟𝑚𝑒𝑑 only varies its position on 

the 𝑧 axis, therefore, its position on the 𝑥 axis is the same as that of the 𝑥 axis of 𝑠𝑚𝑎𝑥  and its 

position on the 𝑦 axis is also the same as the position on the 𝑦 axis of 𝑠𝑚𝑎𝑥; its position in 𝑧 can 

be seen in Equation 3. 
 

 𝒓𝒎𝒊𝒏 = 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝒃, 𝒄) − 𝒓𝒎𝒂𝒙 (1) 

 
𝑟𝑚𝑒𝑑 =

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑞)

2
 

(2) 

 
𝑐𝑚𝑒𝑑 . 𝑧 =

(𝑠𝑚𝑎𝑥 . 𝑧 − 𝑟𝑚𝑎𝑥) + (𝑠𝑚𝑖𝑛. 𝑧 − 𝑟𝑚𝑖𝑛)

2
 

(3) 
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(a)  Data for 𝑟𝑚𝑖𝑛 [3]  

 
(b) Data for 𝑟𝑚𝑒𝑑 and 𝑐𝑚𝑒𝑑  [3]  

 
Figure 2.  Data for radii. 

 
In this phase, a rectangular container is filled that surrounds the arbitrary container, the filling of 

the rectangular container is done in layers starting at the minimum point of this container until 

reaching its maximum point. The filling is done with a small structure called hepta-sphere, that 

seen in the 𝑥𝑦 plane moves in the direction of the positive 𝑥 axis until reaching the limit and then 

moves in the direction of the positive 𝑦 axis until reaching the limit, in this way one layer would 

be filled, then it moves in the direction of the positive 𝑧 axis to fill the next layer. In the filling of 

the enveloping rectangular container, only the centres of the spheres are taken into account for 
the collisions with the container, this is done to cover a greater possible number of spheres. The 

hepta-sphere can be seen in Figure 3, the value of their positions is shown below: 

 

𝑝1 = (𝑝0. 𝑥 + 2𝑟𝑚𝑎𝑥 , 𝑝0. 𝑦, 𝑝0. 𝑧) 

𝑝2 = (𝑝0. 𝑥 + 𝑟𝑚𝑎𝑥 , 𝑝0. 𝑦 + (2𝑟𝑚𝑎𝑥𝑠𝑖𝑛60∘), 𝑝0. 𝑧) 

𝑝3 = (𝑝0. 𝑥, 𝑝0. 𝑦 − (𝑟𝑚𝑎𝑥 + 𝑟𝑚𝑖𝑛), 𝑝0. 𝑧) 

𝑝4 = (𝑝0. 𝑥 + 𝑟𝑚𝑎𝑥 , 𝑝0. 𝑦 − ((𝑟𝑚𝑎𝑥 + 𝑟𝑚𝑖𝑛)𝑐𝑜𝑠60∘), 𝑝0. 𝑧) 

𝑝5 = (𝑝0. 𝑥 + 𝑟𝑚𝑎𝑥 , 𝑝0. 𝑦 + ((𝑟𝑚𝑎𝑥 + 𝑟𝑚𝑖𝑛)𝑐𝑜𝑠60∘), 𝑝0. 𝑧) 

𝑝6 = (𝑝0. 𝑥, 𝑝0. 𝑦 + (𝑟𝑚𝑎𝑥 + 𝑟𝑚𝑖𝑛), 𝑝0. 𝑧) 
 

 
 

Figure 3.  In the left part, a hepta-sphere and in the right, possible movements [3]. 

 

The procedure for filling a layer can be seen in Figure 4a, between every three spheres with 

radius 𝑟𝑚𝑎𝑥  there is a sphere with radius 𝑟𝑚𝑖𝑛 and two spheres with radius 𝑟𝑚𝑒𝑑 as seen in Figure 
4b. 
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(a) One 𝑥𝑦 layer filling. 

 
 

(b) One min sphere and two med spheres [3]. 

 
Figure 4.  Data for layers. 

 

3.1.2. Second Phase 

 
In this phase it is verified if a sphere from the previous phase is inside the arbitrary container. For 

each sphere, it is first verified that the centre of the sphere is inside the arbitrary container, for 

this purpose raycast is used using the Jimenez et al. [17] algorithm for the intersection of a 

segment with a triangle, then it is verified if the sphere collides with any triangle of the mesh, for 
this it is necessary to find the closest point of a triangle, for this the Eberly [18] algorithm is used. 

If a sphere of radius 𝑟𝑚𝑎𝑥  intersects some triangle, it is replaced by 61 spheres of radius 𝑟𝑚𝑖𝑑, the 

positions of these spheres and their radius are obtained by recalculating the positions and radius 

of the dense packing of 61 spheres of Pfoertner [19]. If a sphere of radius 𝑟𝑚𝑒𝑑 intersects any 

triangle of the container's mesh, this sphere is replaced by a sphere of radius 𝑟𝑚𝑖𝑛. Replacements 

are also checked. 

 
This phase is the part that is parallelized, its form of parallelization is dividing the number of 

spheres of the first phase, this parallelization was done using CPU threads and GPU threads. 

 

3.2. Method Improvement 
 

As can be inferred from the previous method, the number of spheres is not the only thing to take 
into account, but also the triangles, since despite being parallel, each sphere is compared with all 

the triangles, being an operation expensive, then it is planned to reduce the cost of said operation 

using indexes in a data structure, the data structures to choose were the octree and the uniform 
grid, finally the last one was chosen as the basis for the data structure to be used due to the 

amount of memory used, indexes are used so that each sphere is compared only with the triangles 

that must be compared, the creation of this structure is parallelized to reduce the time as much as 

possible. 
 

3.2.1. Data Structure 

 
As mentioned above, the data structure used is based on a uniform grid. A uniform grid is a set of 

boxes of the same size that have things inside. The proposed structure is a matrix in which each 

value represents the type of intersection between the information belonging to the row and 
column indices. Boxes will be represented taking their size as data for their creation, their 

positions will come out of their indices using Equation 4, where 𝑏𝑝𝑜𝑠 is the position of the box 

on an axis, 𝑐𝑚𝑖𝑛 is the minimum point of the grid on the same axis, 𝑖𝑑𝑥 is the index of the box 

on the same axis and 𝑏𝑒 is half the distance of the box on the same axis. The number of boxes is 
given by dividing the size of the enveloping rectangular container by axis by the size of the 

boxes. In this case we must place both triangles and spheres, so it was decided to have one 

structure for the triangles and another for the spheres. In the first data structure the rows are the 
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indices of the boxes and the columns are the indices of the triangles, in the second data structure 
the rows are the indices of the spheres and the columns are the indices of the boxes. 

 

 𝑏𝑝𝑜𝑠 = 𝑐𝑚𝑖𝑛 + ((2𝑖𝑑𝑥 + 1)𝑏𝑒) (4) 

 

The data structure for triangles has values 0 and 1, where 0 is that the triangle does not intersect 
the box and 1 is that the triangle intersects the box. The data structure for spheres has values 0, 1, 

and 2, where 0 is that the sphere does not intersect the box, 1 is that the sphere intersects the box, 

and 2 is that the centre of the sphere is in the box, this last value is to avoid calculations, since to 
use the raycast only the centre of the spheres is used. These values are to reduce time, however, 

having an array consumes significant memory. For the intersection of a triangle in a box, the 

Separating Axis Theorem (SAT) algorithm will be used, since there would only be thirteen quick 

checks [20], for the intersection of a sphere with a box the distances per axis are calculated [21], 
and for the algorithm of a point in a box a simple check per axis is used. The method for box-

sphere intersection has some slight modifications, so it is shown in Figure 5, where 𝑏𝑐 is the 

centre of the box, 𝑏𝑒 is half the size of the box, 𝑐 is the centre of the spheres, and 𝑟𝑎𝑑𝑖𝑢𝑠 is the 
radius of the sphere. 

 

 
 

Figure 5.  Box-sphere intersection algorithm. 

 

3.2.2. Sphere Inside the Mesh 

 
That changes with respect to the previous method is the use of data structures, both triangles and 

spheres, to reduce time in knowing if a sphere is inside the 3D mesh of the arbitrary container. As 

the initial datum is the index of the sphere, the boxes linked to it are searched for, and with the 
boxes linked to it, the triangles linked to the boxes are searched, that is, the triangles linked to the 

sphere are searched for, in this way it is not necessary to perform calculations with all the 

triangles, however, there is a problem with this, in the raycast algorithm a counter is used per 

triangle segment intersection and if any triangle is found in more than one box there will be 
problems since will count more than once, this problem is solved with a revision of the next one, 

that is, it will look in the next box to check if the index of the compared triangle is also there, if 

so, the current possible intersection will not be performed, of this way only one calculation will 
be performed per triangle. 
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3.2.3. Parallelization 

 

The method parallelization works with the previous method parallelization, and adds a 

parallelization to the generation of the data structures. The parallelization of the method of Cuba 

and Loaiza [3], worked by dividing the number of spheres for the calculation of the verification 
of spheres, since it was what took more time, however, due to the creation of the data structures, 

this time is reduced. considerably, being the generation of the data structures what takes more 

time now, for which the generation of the data structures is also parallelized. As the data 
structures are matrices, they can be treated as arrays that are divided to then find the row and 

column indices, then with these indices make the intersections with boxes, either triangles or 

spheres. In this way we have two parallel parts, the generation of the data structures and the 
verification of the spheres inside the mesh of the arbitrary 3D container. The new parallelization 

of the method considerably reduces the packing construction time, although depending on the 

number of boxes the memory can become too high, therefore, the amount of this can be decided 

in the creation of the packing, that is, as input data we will have not only the radius 𝑟𝑚𝑎𝑥 , but also 
the size of all boxes. Implementations of parallelizations are shown in Figure 6, Figure 7a and 

Figure 7b, where 𝑡𝑔𝑟𝑖𝑑 is the grid of triangles, 𝑠𝑔𝑟𝑖𝑑 is the grid of spheres, 𝑏𝑠𝑖𝑧𝑒𝑠 are the sizes 

of the grid for each axis, 𝑐𝑚𝑖𝑛𝑠 are the values of the minimum point of the grid, 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 are 

the triangles, 𝑠𝑝ℎ𝑒𝑟𝑒𝑠 are the centres of the spheres, 𝑟𝑎𝑑𝑖𝑢𝑠 is the radius used in 𝑠𝑝ℎ𝑒𝑟𝑒𝑠, 

𝑏𝑥𝑠𝑛𝑢𝑚  is the number of boxes, 𝑡𝑟𝑠𝑛𝑢𝑚 is the number of triangles, 𝑠𝑝ℎ𝑟𝑠𝑛𝑢𝑚 is the number of 

spheres and 𝑣𝑎𝑙𝑖𝑑𝑠 are the positions of the spheres inside the arbitrary domain. 

 

 
 

Figure 6. Spheres validation algorithm. 
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(a)  Triangles grid generation algorithm. 

 
 

(b)  Spheres grid generation algorithm. 

Figure 7.  Grid generation algorithms. 

 

4. RESULTS 
 

This section presents the tests performed as well as their results, the implementation was done in 

C++ OpenGL using different hardware to provide a further study of the method. The range of 

densities to be obtained for each container will be between 60% and 70% based on the method of 
Cuba and Loaiza [3]. First, it will be shown how the proposed method works compared to the 

method of Cuba and Loaiza [3], then comparisons of both methods will be made using containers 

with a high number of triangles, finally the comparison of the parallel methods will be made 
using different graphics cards. The size used for the box is four times the size of the sphere, this 

is because less memory is used without significantly affecting time. 

 

4.1. Comparison of Methods Using Containers from Cuba and Loaiza [3] 
 

The method of Cuba and Loaiza [3] is compared with the proposed method in different 
containers, the data of these containers are found in Table 1. The results of the comparisons are 

found in Table 2. For this comparison, the algorithms are running on an Intel Core i7-8550U 

@1.80GHz with 12GB of RAM, 8 threads and an NVIDIA GeForce MX130 graphics card under 

Windows 11 64bits. The radius 𝑟𝑚𝑎𝑥  chosen for these tests is 0.2𝑢, however, in the Torus and the 
Stanford Dragon, a density between 60% and 70% was not reached due to the shape of their 

meshes, for which, the radius was reduced until reaching this density range. In the case of the 

Torus, the density reached with radius 𝑟𝑚𝑎𝑥  0.2𝑢 was 59.78%. In the case of the Stanford 

Dragon, since it is smaller, it was decided to start with a radius 𝑟𝑚𝑎𝑥  of 0.1𝑢 where its density 

was 53.03%. 
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Table 1. Containers. 

 
Container Measures (u) Triangles Volume (u^3) 

Cube Width (10), height (10), depth (10) 12 1000.0 

Cone Radius (5), height (10) 62 261.80 

Cylinder Radius (5), height (10) 124 785.40 

Capsule Spherical radius (5), cylindrical height (10) 832 245.44 

Sphere Radius (5) 960 523.60 

Torus Max radius (5), min radius (1.25) 1152 154.21 

Stanford Bunny Domain size (8.07 × 8.11 × 6.17) 7202 109.90 

Stanford Dragon Domain size (2. 24 × 3.52 × 5.00) 21782 6.95 

 
Table 2.  Comparison of times. 

 

Container Radius 

(u) 

Density 

(%) 

Cuba and Loaiza [3] Proposed Method 

Sequential 

Time (s) 

Parallel 

Time (s) 

Sequential 

Time (s) 

Parallel 

Time (s) 

Cube 0.2 71.96 0.07 0.47 2.28 0.81 

Cone 0.2 69.34 0.30 0.58 1.56 0.76 

Cylinder 0.2 71.11 0.76 0.55 2.42 1.04 

Capsule 0.2 72.95 3.06 1.11 0.78 0.82 

Sphere 0.2 70.65 8.43 2.01 3.67 1.36 

Torus 0.15 63.27 11.44 2.31 4.82 1.89 

Stanford 

Bunny 

0.2 64.69 42.97 5.54 4.47 2.24 

Stanford 

Dragon 

0.05 64.00 910.12 75.31 78.82 25.35 

 

The results of Table 2 show the advantage of the proposed method compared to the method of 

Cuba and Loaiza [3] in the cases of the Stanford Bunny and the Stanford Dragon, however, in the 

other containers, the time differences are small, due to their low number of triangles, so tests are 
then performed using containers with a high number of triangles. 

 

The visual results of the packing made in Table 2 are shown in Figure 8, in these images it is 
observed that with the densities reached in this table the objects correctly show their shape, 

including details such as the ears of the Stanford Bunny or the tongue of the Stanford Dragon. 

 

 
 

(a) Cube 

 
 

(b) Cone 
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(c) Cylinder 

 

 
 

(d) Capsule 

 
 

(e) Sphere 
 

 
 

(f) Torus 

 
 

(g) Stanford Bunny 

 

 
 

(h) Stanford Dragon 

 
Figure 8. The proposed method in different containers. 

 

4.2. Comparison of Methods Using Containers with a High Amount of triangles 
 

The method of Cuba and Loaiza [3] is compared with the method proposed in the Stanford 
Bunny and the Stanford Dragon used previously, but with more triangles, these two models were 

modified by McGuire [22]. The Stanford Bunny used for this comparison has 144046 triangles 

and is called Stanford Bunny HT. The Stanford Dragon used for this comparison has 871306 
triangles and is called Stanford Dragon HT. This comparison occurs in more powerful hardware 

since the triangles of each mesh are many. The comparison is made on an Intel Core i7-8700 

@3.70GHz with 64GB of RAM, 12 threads and an NVIDIA GeForce RTX 2060 graphics card 
under Windows 10 64 bits. The results of this comparison are shown in Table 3. 
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Table 3. Comparison of times in container with high number of triangles. 

 

Container Radius 

(u) 

Density 

(%) 

Cuba and Loaiza [3] Proposed Method 

Sequential 

Time (s) 

Parallel 

Time (s) 

Sequential 

Time (s) 

Parallel 

Time (s) 

Stanford 
Bunny HT 

0.2 64.78 411.39 21.56 47.56 4.70 

Stanford 

Dragon HT 

0.05 64.07 17639.96 454.52 1144.77 50.24 

 

The results of Table 3 show a clear advantage of the proposed method compared to the method of 

Cuba and Loaiza [3] both in its sequential forms and in its parallel forms. To have a deeper 

analysis of their parallel forms, a comparison of both methods on three different graphics cards is 
made below. 

 

4.3. Comparison of Parallel Methods Using Different Hardware 
 

A comparison of the parallel method of Cuba and Loaiza [3] and the proposed parallel method is 

made using the containers of Table 1 and Table 3, these results are shown in Table 4. 
 

Table 4.  Comparison of times in parallel methods. 

 
Container Radius 

(s) 

Density 

(%) 

Times (s) 

Cuba and Loaiza [3] Proposed Method 

Intel Core 

i7-8550U 

@1.80GHz, 

12GB 

RAM, 

NVIDIA 

MX130 

Intel Core 

i7-8700 

@3.70GHz, 

64GB 

RAM, 

NVIDIA 

RTX 2060 

Intel Core 

i5-10400F 

@2.90GHz, 

16GB 

RAM, 

NVIDIA 

RTX 3060 

Intel Core 

i7-8550U 

@1.80GHz, 

12GB 

RAM, 

NVIDIA 

MX130 

Intel Core 

i7-8700 

@3.70GHz, 

64GB 

RAM, 

NVIDIA 

RTX 2060 

Intel Core 

i5-10400F 

@2.90GHz, 

16GB 

RAM, 

NVIDIA 

RTX 3060 

Cube 0.2 71.96 0.47 0.13 0.20 0.81 0.21 0.22 

Cone 0.2 69.34 0.58 0.15 0.17 0.76 0.21 0.21 

Cylinder 0.2 71.11 0.55 0.19 0.19 1.04 0.22 0.24 

Capsule 0.2 72.95 1.11 0.28 0.22 0.82 0.17 0.18 

Sphere 0.2 70.65 2.01 0.44 0.40 1.36 0.27 0.27 

Torus 0.15 63.27 2.31 0.52 0.50 1.89 0.33 0.31 

Stanford 

Bunny 

0.2 64.69 5.54 1.28 1.22 2.24 0.45 0.39 

Stanford 

Dragon 

0.05 64.00 75.31 11.44 12.14 25.35 1.95 1.65 

Stanford 

Bunny HT 

0.2 64.78 97.90 21.56 21.50 38.26 4.70 4.32 

Stanford 

Dragon 

HT 

0.05 64.07 4854.48 454.52 472.89 1602.52 50.24 47.28 

 

The results of Table 4 show that the proposed method obtains densities between 60% and 70% in 
less than a minute in all the tests carried out, except for the Stanford Dragon HT using the 

NVIDIA GeForce MX130 graphics card, where this container has 871306 triangles. This 

indicates that the method works well, since its execution time is very low, except in cases with a 

very high number of triangles on moderately powerful hardware. 
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5. CONCLUSIONS 
 
The limitations of the proposed method are aimed at the number of triangles contained in the 

model and the size of the radius chosen as input, since reducing this radius increases the number 

of spheres. An excessive number of triangles would saturate the GPU memory and consume more 

time, the same happens when reducing the input radius too much. This excessive number of 
triangles and spheres is in the millions. This indicates that the method would fail when 

constructing a packing of spheres with a density close to or greater than 60% in a highly detailed 

3D model. 
 

The proposed method does not affect the use in arbitrary domains or the densities reached by the 

method of Cuba and Loaiza [3], these densities are between 60% and 70%. In the tests carried 

out, it is observed that the improvement in time is high both in sequential and in parallel, for 
which it is considered a successful improvement of the algorithm. The times achieved by the 

method are relatively low even with a high number of triangles and the memory is not saturated 

for densities between 60% and 70%. This indicates the effectiveness of the method for arbitrary 
containers. 

 

6. FUTURE WORKS 
 

As future works, it is planned to create a software for the industry with indications and 
restrictions of the method so that it can be used in 3D printing. This software will be used in the 

material reduction of a 3D print, the spheres will be holes in the 3D model that allow to print a 

3D model with internal supports. When printing a model, an amount of material of approximately 
the density percentage of the packaging is saved, that is, when using the proposed method in 3D 

printing, between 60% and 70% of material will be saved in a model in the internal part. For 

external supports, it is planned to modify the method by reducing the thickness of the possible 
supports generated, in this way they can be broken without damaging the quality of the 3D 

printing. This software will save a large amount of material in a 3D print. 
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