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ABSTRACT 
 
Image quality affects the visual experience of observers. How to accurately evaluate image 

quality has been widely studied by researchers. Unsupervised blind image quality assessment 

(BIQA) requires less prior knowledge than supervised ones. Besides, there is a trade-off 

between accuracy and complexity in most existing BIQA methods. In this paper, we propose an 

unsupervised BIQA framework that aims for both high accuracy and low complexity. To 

represent the image structure information, we employ Phase Congruency (PC) and gradient. 

After that, we calculate the mean subtracted and contrast normalized (MSCN) coefficient and 

the Karhunen-Loéve transform (KLT) coefficient to represent the naturalness of the images. 

Finally, features extracted from both the pristine and the distorted images are adopted to 

calculate the image quality with Multivariate Gaussian (MVG) model. Experiments conducted 

on six IQA databases demonstrate that the proposed method achieves better performance than 
the state-of-the-art BIQA methods. 
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1. INTRODUCTION 
 

With the rapid development of multimedia, the quality of images not only affects the visual 

experience of observers but also has an impact on image processing algorithms. How to measure 
image quality with lower computational complexity and better generalization performance has 

been a hot spot. The score of each image is the main evaluation criteria. There are two primary 

categories of score acquiring, namely the subjective evaluation and the objective evaluation. For 

the subjective evaluation, scores of different people on the same picture are needed and that is 
costly and time-consuming. On the other hand, models without human involvement are easy to 

use on large-scale databases for objective evaluation. The goal of image quality assessment 

(IQA) is to fit the objective score as close as possible to the subjective score, which means we 
could extract well-chosen features to imitate human behavior for more precise scores.  
 

In general, the objective image quality assessment can be classified into three types which are 

full-reference (FR) IQA [1–6], reduced-reference (RR) IQA [7–10], and no-reference (NR) IQA 

[11–14]. FR IQA methods need the original image and its distorted version to fit the model, and 

RR IQA methods need features of the original image. NR IQA, which is also called Blind IQA 

(BIQA), only needs distorted images to predict scores. In FR and RR IQA methods, the need for 
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the original image as a reference limits the practical use. On the contrary, the BIQA methods do 
not have such strict requirements for model fitting and evaluation. 

 

BIQA can be divided into supervised and unsupervised approaches. Supervised approaches 

usually utilize subjective scores as the ground truth to train the model. Mittal et al. [11] extracted 
natural scene statistics (NSS) features from local normalized images and Yang et al. [15] 

employed Karhunen-Loéve transform (KLT) for learning-based features extraction, then these 

features were projected to subjective scores using support vector regression. Zeng et al. [16] used 
probabilistic quality representation and a more robust function for training the deep BIQA model. 

Ma et al. [17] proposed a multi-task learning-based deep learning approach, which consists of 

distortion identification and quality prediction tasks. Zhu et al. [18] proposed a deep meta-
learning model for prior knowledge learning with good generalization ability. By simulating the 

human visual system, Chang et al. [19] used a visual neuron matrix (VNM) evaluator for quality 

assessment. 

 
Unlike supervised approaches, unsupervised approaches can reveal better generalization 

capability with few manual calibration data. Wu et al. [13] proposed a highly efficient method for 

real-time evaluation. Wu et al. [12] proposed a visual perception nature image quality evaluation 
model for score training, which had an understanding-based global-local structure to simulate the 

top-down structure. Natural image quality evaluator (NIQE) [14] and its feature enriched 

extension, integrated local NIQE (ILNIQE) [20] introduced multivariate Gaussian (MVG) model 
for BIQA which required no subjective scores for regression model training. Liu et al. [21] 

introduced structure, naturalness, and perception features to the NIQE framework for further 

study. 

 
In this paper, we propose a multi-feature fusion NIQE with better performance and lower 

complexity. We select Phase Congruency (PC) and gradient as structure features and select mean 

subtracted and contrast normalized (MSCN) and KLT coefficient as Natural Scene Statistics 
features. Fused structure features and NSS features are used for the MVG model fitting. 

Experiments show that the proposed unsupervised method achieves better performance with 

lower computational complexity on different databases. The rest of this paper is organized as 

follows. Section II introduces the detailed framework of our method. Section III reports the 
experimental results, and Section IV concludes this paper. 

 

2. PROPOSED METHOD 
 

 
 

Figure 1.  Framework of the proposed method 
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The framework of the proposed method is shown in Figure 1. To form the feature matrix, we 
extract structure features and NSS features from each non-overlapping patch of the image, which 

contains PC and gradient in the former, MSCN together with KLT coefficient in the latter. Then, 

we fit the MVG model with the feature matrix of pristine images as a benchmark. The distance 

between the benchmark model and the MVG model of the distorted image is taken as the 
objective score.  

 

2.1. Structure features 
 

2.1.1. Phase Congruency 

 
Phase congruency calculates the maximum moment of PC covariance, which is used as an 

indicator of edge strength. We utilize [22] to compute the PC map of an image. For 2D signal s, 

the responses of even and odd-symmetric filters at position p can be denoted as  
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where 
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We calculate the PC feature from the color relevant space O, which is converted from RGB in 

[23]:  
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Finally, Weibull distribution is used to model the PC distribution in each color channel with scale 

parameter λ and shape parameter q. The dimension of the feature is 1×6:  
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2.1.2. Image Gradient 

 

The gradient is an indispensable IQA index that represents the contrast and luminance 

information of an image. We use filters [1, 1]hD    and [1, 1]T

vD    to compute the horizontal 

and vertical gradient:  
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where I refers to the image patch in the luminance channel and   is the convolution operation. 

The distribution of Gh and Gv could be modeled as zero-mean General Gaussian Distribution 

(GGD) in [21]: 
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We use α and σ as features and get a feature vector with a dimension of 1×4. 

 

2.2. NSS features 
 

2.2.1. Mean Subtracted and Contrast Normalized Coefficient 

 
Natural images and distorted images have different MSCN coefficient distributions. The 

extraction of MSCN coefficients from the image patch I in the luminance channel is as follows:  
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where i and j indicate the coordinates of the pixel and  , | 3,...,3, 3,...,3l k l k       

defines a unit-volume Gaussian window. 
 

GGD in Eq. (6) is used to fit MSCN distribution and get a 2-dimension feature. Furthermore, the 

asymmetric generalized Gaussian distribution (AGGD) model is applied to fit adjacent MSCN 

coefficients along with four directions, i.e. horizontal, vertical, main diagonal, and sub-diagonal 
[11]. Wherein the AGGD model is calculated: 
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where γ controls the shape, βl and βr represent left and right side scale respectively. The mean 

value of this distribution is calculated as below: 
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The parameters (γ, βl, βr, 𝜂) for adjacent MSCN coefficient are set as features with a dimension of 

1×16. 
 

2.2.2. Karhunen-Loéve Transform 

 
KLT is a data-driven feature extractor to extract image structural features [15]. Non-overlapping 

patches of MSCN normalized pristine image M with size k k  is used to collect vectorized 

patch ru, wherein u is the patch index, and the covariance matrix C is defined as: 
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where U is the number of training patches, and m is the average vector of each vectorized patch. 

Then, the KLT kernel with size k k  is the eigenvectors of the covariance matrix in Eq. (13), 

denoted as P. Each column vector in P is an eigenvector of the covariance matrix C, and these 
eigenvectors are arranged in descending order according to their eigenvalues. 

 

GGD is chosen to fit the KLT coefficient distribution, the kernel size k is set to 4 and the feature 

dimension is 1×8.  
 

2.3. MVG fitting for Unsupervised BIQA 
 
The features extracted above can be fitted with the MVG model as follows: 
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where x represents the feature extracted from the image patches and d is the dimension of the 

feature vector, ν and Σ refer to the mean vector and covariance matrix of x respectively. In this 

paper, all features are extracted at two scales, i.e. the original image scale, and the down-sampled 

scale by a factor of 2. The corresponding image patch size of I is 96 96  and 48 48 . 

Therefore, the dimension of the features extracted from each image patch is 1 72 .  
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Then, the quality of the distorted image is measured as the distance between MVG parameters of 
the pristine images and distorted image:  
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where ν1, ν2 and Σ1, Σ2 are the mean vectors and covariance matrices of the pristine MVG model 

and the distorted image's MVG model. 

 

3. EXPERIMENTS 
 

3.1. Databases and Evaluation Methodology 
 
Six widely utilized IQA databases including LIVE [25], MICT [26], CSIQ [27], TID2013 [28], 

CID2013 [29] and LIVE Challenge [30] i.e. LIVE-C are used to test the performance of the 

proposed method. We utilize the full LIVE and MICT databases for experiments. While for CSIQ 

and TID2013, we test on common distortion types, i.e. JPEG, JPEG2000, White Noise, and 
Gaussian Blur for a fair comparison. LIVE-C and CID2013 have real-world distortion without 

specific distortion types, therefore we test on the whole database respectively. We employ 125 

images in [14] to train the KLT kernels and fit the pristine MVG model.  
 

3.2. Overall Performance on 6 Databases 
 
For the supervised models, we use the full LIVE database to train and then test the model on the 

rest five databases. For a fair comparison, we choose the three most commonly used criteria for 

model evaluation, which are Spearman Rank Order Correlation Coefficient (SROCC), Pearson 
Linear Correlation Coefficient (PLCC), and Root Mean Squared Error (RMSE). We calculate the 

SROCC with predicted scores and subjective scores, while for the calculation of PLCC and 

RMSE, we mapped the objective scores to the space of subjective scores with the nonlinear 

mapping method in [31]. 
 

The results of unsupervised methods on LIVE are in Table 1. The proposed method reaches the 

best results of three criteria. Table 2 shows the SROCC of the proposed method as well as other 
BIQA methods. “W. A.” refers to the weighted average performance over the five databases and 

the weights are the number of images selected in each database. The best performances of 

supervised and unsupervised methods are highlighted in bold. The generalization of RankIQA is 
pretty good among supervised models, while the weighted average performance of the proposed 

method is the highest among the unsupervised methods, even higher than RankIQA. 

 
Table 1.  The performance of unsupervised BIQA models on LIVE, which  

contains SROCC, PLCC, and RMSE. 

 

method SROCC PLCC RMSE 

LPSI[13] 0.8181  0.8280  15.3184  

NIQE[14] 0.9080  0.9064  11.5429  

ILNIQE[20] 0.8972  0.9021  11.7913  

SNP-NIQE[21] 0.9086  0.9073  11.4893  

Proposed 0.9121  0.9095  11.3603  

 
 



Computer Science & Information Technology (CS & IT)                                                 335 

Table 2.  SROCC results on Different Databases. 

 

SROCC MICT CSIQ TID2013 CID2013 LIVE-C W.A. 

BRISQUE[11] 0.8526 0.8842 0.8401 0.5485 0.3026 0.5866  

MEON[17] 0.8919 0.9300 0.9012 0.3813 0.3640 0.6062  

RankIQA[24] 0.9109 0.8337 0.8670 0.7040 0.3879 0.6437  

LPSI[13] 0.9005 0.7711 0.7046 0.3230 0.0834 0.4180  

NIQE[14] 0.8472 0.8711 0.7966 0.6568 0.4498 0.6528  

ILNIQE[20] 0.7384 0.8794 0.8422 0.3057 0.4389 0.5946  

SNP-NIQE[21] 0.8908 0.9024 0.8571 0.7155 0.4652 0.6879  

Proposed 0.8745 0.9027 0.8764 0.7753 0.5036 0.7155  

 
The SROCC results of 24-distortion-types on TID2013 are tabulated in Table 3 and the best 

results of each type are highlighted in bold. “Avg.” refers to the average score over the 24 

distortions. Distortion types vary in the TID2013 database, so reaching the highest score on each 
type of distortion is a great challenge for models. LPSI, SNP-NIQE, and the proposed method all 

have six results in bold. Among them, the proposed method has the highest average score. 

Besides, the results of the proposed method are competitive on TID2013 for both common and 
uncommon distortion types. 

 
Table 3.  SROCC results on TID2013 in different distortions. 

 

TID2013 1 2 3 4 5 6 7 8 9 10 11 12 

LPSI 
0.769

0 

0.495

5 
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8 

0.046

2 
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0 

0.432

4 
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7 

0.840

8 
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7 
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3 
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8 
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1 

NIQE 
0.814

8 

0.590

6 

0.541

1 

0.721

1 

0.851

0 

0.744

7 
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8 
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7 

0.577

6 

0.859

7 

0.866

0 

0.121

6 

ILNIQE 
0.875

9 
0.814

5 

0.923

4 

0.511

6 

0.869

1 

0.753

2 
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2 

0.814

3 
0.748

3 
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6 

0.860

6 

0.274

3 

SNP-NIQE 
0.885

6 

0.733

0 

0.649

5 
0.740

0 

0.873

0 
0.799

7 

0.857

3 
0.863

8 

0.612

8 

0.879

1 

0.877

6 

0.281

7 

Proposed 
0.832

7 

0.729

1 

0.825

7 

0.717

8 

0.857

5 

0.785

8 

0.910

1 

0.831

1 

0.687
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0.900

7 

0.910

9 

0.332
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0.052

0 

0.137

2 
0.340
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2 
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0.018
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3.3. Ablation Test 
 

To demonstrate the effectiveness of the structure and NSS features, we report the ablation test in 

Table 4. NSS features take the leading role while structure features play as a supplement. The 
combination of these two types of features can significantly improve the performance, both of 

these features are indispensable. 
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Table 4.  Performance contribution of each type of feature and their combination of SROCC. 

 

Database structure features NSS features Proposed 

LIVE 0.7137 0.9068 0.9121 
MICT 0.6272 0.8713 0.8745 

CSIQ 0.6100 0.8976 0.9027 

TID2013 0.6063 0.8681 0.8764 

CID2013 0.7106 0.7162 0.7753 
LIVE-C 0.4420 0.4865 0.5036 

 

3.4. Significance Test 
 

To verify the statistical significance of the results, we applied t-test [25] on the prediction 

residuals of different objective methods.   
 

Table 5.  Statistical significance results between SROCC values. 1, 0, or -1 implies proposed method is 

statistical superior, comparative, or inferior to the algorithm with 95% confidence. 

 

SROCC LIVE MICT CSIQ TID2013 CID2013 LIVE-C 

BRISQUE - -1 -1 0 -1 -1 
MEON - 0 -1 0 1 1 

RankIQA - 0 0 0 1 0 

LPSI 1 0 1 1 1 1 

NIQE 0 0 0 0 1 0 
ILNIQE 1 1 0 1 1 0 

SNP-NIQE 0 0 0 1 1 0 

 
‘1’, ‘0’ and ‘-1’in Table 5 indicate that the proposed method is statistically superior, comparative, 

or inferior to the competing method on each database with 95% confidence. The unsupervised 

method is a little inadequate compared with supervised ones. The proposed method is no worse 

than other unsupervised methods. The proposed method has comparable performance with NIQE 
and SNP-NIQE, however, it is better than ILNIQE and LPSI on more than half of the databases. 

 

3.5. Computation Complexity Comparison 
 

Table 6 shows the average running time of different unsupervised BIQA methods on LIVE. 

These five methods are implemented on the MATLAB platform and tested on our PC with the 
following configuration, CPU: Intel Core i7-3770 3.40GHz Dual-Core, RAM: 8GB, and 

Windows system. All images in the LIVE database are utilized for the running time test. The 

generalization performance is good for ILNIQE, but it has higher computational complexity. The 
average running time of LPSI is very short, but the accuracy and generalization ability are 

limited. The proposed method has the highest results of six databases on a weighted average, the 

generalization performance and running time are competitive. 

 
Table 6. Average running time of different unsupervised BIQA methods on LIVE. 

 

 LPSI NIQE SNP-NIQE ILNIQE Proposed 

Times(s) 0.02 0.24 5.06 5.49 1.21 
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4. CONCLUSION 
 
In this paper, we propose an unsupervised BIQA method based on multi-feature fusion using 

structure features and NSS features. We extract PC, gradient, MSCN, and KLT features from 

non-overlapping image patches to fit the MVG feature matrix. The distance between the pristine 

and distorted MVG feature matrices is used as the objective score. Experiments on six IQA 
databases show that the proposed method achieves better performance with lower computation 

complexity on both common distortion types and real-world distortion. In the future, we can 

extend our work to uncommon distortion types.  
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