
David C. Wyld et al. (Eds): EMSA, SEA, AIFU, NLCAI, BDML, BIoT, NCOM, CLOUD, CCSEA, SIPRO - 2022
pp. 47-54, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.120605

KEY LEARNINGS FROM PRE-SILICON

SAFETY COMPLIANT BOOTROM
FIRMWARE DEVELOPMENT

Chidambaram Baskaran, Pawan Nayak, R.Manoj,

Sampath Shantanu and Karuppiah Aravindhan

Texas Instruments India Ltd, Bangalore, India

ABSTRACT

Safety needs of real-time embedded devices are becoming a must in automotive and industrial

markets. The BootROM firmware being part of the device drives the need for the firmware to

adhere to required safety standards for these end markers. Most software practices for safety

compliance assume that software development is carried out once the devices are available. The

BootROM firmware development discussed in this paper involves meeting safety compliance

need while device on which it is to be executed is being designed concurrently. In this case, the

firmware development is done primarily on pre-silicon development environments which are

slow and developers have limited access. These aspects present a unique challenge to

developing safety compliant BootROM firmware. Hence, it is important to understand the

challenges and identify the right methodology for ensuring that the firmware meets the safety

compliance with right level of efficiency. The authors in this paper share their learnings from
three safety compliant BootROM firmware development and propose an iterative development

flow including safety artefacts generation iteratively. Concurrent firmware development along

with device design may sound risky for iterative development and one may wonder it may lead

to more effort but the learnings suggests that iterative development is ideal. All the three

BootROM firmware development has so far not resulted in any critical bugs that needed

another update of the firmware and refabrication of the device.

KEYWORDS

Concurrent development, Firmware development, Safety compliance, Pre-silicon software

development.

1. INTRODUCTION

The challenges to coordinate the different product developments activities have dramatically

increased with Concurrent Engineering and Integrated Product and Process Development [1]. In
order to accelerate the time to market, firms attempt to overlap the different activities in product

design and development – leading to iterative overlapped development. Safety software

development has typically followed the traditional highly-structured approaches such as V-model
or waterfall [2]. The V-model [3] is composed of well-defined 9 steps through project initiation,

design, test, maintenance and phase-out. A recent study of the safety software development and

agile development [4] indicates that the agile methods have been not adopted significantly. When

there is a need to adopt these methods to specific safety software development with constraints
such as concurrent development and limited access to test environments, there is not much study

done that can be beneficial and reused. Authors in this paper attempt to provide few key learnings

http://airccse.org/cscp.html
http://airccse.org/csit/V12N06.html
https://doi.org/10.5121/csit.2022.120605

48 Computer Science & Information Technology (CS & IT)

from safety firmware development concurrent with hardware design in a constrained pre-silicon
environment and show efficient ways to meet the safety compliance.

2. SAFETY SOFTWARE DEVELOPMENT

Automotive industry has adopted usage of electronic control units (ECUs) in a large scale within
a very short period of time. Large number of processors are heartbeats of these ECUs and they

perform several safety critical functions [5]. One of the key requirements for processors or

devices being used in these functions is for firmware in the ROM of these devices to be safety
compliant. The most popular standard for safety compliance is the ISO 26262 standard titled

“Road vehicles — functional safety” [6]. The compliance to this standard needs’ adoption of

software practices and tools that to demonstrate the compliance to standard and ensuring quality

of the software. This needs compliance across OEMs, their suppliers, and developers of
automotive components. Part 6 of this standard [6] details the practices to be adopted by

software developers. The standard requires well documented and detailed requirements followed

by design details documentation and finally good test plans. These artefacts need to be
thoroughly reviewed and also traceability of the requirements to design to test is critical to ensure

quality of the delivered software. It is very essential to prove that the development meets the

compliance requirements. Addition to the detailing the implementation aspects, compliance to
coding standards though MISRA-C [7] and dynamic coverage of the code through testing is also

mandatory. The final resulting firmware must be well tested and test results produced to show

that the firmware has zero possible bugs. Most of the literature details methodology and

practices for safety software development that is significantly different from the pre-silicon
firmware development presented by the authors in this paper. The authors discuss about safety

compliance for firmware development while the device is being designed.

3. PRE-SILICON SOFTWARE DEVELOPMENT CONSTRAINTS

The firmware development discussed in this paper involves concurrent development while the

device on which it is to be run is still being designed. This concurrent development of the device

and the firmware enables shorter time to market as the firmware is put into the ROM as soon as
the device design is completed and hence built into the fabricated device ROM. However, this

poses several challenges in terms of availability of testing platform for firmware development as

the actual device is still being designed. The testing platforms used for these scenarios are
referred to as pre-silicon testing platforms. Several challenges of pre-silicon testing platform are

listed below.

3.1. Speed of the pre-silicon Platform

Software developed pre-silicon needs a testing environment to test to ensure it has near zero
defects. These test environments are very slow since the entire design of the device is emulated

using another hardware. For example, for the devices for which the authors have developed the

firmware these environments run at 100 KHz while the real device can run at close to 100 MHz.

This slowness has a direct impact on the amount of time spent on testing. For example, for the
firmware development needed almost 10 days of testing time due to the slowness of the

environment.

3.2. Cost of the pre-silicon Platform and access time

The pre-silicon platform is very costly and typically only couple of platforms are available for
each device design. These platforms are used by multiple teams due to hardware-software

Computer Science & Information Technology (CS & IT) 49

concurrent development and hence different teams are provided a very short period of access to
these platforms. For instance, the firmware team of 3 software engineers in total had access time

of 40 hours per week – approximately 14 hours per week per engineer. Safety compliance needs

several test results and artefacts to be generated and hence the slowness of the testing

environment presents a unique challenge.

4. CONCURRENT DEVELOPMENT CHALLENGES

The authors worked on firmware development while the design of the device on which the
firmware is expected to run was also being developed concurrently. This type of concurrent

development introduces additional challenges to the safety compliance for firmware

development.

4.1. Out of sequencing of features development

In this type of concurrent development - some of the features of the device may be available

towards end of the hardware design and hence software team will have to develop these features

without having any platform to validate them since the testing environment is built from the

completed hardware design. This results in quite a bit of time gap between completion of design,
implementation and testing of the firmware.

Figure 1. Out of sequencing of HW and SW features

Figure 1 shows timeline sequence of a scenario where the device hardware features
implementation is in a different sequence compared to firmware features. This can happen as the

effort to design the hardware feature and the related firmware feature may not be very similar and

also team sizes working on these can differ. Due to these reasons out of sequence of development

was found to be very common in all the 3 firmware projects. As a result, the test platforms for
firmware testing may be available at a later point in time well beyond the implementation of the

firmware.

4.2. Cross functional team bandwidth for reviews

Firmware software is usually reviewed by teams that are also involved in design of the device
and the testing of the device. Many aspects of the firmware also pertain to aspects like device

qualification, device characterization and hence the firmware design and implementation needs to

be carefully reviewed by cross-functional teams. As the different teams involved in the device
development concurrently, the availability of different team members for reviews is a challenge.

For safety compliance it is important to review the design, implementation, test plans and test

50 Computer Science & Information Technology (CS & IT)

results at the right time with right level of rigor. The reviews need to be recorded and quality of
the reviews have to be met.

5. KEY LEARNINGS

Most of the literature discuss the challenges in meeting safety compliance in software
development that is typically carried out on a platform where the final device on which this

software needs to run is already available (referred to as post-silicon software development).

Development of safety compliant firmware while the device itself is being designed is very
special case which opens up new challenges. Authors in this paper discuss the key learnings from

three such firmware development projects. The understanding of the constraints of the

development environment, concurrent development and safety compliance challenges can enable

in efficient and repeatable methodology for pre-silicon safety compliant firmware development

5.1. Safety process challenges for pre-silicon safety compliance in concurrent

development

In this type of concurrent development - some of the features of the device may be available
towards end of the hardware design and hence firmware team will have to develop these features

without having any platform to validate them since the testing environment is built from the

completed hardware design. This results in quite a bit of time gap between completion of design,
implementation and testing. Authors in their first firmware development found that during the

critical phases of the design and implementation cross functional teams were also nearing

completion of their milestones leading to time constraints. This resulted in delays in reviews and

feedback which are very essential for safety compliance. Learning 1 – Ensuring the cross-
functional team plans are well synchronized on a periodic basis and not just at the beginning of

planning for dependencies on deliverables but also at completion of design feature wise helped in

streamlining the development. The traditional firmware development focused on completing the
entire design and then focused on reviews but the authors soon found out that each feature level

review was more productive from better reviews as well as planning perspective.

Figure 2. Balancing the reviews – periodic reviews

It is recommended that the availability of team members especially multi-functional team

members who are also involved actively in their own domain deliverables is available for

Computer Science & Information Technology (CS & IT) 51

reviews. Cross functional teams bring more insight into the design - the architect of the device
has good overview of the usage requirements of a customer, while the team that is involved in

device characterization can provide inputs on testing aspects. Learning 2 – The sequence of the

reviews is also very critical. Typically, firmware adds few new features while most of the other

features are reused from prior devices. Focusing on the new features early - design review, test
plan reviews enabled effective reviews early, better quality of the design and also provided

sufficient inputs to improve the implementation for safety compliance. An incremental review

process with new features being reviewed early has been found to be very effective. Interestingly
these new features need to be reviewed also towards end of device design as the other teams

involved in the design would have learnt a lot more of the details as well. This is a very unique

review flow that authors identified to be effective in firmware development that is carried out
concurrently with device design.

Figure 3. New features early and revisit reviews again at end

5.2. Safety process challenges for pre-silicon safety compliance in concurrent

development – artefacts generation

Several artefacts need to be generated for safety compliance. It is important to understand the
limitation of the testing environment and speed so that the generation of these artefacts can be

planned better. Learning 3 – The time for artefacts generation were overlooked in the first

firmware development. The initial thought process was to generate some of the artefacts like code
coverage report towards end of the firmware development so that final reports needed for

meeting safety compliance can be made available. The time taken to generate these dynamic

analysis report almost took 1.5x of the total testing time as the testing environment was not

available continuously and the tests had to run and re-run to generate for any coverage gaps.
Authors recommend that these dynamic analysis report generation be done module wise as and

when they are completed to look for any code coverage gaps. This not only shortens the time to

run (since it is done at a smaller module level) but also to quickly address the gaps to generate
new tests to run.

52 Computer Science & Information Technology (CS & IT)

Figure 4. Dynamic analysis – code coverage iteratively

Authors recommend that the artefacts needed for safety compliance be classified into 2 classes –

one that needs the test environment and one that is static – without needing any test environment.

The artefacts that need the testing environment needs to be planned well for pre-silicon firmware
development. It is highly recommended that these artefacts if they can be generated incrementally

through the development cycle then they need to be generated periodically.

 Static artefacts – requirements, design document, test plan, traceability from
requirements to design to test, MISRA-C compliance report

 Dynamic – needing test environment – test results, dynamic analysis

The dynamic analysis report (code coverage from testing) generation is heavily dependent on the

testing environment and hence it is a key item to be planned well ahead. Each team member does

not get a continuous access to the pre-silicon development environment and hence the generation

of tests for coverage has to be planned well. In a post-silicon software development this is a not a
key constraint as the environment to test is always available and each member may have

exclusive test setup.

5.3. Safety process challenges for firmware code that is reused from non-safety

development

The firmware development is usually is not written from scratch and multiple parts of the

firmware is reused from older devices as well. One of the challenges in this reuse is that those
reused pieces of firmware may not have gone through the safety compliance needs. Authors in

their firmware development had significant portions of reused software and identified several

artefacts that can help in identifying the quality of these reused software through mapping the

functionality of reused software to safety features expected and identifying the level of rigor
needed for safety compliance. Learning 4 - The pieces of firmware that needed rigor was found

to be portion of software that is involved in configuring registers in the device that can cause the

functionality failure at run-time. Focusing on these aspects enabled building the rigor for the
reused firmware pieces. The start-up booting time failures were made to return error values that

can be handled at the application level and hence less rigor was needed for these failures. Further

the reused firmware features were covered 100% with tests and traceability reports were

Computer Science & Information Technology (CS & IT) 53

generated to ensure that these were fully tested. Dynamic analysis coverage was also another
aspect added to ensure that the coverage of the reused firmware was close to 100%. These efforts

saved significant time without having to go through code reviews and design reviews of the

several thousand lines of code that were reused.

6. RECOMMENDATION FOR ITERATIVE DEVELOPMENT

The authors through their learnings from three safety compliant BootROM firmware

development projects recommend that the development must be carried out iteratively.
Concurrent development along with device design and development may sound risky for iterative

development and one may wonder it may lead to more effort but the learnings suggests that

iterative development is ideal.

 Suggested methodology is to first start with new features, complete and then move to reused
or known features. The iterative development with new features designed, reviewed, tested

followed by reused features ensures review rigor and early identification of problems.

 Iterative generation of safety collaterals - Iteratively generate the safety collaterals like design

document, test cases and also generate reports from testing like dynamic code coverage
through the feature development given the pre-silicon environment challenges.

 Revisit the new features design, test cases one more time towards end of the firmware

development to look for newer understanding from the cross-functional teams as those teams

also would have completed their implementations and tests for the new features. Several new
findings and improvements were seen during the second round of reviews.

Figure 5. Iterative development flow

54 Computer Science & Information Technology (CS & IT)

7. CONCLUSION

In order to accelerate the time to market, firms attempt to overlap the different activities in

product design and development – leading to iterative overlapped development. Authors in this

paper present learnings from such a development where there were additional challenges in

needing to develop firmware concurrently with device design along with the limitation of pre-
silicon platform. Interestingly it was observed that the iterative development of the firmware

through new features first and then towards reused features provided optimal usage of time and

effort. The constraints of the pre-silicon environment pushed for early test reports generation in
an incremental manner so that the environment could be used efficiently. It was also found that it

is essential to revisit the design, testing of the new features at the end of the firmware

development to incorporate any new learnings from cross-functional teams as these teams also

would have learnt from their own work. The synchronization of design and testing is a huge
challenge due to different team sizes and efforts and hence ensuring one final design and test

review when cross-functional teams have also progressed helped in identifying errors and

solidifying the new features in firmware. This is another unique aspect recommended by the
authors.

REFERENCES

[1] Browning, T.R., Eppinger, S.D., 2002. “Modeling impacts of process architecture on cost and

schedule risk in product development”. IEEE Transactions on Engineering Management 49 (4), 428–

442.

[2] Roger S. Pressman, “Software Engineering: A Practitioner’s Approach 7th Ed”, MacGrawHill, p.40-

41, 2010.

[3] Paul Rook, “Controlling software projects”, IEEE Software Engineering Journal, vol. 1, no. 1, p.7-16,

1986.

[4] Rashidah Kasauli, Eric Knauss, Benjamin Kanagwa, Agneta Nilsson and Gul Calikli Chalmers
“Critical Systems and Agile Development: A Mapping Study”, 2018 44th Euromicro Conference on

Software Engineering and Advanced Applications, 470-477.

[5] Georg Georgakos, Ulf Schlichtmann, Reinhard Schneider, and Samarjit Chakraborty. “Reliability

challenges for electric vehicles: from devices to architecture and systems software” In Proceedings of

the 50th Annual Design Automation Conference, page 98. ACM, 2013.

[6] ISO 26262-6:2018 Road vehicles — Functional safety — Part 6: Product development at the software

level.

[7] Motor Industry Software Reliability Association et al. MISRA-C: 2004: Guidelines for the Use of the

C Language in Critical Systems.

 [8] Xiaocheng Ge, Richard F Paige, and John A McDermid, “An iterative approach for development of

safety-critical software and safety arguments”, In Proc. of AGILE Conf., pages 35–43, Nashville, TN,
USA, 2010. IEEE.

AUTHORS

Chidambaram Baskaran, Pawan Nayak, R.Manoj, Sampath Shantanu and Karuppiah Aravindhan

are part of the Texas Instruments India (Ltd) with key areas of interest being embedded software

development, ROM development and driver development for peripherals.

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	Abstract
	Keywords
	Concurrent development, Firmware development, Safety compliance, Pre-silicon software development.

