
Mutual Inlining: An Inlining Algorithm to Reduce the executable

Size

Yosi Ben-Asher
Western Digital Tefen and
The University of Haifa CS
yosi.Ben-Asher@wdc.com

Nidal Faour
Western Digital Tefen
nidal.faour@wdc.com

Ofer Shinaar
Western Digital Tefen
ofer.shinaar@wdc.com

Abstract

We consider the problem of selecting an optimized subset of inlinings (replacing a call to a
function by its body) that minimize the resulting code size. Frequently, in embedded systems,
the program’s executable file size must fit into a small size memory. In such cases, the compiler
should generate as small as possible executables. In particular, we seek to improve the code size
obtained by the LLVM inliner executed with the -Oz option. One important aspect is whether or
not this problem requires a global solution that considers the full span of the call graph or a local
solution (as is the case with the LLVM inliner) that decides whether to apply inlining to each call
separately based on the expected code-size improvement. We have implemented a global type of
inlining algorithm called Mutual Inlining that selects the next call-site (f()callsg() to be inline
based on its global properties. The first property is the number of calls to g(). Next property
is determining if inlining g() to f() may prevent inlining other more beneficial neighboring call-
sites. Finaly repeated inlining iterations over the call graph are performed until there are no
more beneficial inlinings to perform. Hence, considering the effect of previously made inlinings
on the next call-site to be inline. Our results show small but consistant improvement compare
to LLVM’s Oz.

1 Introduction

Frequently, in embedded systems, the program’s executable file size must fit into a small size
memory. In such cases, the compiler should generate as small as possible executables. There are
other reasons why a smaller executable is desired, including: 1) It may run faster; 2) It can save
power due to reduced number of I-cache-misses and DRAM size; 3) It can free the RAM needed for
the dynamic parts of the program and other parts of the application, such as the real-time operating
system. Several techniques can reduce the executable size, in particular using Overlays [1] wherein
the program dynamically loads different parts of the executable, however here we consider using
selective inlining (a compiler optimization) as a way to reduce the resulting executable.

Inlining [2] is a well-known compiler optimization that replaces a call statement ( call-site) with
the body of the called function. For example in the following code the function g() (referred to as
the “caller”) contains two call statements to f() (the “callee”).

int A[1000],x2;

{

while(A[t] > z) { A[t]+=z; t--; }
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return(t);

}

int g(int x, int y)

{

x = f(x,y)+y+22;

x += f(x,y);

return(A[x]);

}

When inlining f() into g() the compiler may decide to replace the three calls to f() by the body of
f() obtaining the following program.

int g(int x, int y)

{ int ty;

ty=y;

while(A[ty] > x) { A[ty]+=x; ty--; }

x = ty+y+22;

ty=y;

while(A[ty] > x) { A[ty]+=x; ty--; }

x +=ty;

return(A[x]);

}

Note that in the two inlined bodies of f() in g() the variable x is directly used in the inlined body
of f() while since y is modified in the inlined body we need to save it in a temporary variable ty.
This inlining affected the resulting size by the following factors:

• It saved the two call-instructions of f() in g() and the two return-instructions from f() to
g().

• It possibly saved the instructions needed to pass the two parameters x, y from g() to f(). The
term “possibly” refers to the possibility that in the original program x, y have been passed
by registers, not by the stack.

• It possibly saved the instructions used to save and restore some of g()’s registers according
to the calling convention.

• It increased the size since the body of f() is now duplicated twice instead of once in the
original program.

• It increased the size due to the use of ty = y compared to the original code.

• The size can also increase due to the application of optimization after the inline was applied.
For example, dead-code elimination may eliminate instructions in the callee that is no longer
needed due to some parameters with constant values in the call.

It thus follows that inlinings may increase the executable size mainly because the body of the
callee may be duplicated in several callers. However, inlining can also reduce the executable size
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as parameters passing + the calling sequence are eliminated. In addition following optimizations
can reduce the size of the inlined callee even further. Inlining also affects the execution time.

We remark that inlining affects the execution time due to many other reasons (apart from the
reduction in code size):

• Inlining may increase the size of the instructions-cache, creating in-cache-copies of the same
function competing with each other.

• Inlining can improve the scheduling increasing the ILP.

• Inlining can allow us to apply optimizations such as CSE and invariant code motion across
functions if they happen to be inlined inside the same function.

Previous works on inlining techniques considered a different problem than the one addressed here,
namely that of finding the subset of inlinings that increase performance the most while not exceeding
a given budget of memory size. This memory budget refers to the executable size that is obtained
when no inline is applied. Typically these works present a heuristic that balances the expected
increase in performance due to a given inline with the expected size increase due to that inline.
The execution frequency of that call usually estimates the expected performance due inline a given
call. This differs from the problem considered here, namely to select the best subset of inlinings
(caller-callee pairs) that minimize the resulting executable size the most.

The proposed algorithm computes such a subset of profitable call-sites (caller+callee). Unlike
the LLVM’s Oz inliner that scans the call graph and separately decides whether or not to inline
a given call, the proposed algorithm considers a more global type of solution wherein the effect of
inlining a call on its neighboring calls is taking into account. This is because inlining one profitable
call site may cause an even more profitable neighboring call site to become non-profitable. As such,
the proposed algorithm selects a better subset of inlinings comparing to the LLVM’s -Oz inliner.

Section 2 contains a formal graph based model for evaluating the effect of inlining. Next, section
3 specifies the proposed inlining algorithm, while section 4 compares the main features of the
propozed algorithm to those of the regular -Oz inliner. Finaly, section 5 compares the executable’s
size of the Oz-inliner vs. the proposed MI-inliner for a selected set of C/C++ programs.

2 Formalizing the problem

Here we describe a simplified model for the inlining problem of finding a subset of call sites from a
given call graph that minimizes the size of the resulting executable. The model contains the call
graph wherein each edge indicate a call; it is a simplification of the real situation. Thus with every
part of the model, we indicate in what way it is a simplification:

• We are given a call graph G (directed a acyclic graph) whose nodes are functions f1, . . . , fn
and an edge fi −→ fj indicates a call to fi from fj .

The simplification part is that we assume that all the calls of the program are given as edges.
This ignores the fact that some calls in a program will not be specified as edges in G as:

– There are call-sites that call a function via a pointer (indirect calls); hence, the callee is
unknown, and no edge for this call will be produced in G.
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– G is, in fact, the call graph per module as usually, applications contain multiple modules
that are compiled separately. Hence, if the callee is an external function, its body may
not be available, and G will not include an edge for this call.

• Each node fi has a size |fi| indicating the size in bytes of fi’s code. If we do not apply any
inline the cost (total size of the executable) is S =

∑n
i=0 |fi|.

This is a simplification as at the compilation stage in which the inlining is performed The
function’s code is given in its Intermediate representation (IR instruction) form [3] not in the
final machine code, which will be generated after several stages of optimizations and mi-code
generation. The functions’ size we get are estimations of the IR instructions that will be
eliminated by the following optimizations and to the number of machines instruction will be
finally generated.

• Each edge fi −→ fj of G is labeled by a size reduction ei indicating the reduction in the size
of fj if we will apply the inline of fi into fj . This size corresponds to:

– The elimination of the calling sequence (call+return instructions).

– Elimination of the callee’s instructions for saving/restoring the caller’s registers, as now
the callee’s body becomes a natural part of the caller’s code.

– Elimination of parameter’s passing in the caller, as after inlining the callee’s instructions
will directly access the caller’s registers.

This holds if we ignore further possible reduction in the size of fj +fi caused by optimizations
such as dead-code elimination and function specialization applied after inlining. Also, this
does not account for a possible increase in the register pressure caused by adding the callee’s
body to the caller (possibly adding more spills to the caller).

• we assume that all the incoming edges (calls) to a function fi has the same saving ei. since
the saving due to inlining depends on the call to fi which is the same for every f calling fi.

This is a simplification since different calls to the same function may have other savings, as
the saving of each call depends varies due to the number of parameters set to constants in
every call. This assumption is only made for simplification in the description, but in the
proposed algorithm’s actual realization, we compute the estimation to each call separately.

• The sum of the eis of outgoing edges of fj (all the calls made by fj) must be smaller than the
size of fj so that the result of inlining all the calls of fj will not produce negative numbers.
Thus inlining may reduce the size of fj but never eliminate it.

Thus if we inline fi −→ fj then

• The size of fj becomes |fj |+ |fi| − ei.

• The edge fi
ei−→ fj is eliminated.

• For every fk
ek−→ fi (function called by fi) we need to add an edge fk

ek−→ fj to G.

• If the number of calls to fi is zero it is eliminated from the graph.
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Figure 1 depicts two inlining steps and there effect on the resulting size. Note that for inlining a
node with outdegree = 1 is allays beneficial, S = S − e3 after inlining f3 into f4, however the
second inlining f4+f3 into f5 (f3+f4 has outdegree = 2) add the cost S = S+|f4|+|f3|−e3−e4.
Thus we need that |f4|+ |f3| − e3− e4 ≤ 0 in order for this inlining to be profitable.

f1 f2

f4

f6f5

e4 e4

+f3

e2e1

e1

intial call graph

f3

f1 f2

f4

f6f5

e2

e3

e4 e4

e1

e1

S = |f1|+|f2|+|f3|+|f4|+|f5|+|f6|

inlining f3 to f4 inlining f3 +f4 to f5

f1 f2

f4

f6

e4

+f3

e2e1

e1

e1

e2

f5+f4+f3

S = |f1|+|f2|+|f3|+|f4|+S = |f1|+|f2|+|f3|+|f4|+|f5| +|f6|−e3

|f5|+|f3|+|f4|+|f6| −e3 −e4

Figure 1: Sequence of inline steps and the resulting size.

Defining inlining this way allow us to specify the problem as follows:

Definition 2.1 Given a call graph G0 such that

• The nodes of G0 are functions f1, f2, . . . and the size of each fi (|fi| is attached.

• The edges of G0 fi −→ fj are labeled by the saving fi
ei−→ fj that will be obtain after inlining

the call fi −→ fj.

The goal is to find a sequence of inlinings:

G1 = inline(fi
e−→ fj ∈ G0), G2 = inline(fk

e−→ fm ∈ G1), . . . . . . Gk = inline(fz
e−→ fr ∈ Gk−1),

for which The size S =
∑

fi∈Gk |fi| is the smallest overall possible subsets of inlinings (excluding
recursive calls).

Note that there are finite number of possible subsets hence this definition is valid as after each
inline the number of edges in the resulting Gt = inline(fz

e−→ fr ∈ Gt−1) is smaller than the edges
in Gt−1.

3 Proposed Algorithm

LLVM inlining algorithm works by inlining G’s nodes bottom-up in topological order. All its call-
sites (calls to it from other functions) are examined to see if they are profitable for each node. A
call site (edge) fi

e−→ fj is profitable if |fj | − e ≤ threshod. For the Oz option, this threshold =
5, basically meaning that the overall size is reduced due to this inlining. However, this bottom-up
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order may not always be the correct one (i.e., obtain the optimal result). Figure 2 depicts a case
wherein by selecting different values to ei and |fi| it may be better to do either the upper inline
(inlining-1) or the bottom inlining (inlining-2). If |f3|−2e3 < −e1 − e2 then inlining-1 is preferable
otherwise inlining-2 (LLVM style) is preferable. Also as can be seen eventually we get the same
cost which, compare to the original cost S, is now S + |f1| + |f2| + |f3| − 2 · e1 − 2 · e2 − 2 · e3.
This may not be beneficial compare to doing just one inlining. This proves that applying LLVM
inlining (bottom-up) may not always be beneficial.

f1 f2

e2

f3

e1

e3

f4 f5

e3

intial call graph f4+f3+f1+f2 f5+f3+f1+f2

inlining f3+f1+f2 to f4 and to f5

f2

f4+f3

f1

f5+f3

e1e1 e2 e2

inlining f3 to f4 and to f5

e3

f4 f5

e3

f3+f1+f2

inlining f1 and f2  to f3

f4+f3+f1+f2 f5+f3+f1+f2

inlining f1,f2 to f4 and to f5

1

2

S = |f1|+|f2|+|f4|+|f3|+|f5|+|f3| −2e3
S = S+|f3|−2e3 S = S+|f3|−2e3+|f1|+|f2|−2e1−2e2

S = S−e1−e2

S = |f1|+|f2|+|f3|+|f4|+|f1|+|f2|+|f3|+|f5| −2e1−2e2

S = S−2e1−2e2+|f3|+|f2|+|f1|−2e3

Figure 2: Depend on the values of ei and |fi| different inlining should be selected.

Next we differentiate between two types of nodes:

Tree nodes- Nodes/functions with a single, i.e.functions with only one call-site. Tree nodes should
always be inlined so that maximal tree-like sub-graphs are always inlined to the root caller.
This is a safe move as, after inlining, the body of the callee does not remain in the executable,
and size reduction is guaranteed. Hence inlining a node with in-degree one is always part of
the optimal subset of selected inlinings.

Star nodes- Nodes/functions with more than one caller. A profitable star is a node that inlining
it to all its callers will decrease the overall code size. Given outdegree = d and edges fi

ei−→
f i = 1 . . . d a profitable star satisfies that

∑d
i=1 ei + |f | ≥

∑d
i=1 |f |.

Note that we have defined a profitable inline of a star as inlining of all the calls to this node. Thus
we excluded the possibility that inlining some (but not all) calls to this node can be profitable.
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This is based on the claim that if it is not profitable to inline all the node’s outgoing edges, then
inlining a partial subset of its edges can not be a part of an optimal solution (one that achieves the
minimal size). The validity of this claim is due to the additive linear combination of the overall
size and the fact that each outgoing edge of a node contributes the same saving to the final cost.
Figure 3 is an example showing that partial inlining of a star’s calls is not profitable. The initial
G has seven nodes and a star at f1 with three calls (f2 −→ f1, f3 −→ f1, f4 −→ f1. The initial
cost (size) is 206. The figure depicts three inlinings of the f1-star (left to right):

• Inlining only f4 −→ f1 and then completing the remaining inlining of tree nodes f5 −→
f4 + f1 and f6 −→ f5 + f4 + f1. This reduce the overall size to 196.

• Full inlining f4 −→ f1,f3 −→ f1,f2 −→ f1 and then completing the remaining inlining of
tree nodes f5 −→ f4+f1 and f6 −→ f5+f4+f1. This increase the overall size to 236. and
then completing the remaining inlining of tree nodes f5 −→ f4+f1 and f6 −→ f5+f4+f1.

• Inlining none of the calls to f1 and then completing the remaining inlining of tree nodes
f5 −→ f4 and f6 −→ f5 + f4. Indeed this option obtains the best score reducing the
overall size to 186 which is better then what is obtained by the partial inlining f4 −→ f1.
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f2 25 f3 25 f4 10

f5 10

f6 100

−1

−1 −1
−10

−10

f1 30

−20−20
−20

f7+f2+f3+f1 = 

f7 6

f2 25 f3 25

−1

−1 −1
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−20
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S=f6+f5+f4+f1−10−10−20

150+6+25+25 −40+

30 = 196  

f7 6

−1

−1 −1

f6+f5+f4+f1 150

f3+f1 55f2+f1 55

S=f6+f5+f4+f1−10−10−20

f7+f2+f3+f1 −20−20= 

150+6+55+55 −40−40

 = 236  f7+f2+f3+f1 = 

f7 6

f2 25 f3 25

−1

−1 −1

f6+f5+f4 120

120+6+25+25−20+

f1 30

30 = 186  

S=f6+f5+f4−10−10+

−20
−20

−20

f2+f3+f1 = 

S=f6+f5+f4+f7+

100+10+10+6+25+25+

30 = 206 

((f1−>f4)−>f5)−>f6 ((f1−>f4)−>f5)−>f6+f1−>f3+f1−>f2 (f4−>f5)−>f6

CBA

Figure 3: Partial inlining of a star’s calls is not beneficial.

This could have lead to the following greedy algorithm:

1. Inline all the tree nodes until we remain with only star-nodes.

2. Compute the profit of the star nodes and inline all profitable stars in the order of their
expected profit (i.e., inline the most profitable nodes first).

3. Repeat these two steps until there are no more sub-trees and profitable starts to inline.
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The need to inline profitable stars according to their expected profit is illustrated in figure 4.
Initially there are two profitable stars: one at node f5 and one star at node f2. The star at node
f5 yields a profit of f +7−6−6 = −5 and the star at f2 yields a smaller profit of 10−6−6 = −2.
Inlining all other stars (star−f1, star−f4, star−f3) are not profitable since they have a positive
cost, e.g. (cost(star − f4) = 10− 3− 3 > 0). Indeed starting with inlining the star at f5 yields
a better size of 72.

S=f1+f2+f3+f4+f5+f6+f7+f8=

10+10+10+10+7+10+10+10=77

f4 10 f5 7

f6 10

−3

−6 −6

−1 −1
−1

−1

f8 10f7 10

f3 10f2 10f1 10

−6−6−3

f6 10

−1 −1
−1

−1

f1 10 f3 10

f8 10f7 10

f4+f2 10+10−6 f5+f2 7+10−6

S=f1+f3+f4+f2+f5+f2+f6+f7+f8−6−6=

−6 −6−3
−3

10+10+10+10+7+10+10+10+10−6−6=75

f4 10

f6 10

−6 −6

−1 −1
−1−1 −1

−6

f3 10f2 10f1 10

f7+f5 10+7−6 f8+f5 10+7−6

S=f1+f2+f3+f4+f6+f7+f5+f8+f5−6−6=

−3
−3

10+10+10+10+10+10+7+10+7−6−6=72

inlining f2inlining f5

no profitable inlinings
no profitable inlinings

Figure 4: Inlining the most profitable star.

Figure 2 (the one used earlier to show that bottom-up order may be wrong) also shows that
inlining trees first is not optimal. This is because we can set the numbers (ei, |f |) such after inlining
f3 −→ f2, f3 −→ f1 the inlining of the star at f3 is no longer profitable. Recall that the figure
depicts a case wherein by selecting different values to ei and |fi| it may be better to either perform
the upper inline (inlining-1) first or the bottom inlining (inlining-2). If |f3| − 2e3 < −e1 − e2
then inlining-1 is preferable otherwise inlining-2 is preferable. This reveals another more general
problem, namely the “mutual effect” wherein inlining a node f can affect the profitability of inlining
f ’s neighboring nodes (all its callers and its callee nodes). In figure 2 it can happen that after inlining
f3 −→ f1 the neighboring star at f3 is now at size |f3+f1−e1 which may become too “heavy” for
inlining. Also, the numbers can be set such that if we inline the f3-star first, we transform the two
tree nodes f1, f2 to stars (as is depicted by inlining-1). Now it can happen that originally the two
tree-inlinings at f1 and f2 are more profitable than the inline of the f3-star; however, inlining f3
first will prevent us from inlining the more profitable f1, f2 inlinings. Figure 5 depicts the mutual
effect of inlining a star-node on inlining its neighboring tree/star-nodes and the opposite effect of
inlining a tree node on its neighboring star nodes. Clearly, inlining a tree node can not affect the
profitability of inlining its neighboring tree nodes.
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t1 t2q
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f
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beneficial than inlining star f
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t1 t2q
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q

s1t3 s2

f+t1+t2
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inlining the trees at t1,t2 may prevent

inlining the star at f

beneficial than inlining both t1+t2

it can not prevent inlining the 

of s1 and s2 nor can it prevent

the inlining of the star at q

Figure 5: Different cases of the mutual inlining effect.

We can simplify the number of cases of the mutual effect by assuming that

• a star node s1 always prevents the inlining (conflicts) of all its more profitable parent star-
nodes (callers).

• a star node s1 always prevents the inlining (conflicts) of all its more profitable sons tree
(out-degree = 1) nodes (the callees).

• a tree node always prevents the inlining (conflicts) of all its more profitable father star nodes.

This leaves us with only two mutual-effect cases, i.e., conflict cases: A) between two profitable
neighboring star-nodes and B) between a profitable tree-node and a profitable star-node.

Given the initial graph G0 where

• The nodes of G0 are functions f1, f2, . . . and the size of each fi (|fi| is attached.

• The edges of G0 fi −→ fj are labeled by the saving fi
ei−→ fj that will be obtain after inlining

the call fi −→ fj .

the proposed inlining algorithm that consider the mutual inlining effect (called the MI algorithm)
works as follows:

1. t = 0;

2. Select all the profitable nodes (star/tree-nodes) in Gt. If no profitable nodes are found, then
exit the algorithm.

3. Compute a conflict graph CG whose nodes are all the profitable nodes of Gt and its edges
(non-directed) correspond to conflicts between two neighboring nodes of CG.
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4. Compute the Maximum Independent Set (MXISGt) of CG [4]. Since Computing MXIS
is np-hard we are using a greedy approximation algorithm. This greedy algorithm forms a
maximum independent set by, at each step, choosing the next node f in CG with the highest
profit(v)
degree(v) and removing its neighbors.

5. The nodes of MXIS(Gt) are inlined one after the other in the order they were added to
MXIS(Gt). This inlining of MXIS(Gt) nodes forms a newly updated graph Gt+1 as defined
by the inlining operation.

6. A limited set of optimizations is applied on the nodes of Gt+1.

7. The saving on the edges and the size |f | on each node are updated as well. For example,
inlining f3

e3−→ f1 will result in a new node f3+f1 with new weight |f3|+|f1|−e3. In addition
the saving of each of f3 + f1 callers will be recomputed to adapt to the new modified body
of f3 + f1 as now more instruction may be eliminated in f3 + f1 body due constants passed
as parameters in f3 + f1 caller. Changes in |fi| and ei of Gt+1 are also affected by the
optimizations we have applied.

8. Iterate these steps until no more profitable nodes are found.

4 Comparing MI with LLVM’s -Oz

Here, we compare the main features of the Mutual Inlining Algorithm (MI) to that of the LLVM
Inliner with the -Oz option (Oz). We compare the inlining decisions of LLVM Oz vs. those of the
MI algorithm. We use small examples and use actual printings of the call-graph G made by the
LLVM’s inliner (Oz/MI) during compilation (in dot format).

Inline Cost estimation - Both algorithms use the following measurements:

• function size (FS), namely number of instructions in the function body where the Oz
counts the number of the IRs, and the MI counts the expected size in bytes of the IRs
(using the expected size after code generation). This is done via unique conversion of
the IR instructions to the expected RISC-V instructions (in bytes). This conversion was
added to LLVM’s inlineCost.cpp analyzer.

• Simplifies instructions (SI). For a given CS (call-site) SI counts the remaining instructions
in g()’s body after eliminating instructions related to constant values passed to the callee
at the call-site. Again Oz uses IRs; MI uses the byte size of IRs.

• Saving of inlining a CS due to elimination of parameters’ passing and the call/return
sequence (again Oz counts IRs NI counts byte-size of IRs).

Calculating the effectiveness of inlining a given CS - The Oz is pessimistic; it assumes that
the body of the caller will remain either due to external calls from other modules or due to the
possibility of an additional indirect call to g via a function-pointer which will not be inlined.
The Oz, therefore, apply the inlining only if

SI − (Saving + staticbonus) < Threshold
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where a static bonus is some value given in case that g() is a static function. The MI is
optimistic it assumes most functions are not referenced externally and that additional indirect
calls to a function can be detected and hence inlined-avoided. Moreover, if there are external
calls, the user could copy these functions to a common header file so that they will be inlined
in the other module. The MI, therefore, assumes that if all calls to a function have been
inlined then the body of this function will not remain in the executable. The MI, therefore,
inline a CS (f −→ g):

• In case that there is only one call to g that is not in a conflict with a more profitable
neighboring node, the MI will always inline; in comparison, the Oz may refrain from
inlining if the body of g is too big. A simple program with a chain of calls (all nodes
are tree nodes) was used to demonstrate the difference. Figure 6 depicts the call graph
G of a given program. Here the saving on the edges contains two numbers: the left
number is the cost in IRs as computed by the Oz inliner, and the right number is the
saving in bytes as computed by the MI. The Oz will inline only if the cost (left number)
is less equal to the threshold (5). None of the edges in figure 6 is profitable for Oz;
consequently, the Oz did not inline any of the callees in the chain. The MI will inline
all the tree-nodes as none of them is conflicting (the star at f() is not profitable) and
obtained the inlined program of figure 7. Consequently, compared to the Oz, the MI
reduced the code size from 1266 bytes to 1154 bytes.

r.54

q.27

85.8

f.55

40.4

g.164

40.4 40.4 40.4

f1.43

255.2

f2.53

20.4

main.70

30.4

sum=466

Figure 6: Program with a chain of calls

frq.35

mainf2f1g.200

40.4 40.4 40.4

sum=235

Figure 7: The Same program after MI’s inlinings.

• In case that there is k > 1 calls to the same function (a star), the MI will either inline all
the k calls or none depending if the total saving is greater than (k − 1) · |callee| or not.
The Oz examines each of the star’s calls separately and decides to inline if the coast (the
left number on edge) is less equal the threshold = 5. This can lead to two problems:

– The Oz will refrain from inlining the star as none of its call-site is profitable despite
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the fact that inlining the whole star is profitable. This is depicted in figure 8 showing
a star at f1() with two calls from main(). As the Oz cost for each call is 10, the
Oz will inline none of f1() calls. However, for the MI the f1-star is profitable, and
compare to the Oz, the MI inlined the star reducing the size from 1036 bytes to
1020.

– The Oz will inline the stars calls since each one is profitable; however, this doesn’t
seem right since the start as a whole is not profitable. This is depicted in figure 9
showing a star at f1() with ten calls from main(). All these calls are inlined by the
Oz while the MI avoids inlining them (9 · 10 ≤ 10 · 9). Reducing the size from 1324
bytes to 1172.

main.142

f1.17

10.1710.17

sum=159

Figure 8: Oz refrain from inlining a star which is
in fact profitable

main.542

f1.10

0.9 0.9 0.9 0.9 0.90.9 0.9 0.9 0.9 0.9

sum=552

Figure 9: Oz inline a star which is in fact to prof-
itable.

The mutual effect and multiple-rounds- Inlining one CS may render the usefulness of inlin-
ing another neighboring CS, which potentially could be more profitable than the first one. The
MI checks such cases and selects the most profitable CS out of a conflicting set of CSS while
the Oz checks each CS separately. In addition, the MI performs repeated rounds of inlining
over G until no profitable rounds are found, while the Oz performs only one round of inlinings.
Note that after each inline, the MI updates G, recomputing the callee body size and saving
the neighboring CSS. Figure 10 depicts a program whose inline requires checking the mutual
inlining effect and performing multiple inlining rounds. Here the Oz inline f1() −→ g1()
following the bottom-up inline order. This inline prevents the inlining of g1() −→ q1() as
g1 + f1() is now too big, and indeed, the Oz does not perform any more inlinings. The
MI’s mutual inline effect prevent it from inlining f1() −→ g1() first and instead the MI first
performs the inline of q1() −→ main() resulting by pushing the star at g1() into main, i.e.,
main+q1() now contains the four calls to g1(). This passes constant parameters to g1() calls
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making its inlining profitable. Thus next inline-round of MI will inlining all the remaining
calls reducing the size from 1124 bytes to 1052.

g1.72

f1.10

0.9

q1.206

45.27 45.2745.27 45.27

main.68

175.5

sum=356

Figure 10: A program demonstrating mutual ef-
fect and multiple rounds

mainq1g1f1g1f1g1f1g1f1.122 sum=122

Figure 11: Final outcome.

5 Results

Results are given in the following table for a set of selected programs some from SPEC and some
where arbitrarly selected from what was available at hand. The executable size where obtained
using RISCV-unknown-elf-size measues the size inbytes adding the text + data + bss sizes The
Oz row indicate the sizes obtained by the LLVM’s inliner with -Oz option used for minimizing
the executable size. While the MI row show the size obtained by the MI algorithm. Some of
the programs are in pure C-langauge and some are in C++ (as the inliner is part of the LLVM’s
optimization and hence works for any language supported by the LLVM).

Desc Calculator

text data bss total diff

Oz 75928 2504 124 78556

MI 75528 2504 124 78156 400

SPEC BZIP2:

Oz 86066 5592 4380 96038

MI 85710 5592 4380 95682 356

Compiler GCC :

Oz 2906454 7428 561100 3474982
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Particle simulation NBODY :

Oz 18581 0 40 18621

MI 18553 0 40 18593 28

SPEC MCF

Oz 38536 2484 6244 47264

MI 38356 2484 6244 47084 180

Highlevel synthesis tool ONE

Oz 65552 2486 96456 164494

MI 65212 2486 96456 164154 340

SPEC HMMER

Oz 162400 4874 81604 248878

MI 161988 4874 81628 248490 388

SPEC SOPLEX

Oz 572922 127331 6460 706713

MI 577354 123397 6460 707211 -498

6 Related works

the code bloat constraints can be mapped to the knapsack problem, which has been shown to be NP-
complete [5]. [6] use inlining trails wherein the expected benefit of a possible inline can be computed
by evaluating the costs and benefits resulting by pseudo-inlining a given call site. The saving in
code size is determined by “group analysis”, i.e., accounting for the effect of passing known static
values into the callee’s parameters (as explained, this is also used in LLVM and consequently in the
method described in this work). [7] studies aggressive inlining and how it affects the performance
and shows that such an inline improves performance significantly. [8] study different strategies for
inlining different versions of the callee, where a version refers to how many inlines (from previous
steps) this callee contains. It proposes to use a greedy strategy wherein, at each step, they select
the call site that saves the maximal number of dynamic calls. [9] propose a branch-and-bound
search algorithm to find a subset of n given functions such that the resulting code size is less
than a given limit and that the performance is maximized. They assume that performance is
related to the number of calls that occurs during execution; hence the selected subset of functions
to be inlined should minimize this number. Profiling and simulation are used to determine the
expected performance. [10] studies the effect of static and profile-based inlining heuristics for the
Jalapefio dynamic optimizing compiler for Java. They also consider the problem of finding the
most performance-profitable subset of inlinings under a restricted code-size budget and formalize
this inlining optimization problem as a variant of the Knapsack problem. This work is mainly
concerned with building the call graph and obtaining profile information to handle dynamic class-
loading in Java programs. [11] improves the “temperature” inlining heuristic of the ORC compiler,
where “temperature” combines the time spent in a procedure and the size of the procedure. They
modify the temperature such that more inlinings will be performed more aggressively for small-size
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benchmarks than large-size benchmarks and decrease the inlining of callees containing loops with
a high trip count.

[12] uses a fast classifier called random forests to optimize inlining performance the execution
time is a module that measures the longest execution path in the control flow graph of the compiler
(called WECT analysis).

[13] compares three inlining techniques genetic algorithm, trained neural networks and using
a pruned decision tree. All three methods are based on measuring the values of an elaborate
set of features such as: caller/callee memory operations, execution frequency, caller/callee nested
loops, and methods invocation. Their results (speedup gain) on specJVM 2008 show that all three
methods had the same impact.
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