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ABSTRACT 
 

To stabilize a conventional quadrotor, simplified equivalent vehicles (e.g., autonomous car) are 

developed to test the designed controller. Based on that, various controllers based on feedback 

linearization have been developed. With the recently developed concept of tilt-rotor, there lacks 

the simplified/equivalent model, however. Indeed, the tilt structure is relatively unusual in 

vehicles. In this research, we put forward a unique fictional vehicle with tilt structure, which is 

to help evaluate the property of the tilt-structure-aimed controllers. One phenomenon (state 

drift) in controlling an over-actuated tilt structure by feedback linearization is presented 

subsequently. State drift can be easily neglected and is not paid attention to in the current 

researches in tilt-rotor controllers’ design so far. We report this phenomenon and provide a 

potential approach to avoid this behavior. 
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1. INTRODUCTION 
 
Various controllers are analyzed to control the conventional quadrotors. Some of them are linear. 

[5] compares two linear controllers in stabilizing the attitude of a quadrotor model. Others are 

nonlinear. [6, 7] apply geometric controller, which delicately defines the attitude error and 
provides the stability proof. [8] puts forward a sliding mode controller; it guarantees the stability 

using Lyapunov criteria. Backstepping controller with cascade structure can be found in [9]. 

 

Both linear and nonlinear controllers have their advantages and disadvantages. These pros and 
cons include the controlling time, stability region, dynamic bias, robustness, calculating cost, etc. 

Different from solely relying on linear or nonlinear controllers, feedback linearization [2,3] 

transfers a nonlinear system to a linear system. The linear controller can be subsequently applied 
to the generated linear system. 

 

Unfortunately, the quadrotor is an under-actuated system where the number of inputs is less than 
the degrees of freedom. This nature prohibits us from building a full-state controller; the number 

of the states to be controlled directly is 4 at most, equal to the number of the inputs. Several 

different selections on these states can be found in [2, 10, 11]. Another problem hindering us 

from utilizing feedback linearization is the invertibility of the decouple matrix [2, 12]. Some 
selections of the output combination introduce the singular decouple matrix. [12] details this 

problem and provides the potential approach to avoid hitting the singular zone. 
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The recent popular novel quadrotor (tilt-rotor) augments the number of inputs to 8 [4, 13, 14]; the 
quadrotor not only changes the magnitude of each thrust but also the direction. With this 

designation, the system becomes over-actuated. Subsequently, several researches focus on 

controlling this over-actuated system by feedback linearization [4], [15]-[17]. 

 
Controlling an over-actuated system by feedback linearization provides the possibility of full-

state control. The input, however, might change even if the state has stabilized. This phenomenon 

is not paid attention to yet. 
 

In this paper, we address the feedback-linearization-based controllers in a simplified tilt vehicle. 

Controlling a simplified vehicle is a common approach before applying this control method to the 
complicated system (e.g., UAV) [1]. We present the result with the state drift phenomenon. To 

avoid this unwanted drift, we decrease the number of the real inputs by gait plan, which is a gait 

schedule technique in quadruped robots [18]. 

 
This paper is structured as follows: Section 2 introduces the dynamics of the fictional vehicle. 

The feedback-linearization-based controller is designed in Section 3. Section 4 simulates the 

controller designed and presents the state drift phenomenon. Section 5 proposes gait plan and 
puts it into the controller design. Section 6 concludes and makes the discussion of the result. 

 

2. DYNAMICS OF THE TILT VEHICLE 
 

In this section, we introduce a two-dimensional fictional tilt vehicle (Figure 1). The motion of the 
vehicle is restricted to a level plane (two-dimensional movement). Two propellers are fixed on 

the vehicle with the angle  between. The value of  is .  

 

   
 
 

Figure. 1. Two-dimensional Tilt Vehicle        Figure. 2. Tilt Structure 

 

Each propeller can generate the thrust by rotating with angular velocity,  and . The trust 

generated follows Equation (1). 

 

 (1) 
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where  is the thrust coefficient.  Its value is . This proportional relationship in 

adopted in the dynamics of UAV control [1-3]. The thrust is always nonnegative. Also, the 

angular velocity is always nonnegative. 

 

What makes this vehicle special is the tilt structure, as plotted in Figure 2. The propellers 

mentioned are fixed on the top disc. While the bottom disc contacts the  plane directly. The 

frictional force from the  plane is ignored. This structure provides the possibility of 

changing the directions of the thrusts by tilting the top disc (Figure 3—4) with an angle, .  

 

  
 

Fig. 3. Tilt to right example  Fig. 4. Tilt to left example 

 

Based on Conservation of Angular Momentum, the relationship between the yaw, , and the tilt 

angle, , is written in Equation (2).  

 

 (2) 

 

where  and  are the rotational inertias of the top disc and bottom disc, respectively. Their 

values are  , . 

 

Based on the Newtown’s law, we write the position in Equation (3). 

 

 (3) 

 

where  is the mass of the entire vehicle.  and  are defined in Equation (4)—(5). 

 

 (4) 

 (5) 
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It is worth mentioning that both  and  have full rank. Thus,  is invertible. 

 

 (6) 

 

So far, we have derived the dynamics of this vehicle in Equation (2)—(3). This is a MIMO 

system. There are three inputs, , , and . While there are two outputs, , and . So, it is an 

over-actuated system. 

 

3. CONTROLLER DESIGN (FEEDBACK LINEARIZATION) 
 
Remarks to this MIMO system: Since it is an over-actuated system, we may apply feedback 

linearization for this system. The other idea is to discard some inputs to let the number of the 

outputs equal to the number of the inputs. Although Feedback Linearization is widely used the 
tilt-rotor control, one potential adverse effect (state drift) is always neglected by researchers. 

 

This section develops the feedback linearization controllers based on this over-actuated system 

model. The result and the state drift phenomenon are given in the next section. 
 

3.1. Third Derivative Feedback Linearization 
 

Since the input  is tangled in Equation (3), we calculate the higher derivative (third order here) 

of the position in Equation (7). 

 

(7) 

 

where  is calculated in Equation (8). 

 

 (8) 

 

Substituting Equation (2) into Equation (7) yields Equation (9). 

 

 (9) 

 

where and  are defined in Equation (10)—(11). 

 

 (10) 

(11) 
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Since  is invertible if and only if  and ,  has full row rank if 

and only if  and . Thus, the pseudo-inverse of  has explicit form, 

Equation (12). 

 

 (12) 

 

where . 

 

Separating the inputs in Equation (9), we receive Equation (13). 

 

 (13) 

 
Based on Equation (13), the controller is designed in Equation (14). 

 

(14) 

 

where  and  are the position reference.  and  are the coefficients for the 

controller. 

 

4. SIMULATION AND STATE DRIFT PHENOMENON 
 
This section provides the simulation results of the control rules in Section 3. An interesting 

phenomenon, which we call state drift, in the result is paid attention to. 

 

The reference is a circular trajectory starting from  in Figure 5. The radius of the reference 

is 10. The velocity of the reference is 10. The initial position of the vehicle is . The initial 

velocity, is also zero. The initial angular velocities are  and . 

 

 
 

Fig. 5. The circular reference. 
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The solver is a fixed-step ODE3 in Simulink, MATLAB. The sampling time is 0.01 second. 
 

4.1. Results for Third Derivative Feedback Linearization 
 
The Simulink block diagram is plotted in Figure 6. The Dynamics part, Reference part, and 

Controller part are also shown. 

 
 

 
 

Fig. 6. Simulink block in simulation 

 
Set the simulation time 10 seconds. The results are illustrated in Figure 7—10.  

 

  
 

Fig. 7. The trajectory.   Fig. 8. The dynamic state error. 

 

In Figure 7, the vehicle moves on a biased circular trajectory. The dynamic state error can be 

checked in Figure 8. Both the dynamic state errors in  and  directions decrease to zero.  
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Fig. 9. Input squared. 

 

Figure 9 shows the square of the input signals. Notice that two inputs almost overlap each other 
in Figure 9, especially at the beginning. The input signals seem to diverge/separate in the later 

time. 

 

 
 

Fig. 10. The direction of the thrust. 

 

Figure 10 plots the information related to the direction of the thrust. The direction of the middle 

of two thrusts can be calculated in Equation (15). 

 

 (15) 

 

The orange line in Figure 10 represents the direction of the middle of two thrusts. The yellow line 
(upper bound) and the purple line (lower bound) represent the admissible direction bound of the 

vehicle. The potential direction for generating the acceleration is between the lower bound and 

the upper bound. The upper bound and lower bound are computed in Equation (16)—(17), 

respectively. 
 

 (16) 
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 (17) 

 
The blue line in Figure 10 is the direction pointing to the center of the circle (Figure 11). We can 

see that the direction of the middle of two thrusts of the vehicle (orange line) seems to stabilize at 

the direction pointing to the center of the circle (Figure 11) when time approaches 10 seconds. 

 
 

 
 

Fig. 11. The direction pointing to the center of the circle 

 

Extending the simulation time to 2000 seconds, we receive the results in Figure 12—15. 
 

 
 

Fig. 12. The trajectory.   Fig. 13. The dynamic state error. 
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Fig. 14. Input squared. 

 

 
 

Fig. 15. The direction of the thrust. 

 

The trajectory follows the circle in high precision (Figure 12,13) after being controlled for 
sufficient long time. The dynamic state error remains close to zero, indicating the stability of the 

system. Figure 14 shows the squares of the two angular velocities. The inputs diverge in two 

opposite directions.  

 
Figure 15 shows the acceleration constraint around 1990—2000 seconds. The blue line in Figure 

15 is the direction pointing to the center of the circle (Figure 11). The orange line is the direction 

of the middle of two thrusts. It dramatically biases from the direction pointing to the center of the 
circle (blue line).  

 

4.2. State Drift 

 
The interesting phenomenon in the result is that the input changes dramatically after the vehicle is 
stable already. We define this phenomenon ‘State Drift’. State Drift happens only in the over-

actuated systems. The direct reason causing State Drift refers to Equation (12), (14). While 

deducing it mathematically in a systematic way can be hard or even impossible. 
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While the underlying reason causing State Drift in this vehicle can be obviously explained.  
 

The centripetal force pointing to the center of the circle is required to follow the reference in 

Figure 15. While generating a specific centripetal force, the combination of the magnitudes of the 

two thrusts  is not unique (Figure 16—18). State Drift can be avoided if the number of 

the inputs is no more than the number of the output.  

 

     
 

Fig. 16. Symmetrical.       Fig. 17. Symmetrical.     Fig. 18. Degrade to one thrust. 

 

5. GAIT PLAN 
 

The approach to avoid the State Drift is to decrease the number of inputs to be equal to the 

number of the outputs. In this research, we plan the direction of the middle of two thrusts in 

advance and discard the tilt angle, , from the input. The only two inputs then are the angular 

velocities of the two propellers,  and . 

 

 is defined in Equation (18) such that the direction of the middle of two thrusts ( ) always 

points to the center of the circular reference in Figure 11 during the entire movement.  

 

 (18) 

 

Having decided  in Equation (18), only two inputs,  and , are left to be defined. 

 
Based on the dynamics in Equation (3), the dynamic inversion is completed in Equation (19). 

 

 (19) 

 

It is worth mentioning that Equation (19) can be received for the reason that the term  is 

invertible. 
 

Further, we develop the PD controllers in Equation (20). 
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(20) 

 

where  and  are the position reference.  and  are the coefficients for the 

controller. 

 

The same reference in Figure 5 is used for the tracking experiment to test the controller in 
Equation (20). The Simulink block diagram for this experiment is plotted in Figure 19. The 

dynamics, controller, and the reference parts are marked. 

 

 
 

Fig. 19. Simulink block diagram 

 

The simulation time is 10 seconds. The sampling time is 0.01 second (ODE3 fixed-step solver). 

The result is plotted in Figures 20—23. 
 

      
 

Fig. 20. The trajectory.   Fig. 21. The dynamic state error. 
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Fig. 22. Input squared. 

 

 
 

Fig. 23. The direction of the thrust (angle -1 represents 0 acceleration). 

 

Judged from Figure 20—21, the trajectory generally follows the reference as a circle after some 

time. In Figure 23, we can see that the inputs do not diverge in two opposite directions. Actually, 
they become identical in the end. This is because that the number of the inputs is equal to the 

number of the outputs; State Drift can happen only in an actuated system. For a system with an 

equal number of inputs and outputs, State Drift will not happen. 

 
There is an undesired behavior in this controller: the saturation in inputs.  

 

The feedback linearization transfers the nonlinear system to a linear system (as what we have 
done in Equation (19)). So that the linear controller can be applied. This approach is valid and 

solid if and only if the constraint is not effective; hitting the bound (e.g., positive thrust 

constraint) invalidates the feedback linearization method.  
 

The nonlinear property of the original system should be considered if the saturation happens. 

However, there lacks stability proof for a general linear time invariant system. Only several 
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categories of linear time variant systems with specific forms can be proved stable [19,20]. 
Seeking the stability proof for the rest linear time variant systems is still an open question. 

 

Unfortunately, when saturation happens in this controller, Equation (20), with the circular 

reference in Figure 5, the linear time variant system lies in the category whose stability proof is 
not found. The detail of the deducing process is omitted in this paper, since the analysis of a 

nonlinear system is beyond this research. 

 
The saturation can also be observed in Figure 23, the direction of the thrust. It can be seen that 

the input signals saturate at around 3 seconds. 

 

6. CONCLUSIONS AND DISCUSSIONS 
 
The results in the over-actuated state feedback linearization show that the system is stabilized. 

The State Drift happens in the controlled over-actuated system, although the stability is not 

affected in this system. 
 

Applying the gait plan to this system, the number of the inputs becomes equal to the number of 

the outputs. Subsequently, the State Drift phenomenon disappears. The saturation happens in this 
control method, which affects the stability proof.  

 

Further steps can be deducing the stability proof for the control methods in gait plan with 

saturation and different gait patterns development. 
 

In the experiments in this research, State Drift seems to only affect the allocation of the inputs. 

While the stability seems not be affected by this phenomenon. In this section, we will see a 
higher order feedback linearization controller. This controller is to stabilize the system in 

Equation (2)—(3). The State Drift in this example shows that the stability is affected. 

 

6.1. Fourth Derivative Feedback Linearization 
 

Calculate the fourth derivative of the position. It can be computed by differentiating Equation (7). 
The result yields: 

 

(21) 
 

where  
 

 (22) 

 

 (23) 

 
Equation (21) can also be written in Equation (24). 
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 (24) 

where  includes all the terms containing , , or .  includes all the remaining 

terms without containing , , or . 

 

Specifically,  

 

 (25) 

 

Where 
 

 (26) 

(27) 

 

Notice that when  and  are not both zero, we have 

 

 (28) 

 

Equation (28) indicates that  has full row rank when  and  are not both zero. With this 

condition,  can be calculated based on Equation (12). 

 
Separating the inputs in Equation (24) yields Equation (29). 

 

 (29) 

 
PD controllers are built based on Equation (29). 

 

The reference and the initial condition are identical to the settings in the previous experiments. 
 

They are initial , initial , and Figure 5. 

 

The dynamic state error and the input squared are in Figure 24 and 25, respectively. 
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Fig. 24. Dynamic State Error. 

 

 

 
 

Fig. 25. Input Squared. 

 

The dynamic state error (Figure 24) decreases to an acceptably small value (0.2 meter) at the 

beginning. While it increases after around  seconds. Finally, the dynamic state error 

diverges from 0, potentially making this system unstable. 

 

State Drift causes this. 
 

Judged from Figure 25, the State Drift happens so that the two inputs diverge in the two opposite 

directions. As we know from the previous experiments, it can not be a factor causing unstable. 
 

However, after 3 seconds, the input ( ) hit the positive constraint (negative thrust is not 

allowed), destroying the underlying stability proof. The consequence is what we see in Figure 24; 

unstable system with increasing dynamic state error is reported. 
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6.2. State Drift Phenomenon 

 

So far, State Drift phenomenon has been thoroughly reported by controlling a fictional system 

(tilt vehicle). The reason can be multiple equilibrium states (inputs), which is explained in Figure 
16—18.  

 

However, the mathematical cause for pulling the system from one equilibrium to another is 
complicated and beyond the scope of this research. 

 

For example, the following question is extremely hard to reply: 

 
I understand that the system is stable even if State Drift happens, but why does State Drift 

happen? 

The answer to this question can also be a challenged further step. 
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