
David C. Wyld et al. (Eds): SIGV, AI & FL, SESBC, MLAEDU, DSCC, NLPTT, SCOM, SCM, CEEE - 2022

pp. 45-52, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.122204

A MEMORY BASED APPROACH FOR

DIGITAL IMPLEMENTATION OF TANH
USING LUT AND RALUT

Samira Sorayassa and Majid Ahmadi

Department of Electrical and Computer Engineering

University of Windsor, Windsor, Ontario, N9B3P4, Canada

ABSTRACT

Tangent Hyperbolic (Tanh) has been used as a preferred activation function in implementing a

multi-layer neural network. The differentiability of this function makes it suitable for derivative-

based learning algorithm such as error back propagation technique. In this paper two different

memory-based techniques for accurate approximation and digital implementation of the Tanh

function using Look Up Table (LUT) and Range Addressable Look Up Table (RALUT) are

given. A thorough comparative study of the two techniques in terms of their hardware resource

usage on FPGA and their accuracies are explained. The schematic of the synthesized design for

special cased are given as an example.

KEYWORDS

Tanh Activation function, Tanh Implementation on FPGA, Approximation methods, Lookup

Tables (LUT) Range Addressable Lookup Tables (RALUT).

1. INTRODUCTION

Tangent Hyperbolic function has been used as a preferred activation function for multilayer
neural network. Eqn. (1) shows the formula for the Tanh:

Tanh has two attractive properties:

 Tanh is differentiable which makes it ideal for gradient-based learning algorithms.

 Tanh is varying between +1 and -1 which allows negative values to be generated by it.

Digital implementation of Tanh poses two problems, (a) presence of exponential function in the
eqn. (1) and (b) requirement of division. There are many methods in the literature for the

approximation and digital implementation of Tanh function. These include Memory-based

approaches based on LUT and RALUT [1], [2], Piecewise linear approximation (PWL) [3],
Power of 2 based method [4], CORDIC approximation method [5], and Taylor series expansion

[6].

http://airccse.org/cscp.html
http://airccse.org/csit/V12N22.html
https://doi.org/10.5121/csit.2022.122204

46 Computer Science & Information Technology (CS & IT)

In this paper a comprehensive study of Memory based techniques for approximation and
hardware implementations of Tanh using LUT and RALUT is given. The comparison between

LUT and RALUT Techniques include their hardware resource utilizations, as well as their RMSE

which is defined as

Where n is the total number of samples in the input range for LUT and RALUT [-4,4] and [-2,2]

respectively. f(i)a and f(i)0 are approximated output and original output of the ith sample
respectively.

Organization of this paper is as follow: Section 2 presents approximation of Tanh using LUT and
RALUT. Section 3 presents the simulation results using different breaking points and

interpolation methods as well as resource usage for each technique. Section 4 represents

concluding and remarks.

2. MEMORY-BASED APPROXIMATION OF TANH

In this approach Look Up Table (LUT) as well as Range Addressable Look Up Table (RALUT)

have been used as means of approximating Tanh function [1-2].

In this method Tanh is approximated by several equally or non-equally spaced points and their

values are stored in LUT or RALUT. It should be noted that the number of breaking points and

word length chosen can affect the accuracy of our approximation. In this paper MATLAB
toolbox has been used to define the spacing between samples using even spacing, explicit values

and even power of 2 spacing. These methods are efficient in terms of speed while require large

memory to provide acceptable accuracy. To reduce the size of the memory required in LUT,
RALUT has been used where every output represents a range of input addresses. Fig. (1) shows

the HDL Coder workflow while Fig. (2) presents the pseudo code for LUT and RALUT based

designs.

Computer Science & Information Technology (CS & IT) 47

Figure 1. HDL coder workflow

Figure 2. Pseudo-code LUTs and RALUTs

48 Computer Science & Information Technology (CS & IT)

3. SIMULATIONS AND RESULTS

In this section we present simulation results for approximation and implementation of Tanh

function. Implementing MATLAB code requires conversion of floating-point into fixed-point

with the optimized bit width suitable for efficient hardware generation. Furthermore, we have

introduced the concept of clock and time to find the operation timeline in hardware and created
resource-shared architectures to implement some costly operations such as multiplications and

division for-loop in processing cycles. Also, relating and mapping procedural construct to the

parallel area, for speed optimization and hardware operations is carried out.

 The blocking RAM in hardware to map large arrays is also employed. Finally, from Simulink,

the VHDL code was generated for the Artix device xa7a100t of the Artix family [7]. We have

used Xilinx Vivado 2019 [8] and simulated with ModelSim-Mentor Edition [9] and the
Simulation Waveform Editor included in ModelSim-Altra [9]. In our simulation to perform

sampling, two types of interpolations have been considered.

The first one is linear interpolation where a line fits between adjacent breaking point and

produces the point on the line corresponding to the input. The second one is flat interpolation

where the output value corresponding to the breakpoint value that is immediately less than the
input value is returned. If no breakpoint value exists below the input value, it returns the lower

band value as the input value. Different ranges for the approximation of Tanh have been

considered. These include -4<x<4 and -2<x<2. We have also used different word length and

breaking points for our simulations. Table (1) & (2) show the RMSE error for LUT and RALUT
approximation as a function of breaking points and number of iterations with linear and flat

interpolations. Word length of 14 bits is reported in this study. Tables (3-6) show resource

requirements for both LUT and RALUT methods. Figures (3-6) represent the schematic
synthesized designed for LUT and RALUT for Linear and Flat interpolations with 10 breaking

points for each technique.

Table 1. LUTs –linear& flat interpolation different breakpoints

N of points N of iterations RMSE Linear interpolation RMSE Flat interpolation

50 150 0.0010 0.0210

40 120 0.0016 0.0262

30 90 0.0029 0.0350

20 60 0.0067 0.0528

10 30 0.0275 0.1070

Table 2. RALUTs –linear& flat interpolation different breakpoints

N of points N of iterations RMSE Linear interpolation RMSE Flat interpolation

50 150 4.3285e-04 0.0184

40 120 6.8217e-04 0.0230

30 90 0.0012 0.0308

20 60 0.0028 0.0467

10 30 0.0124 0.0948

Computer Science & Information Technology (CS & IT) 49

Table 3. LUT-50 &10 points-Flat

LUT-50 points-Flat LUT-10 points-Flat

Multipliers 0

Adders/Subtractors 9

Registers 1

Total 1 Bit Registers 14

RAMs 0

Multiplexers 7

I/O Bits 31

Shifters 0

Multipliers 0

Adders/Subtractors 5

Registers 0

Total 1 Bit Registers 0

RAMs 0

Multiplexers 2

I/O Bits 32

Shifters 0

Figure 3. Schematic of synthesized design LUT-10 points-Flat

Table 4. LUT-50 & 10 points-Linear

LUT-50 points-Linear LUT-10 points-Linear

Multipliers 2

Adders/Subtractors 14

Registers 0

Total 1 Bit Registers 0

RAMs 0

Multiplexers 3

I/O Bits 32

Shifters 0

Multipliers 2

Adders/Subtractors 13

Registers 0

Total 1 Bit Registers 0

RAMs 0

Multiplexers 3

I/O Bits 32

Shifters 0

50 Computer Science & Information Technology (CS & IT)

Figure 4. Schematic of synthesized design LUT-10 points- Linear

Table 5. RALUT-50 &10 points-Flat

RALUT-50 points-Flat RALUT-10 points- Flat

Multipliers 0

Adders/Subtractors 9

Registers 1

Total 1 Bit Registers 14

RAMs 0

Multiplexers 7

I/O Bits 31

Shifters 0

Multipliers 0

Adders/Subtractors 5

Registers 0

Total 1 Bit Registers 0

RAMs 0

Multiplexers 2

I/O Bits 32

Shifters 0

Figure 5. Schematic of synthesized design- RALUT-10 points-Flat

Table 6. RALUT_50 &10 points-Linear

Computer Science & Information Technology (CS & IT) 51

RALUT_50 points-Linear RALUT-10 points-linear

Multipliers 1

Adders/Subtractors 15

Registers 6

Total 1 Bit Registers 92

RAMs 0

Multiplexers 12

I/O Bits 32

Shifters 0

Multipliers 1

Adders/Subtractors 14

Registers 6

Total 1 Bit Registers 92

RAMs 0

Multiplexers 12

I/O Bits 32

Shifters 0

4. CONCLUSION

In this paper a memory-based approximation and implementation schemes for Tanh using LUT

and RALUT are presented. The choices of breaking points were based both in flat and linear

interpolation techniques.

A comparative study of both interpolation techniques for the first time is presented in this paper.

It should be noted that nearest interpolation has been used in the literature which requires
additional circuits such as comparators to generate output while using flat interpolation is more

hardware efficient. Our experiment shows that linear interpolation provides more accurate

approximation. Experimental results were conducted with different word length though due to the

space limitation only word length of 14 is reported. Resource requirements on FPGA for both
LUT and RALUT were reported along with the RMSE of the approximations for both

approaches. Furthermore, the effect of iteration number as well the breaking points for the error

produced in approximation have been described. Overall, the presented approaches are shown to
enjoy high accuracy with ease of implementation on FPGA.

Figure 6. Schematic of synthesized design- RALUT-10 points-linear

52 Computer Science & Information Technology (CS & IT)

REFERENCES

[1] K. Leboeuf, A. H. Namin, H. Wu, M. Ahmadi “High speed VLSI implementation of the hyperbolic

tangent sigmoid function” Proceedings of Third International Conference on Convergence and

Hybrid Information Technology, 2008, Vol. 1, pp. 1070-1073.

[2] A. H. Namin, K. Leboeuf, R. Muscedere, H. Wu and M. Ahmadi “Efficient Hardware
Implementation of the Hyperbolic Tangent Sigmoid Function”Proc. of IEEE – ISCAS, May 2009, pp

2117-2120.

[3] A. Armato, L. Fanucci, E.P. Scilingo, D. DeRossi “Low-errn digital hardware implementation of

artificial neuro activation functions and their derivatives” Microprocessor and Microsystems, 30

(6), 2011, pp 557-567

[4] S. Gomar, M. Mirhassani, M. Ahmadi “Precise digital implementation of hyperbolic tanh and

sigmoid function” Proc of 50th Asidomar Conference on Signals, Systems and Computers, 2016, pp

1586-1589

[5] V. Tiwari, N. Khane “Hardware Implementation of Neural Network with Sigmoid activation

functions using CORDIC” Microprocessors and Microsystems 39(b), 2015, pp 373-381

[6] F. Temurtas, A. Gulbug, N Yumusak “A study on neural networks using taylor series expansion of

sigmoid activation function”
Proc. of Inter. Conf. on Computational Science and its applications, May 2004, pp 389-397.

[7] Artix-7 fpgas data sheet: DC and AC switching….-xilinx.(n.d.). Retrieved November 5,2021 from

https://www.xilinx.com/support/documentation/data_sheets/ds181_Artix_7_Data_Sheet.pdf.

[8] Vivado ML Overview. Xilinx. (n.d.). Retrieved November 5, 2021, from

https://www.xilinx.com/products/design-tools/vivado.html.

[9] Intel® FPGA simulation - modelsim*-intel® FPGA. Intel. (n.d.). Retrieved November 5, 2021, from

https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-sim.ht

AUTHORS

Bio of Samira Sorayaasa
Received BSc from Jahrom University in 2008, MSc in Management from Shiraz

University in 2012, M.A.Sc. from University of Windsor 2022.she is IEEE member.

Bio of Majid Ahmadi
Received BSc from Sharif University in 1970, PhD from Imperial College in 1977.

He has been with the Department of ECE, University of Windsor since 1980.

He holds the rank of Distinguished University Professor. He is FIET and FIEEE.

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://www.xilinx.com/support/documentation/data_sheets/ds181_Artix_7_Data_Sheet.pdf
https://www.xilinx.com/products/design-tools/vivado.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-sim.ht
http://airccse.org/

	1. Introduction
	2. Memory-Based Approximation of Tanh
	3. Simulations and Results
	4. Conclusion
	References

