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ABSTRACT 

 

In stereo vision, the epipolar geometry is the intrinsic projective geometry between the two 
views. The essential and fundamental matrices relate corresponding points in stereo images. 

The essential matrix describes the geometry when the used cameras are calibrated, and the 

fundamental matrix expresses the geometry when the cameras are uncalibrated. Since the 

nineties, researchers devoted a lot of effort to estimating the fundamental matrix. Although it is 

a landmark of computer vision, in the current work, three derivations of the essential and 

fundamental matrices have been revised. The Longuet-Higgins' derivation of the essential 

matrix where the author draws a mapping between the position vectors of a 3D point; however, 

the one-to-one feature of that mapping is lost when he changed it to a relation between the 

image points. In the two other derivations, we demonstrate that the authors established a 

mapping between the image points through the misuse of mathematics. 
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1. INTRODUCTION 
 

In computer stereo vision, the 3D object shape reconstruction from two 2d images can be defined 
as follows:  

 

The object to be reconstructed is a set of 3D points 𝑀, it is depicted by two cameras from two 

different standpoints.  Left and right coordinate systems are defined in each of these standpoints. 

And every 3D point is projected on the left and right images as two 2D points 𝑚𝑙  and 𝑚𝑟 , 

respectively.  

 
The epipolar geometry is the intrinsic projective geometry between the two views. It is 

independent of scene structure, and only depends on the cameras' internal parameters and relative 

pose. The fundamental matrix 𝐹 encapsulates this intrinsic geometry [1]. 

 

A 3D point 𝑀 is represented in the left and right coordinate systems by two position vectors 

𝑀𝑙 = [𝑋𝑙 𝑌𝑙 𝑍𝑙]𝑇  and 𝑀𝑟 = [𝑋𝑟 𝑌𝑟 𝑍𝑟]𝑇 . And 𝑚𝑙 = [𝑥𝑙 𝑦𝑙]𝑇  and 𝑚𝑟 = [𝑥𝑟 𝑦𝑟]𝑇  are 

the position vectors of the projective points 𝑚𝑙 and 𝑚𝑟 in the left and right coordinate systems, 
respectively, as in Figure 1.  

 

3D shape reconstruction is performed in the following steps [1] 

 

1. Compute the fundamental matrix from point correspondences. 

http://airccse.org/cscp.html
http://airccse.org/csit/V12N01.html
https://doi.org/10.5121/csit.2022.120106
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2. Compute the camera matrices from the fundamental matrix. 

3. For each point correspondence 𝑚𝑙 ⟷ 𝑚𝑟, compute the point in space that projects to 

these two image points.  

 

Thus, the first step is to compute the fundamental matrix and the eight-point algorithm is the most 
used method to do so. In practice the number of image points is large; so, the fundamental matrix 

can only be estimated rather calculated. Researchers keep developing methods that overcome 

previously devised ones in terms of accuracy and mitigating noise effects. Only few researchers 
thought that the bad performance of the eight-point algorithm would requires the revision of the 

projective geometry approach itself.   

 

 
 

Figure1. The epipolar geometry. A point 𝑚𝑙 in one image is transferred via the plane π to a matching point 

𝑚𝑟 in the second image. The epipolar line 𝑙𝑟 through 𝑚𝑟 is obtained by joining 𝑚𝑟 to the epipole 𝑒𝑟.  

 

The main objective of the current work is to revise the theory underpinning the derivation of the 

essential and fundamental matrices equations. Thus, clarify the reason behind the bad 
performance of the projective geometry application to 3D reconstruction from 2D views.  

 

The rest of the paper is organized as follows: Section 2 introduces the motivation of addressing a 
classic problem like the fundamental matrix of stereo vision. Sections 3 exposes some related 

work. Section 4 demonstrates the shortcoming of the essential matrix equation. Section 5 shows 

the mathematical flaws of two derivations of the fundamental matrix.  And the paper concludes in 

section 6.  
 

2. WHY SHOULD WE ADDRESS SUCH A CLASSIC PROBLEM?  
 

The epipolar geometry application in computer stereo vision represented by the fundamental 
matrix is still part of computer vision courses in most universities around the world. On top of 

that, researchers are still spending time to develop methods to estimating the fundamental matrix 

[2, 3, 4, 5, 6]. Table 1 shows a sample of outstanding universities with links to their computer 

vision courses that include at least one chapter on epipolar geometry and the fundamental matrix. 

 
Table 1 Sample universities teaching the epipolar geometry to reconstruct 3D shape from two views. 

 

University  Course Title  Course Link 

Stanford University, 

USA 

Computer Vision, From 3D 

Reconstruction to Recognition 

http//web.stanford.edu/class/cs231a/syllabus.ht

ml 

The University of 

Washington, USA 
Computer Vision 

https//courses.cs.washington.edu/courses/cse45

5/ 

MIT, USA 
Computer Vision and 

Applications 

www.ai.mit.edu/courses/6.891/lectnotes/lect8/l

ect8-slides.pdf 

http://web.stanford.edu/class/cs231a/syllabus.html
http://web.stanford.edu/class/cs231a/syllabus.html
https://courses.cs.washington.edu/courses/cse455/
https://courses.cs.washington.edu/courses/cse455/
http://www.ai.mit.edu/courses/6.891/lectnotes/lect8/lect8-slides.pdf
http://www.ai.mit.edu/courses/6.891/lectnotes/lect8/lect8-slides.pdf
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University College 

London, UK 
Machine Vision 

https//www.ucl.ac.uk/module-

catalogue/modules/machine-vision/COMP0137 

University of 

Toronto, Canada 

Foundations of Computational 

Vision 

http//www.cs.toronto.edu/~kyros/courses/2503 

Tokyo Institute of 

Technology, Japan 
Computer Vision 

http//www.ocw.titech.ac.jp/index.php?module=

General&action=T0300&JWC=201804591&la

ng=EN&vid=03 

Sorbonne Université 

- Télécom Paris 

Master Informatique - Parcours 

IMA 

https//perso.telecom-

paristech.fr/bloch/P6Image/VISION.html 

3. RELATED WORK  
 

Though the fundamental matrix theory is considered as a landmark achievement of computer 

vision, certain researchers called it into question [7, 8, 9,10, 11, 12]. In a series of research work, 

Basta demonstrated that many of the derivation methods of the essential and fundamental matrix 

equations are flawed [13, 14, 15, 16, 17, 18, 19].  

 

In [17] and [19], the author presented extensive experimental results of two real images of a 

building captured from two standpoints. The building (Figure 2) is composed of two parts with 
different depths with respect to the camera lens. In [17], the author used a MATLAB Toolbox 

[20] that contains several methods for estimating the fundamental matrix using the eight-point 

algorithm. In [19], he implemented the solution in Python and used the findFundamentalMat() 
function of the cvonline package to estimate the fundamental matrix.  

 

 
 

Figure 2. The building image used to estimate the fundamental matrix in [17] and [19]. 
 

In both works [17] and [19], the author estimated the fundamental matrix that satisfies the 

equation 𝑚𝑟
𝑇𝐹𝑚𝑙 = 0. Then, he calculated the values of the expression 𝑚𝑟

𝑇𝐹𝑚𝑙 for several pairs 

of corresponding points (𝑚𝑙 , 𝑚𝑟). Such values are supposed to be equal to zero. The matrix 𝐹 is 
calculated from different regions of the images (whole images, back part of the images, and front 

side of the images) and the pairs of corresponding points are selected arbitrarily from the images. 

Table 2 shows that the values of 𝑚𝑟
𝑇𝐹𝑚𝑙 are sometimes very far away from 0; greater than 10 for 

some cases.  
 

Table 2. the values of the expression 𝑚𝑟
𝑇𝐹𝑚𝑙 calculated for selected points from the whole images, the 

back side, and the front side of the images. As it is apparent the image is composed of components with 

different depth with respect to the camera lens. This result is published in [19]. 

 

F matrix calculated from 

Whole Back  Front  

 0.322  0.121 -0.504 

https://www.ucl.ac.uk/module-catalogue/modules/machine-vision/COMP0137
https://www.ucl.ac.uk/module-catalogue/modules/machine-vision/COMP0137
http://www.cs.toronto.edu/~kyros/courses/2503/
http://www.ocw.titech.ac.jp/index.php?module=General&action=T0300&JWC=201804591&lang=EN&vid=03
http://www.ocw.titech.ac.jp/index.php?module=General&action=T0300&JWC=201804591&lang=EN&vid=03
http://www.ocw.titech.ac.jp/index.php?module=General&action=T0300&JWC=201804591&lang=EN&vid=03
https://perso.telecom-paristech.fr/bloch/P6Image/VISION.html
https://perso.telecom-paristech.fr/bloch/P6Image/VISION.html
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 0.084  1.496  0.557 

-0.026  0.545  0.684 

 0.234  3.978  0.748 

 0.328  7.314 -0.726 

 0.135  16.158 -0.508 

-0.165  9.001 -0.784 

 0.184  13.800  2.989 

 0.070  12.401 -0.109 

 0.135  10.794 -1.970 

 
In the current work, three main publications where the essential and fundamental matrices are 

derived as a product of a skew matrix and a rotation transformation matrix are scrutinized. One of 

these is where the first time the essential matrix introduced to the computer vision community by 

Longuet-Higgins [21]. Next section shows how Longuet-Higgins succeeded in securing a one-to-

one mapping between the position vectors of world points of a scene and that mapping is lost 

when he transformed it to a relation between the image points. In the other two derivations, the 
authors try to directly establish a one-to-one relation between the image points. Such a relation is 

represented by the fundamental matrix. The current work shows the mathematical flaws in these 

two derivations.  

 

4. LONGUET-HIGGINS’ DERIVATION OF THE ESSENTIAL MATRIX   
 

4.1. The Equation Derivation  
 

In [21], Longuet-Higgins created a matrix 𝑄 = 𝑅𝑆 where 𝑆 = [
0 𝑡3 −𝑡2

−𝑡3 0 𝑡1

𝑡2 −𝑡1 0
]. The matrix 𝑅 

and the vector 𝑡 are the rotation and translation of the right coordinate system with respect to the 

left coordinate system. 𝑀𝑙 and 𝑀𝑟   are the position vectors of a world point 𝑀 on the left and 

right coordinate systems, respectively. The author formed the expression 𝑀𝑟
𝑇𝑄𝑀𝑙 and after some 

arithmetic manipulations he found out that  
 

𝑀𝑟
𝑇𝑄𝑀𝑙  = 0     (1) 

 
For every 3D point there are exactly two position vectors; one represents that point in the left 

coordinate system and the other represents the point in the right coordinate system. Thus, 𝑄 in (1) 

is a one-to-one mapping between 𝑀𝑙 and 𝑀𝑟 .  

 

In terms of coordinates, 𝑀𝑙 = (𝑋𝑙 , 𝑌𝑙 , 𝑍𝑙)  and 𝑀𝑟 = (𝑋𝑟, 𝑌𝑟 , 𝑍𝑟) . And the coordinates of the 

projective points  𝑚𝑙 and 𝑚𝑟 of the point 𝑀 in the left and right coordinate systems, respectively 

are  

 
𝑚𝑙 = (𝑋𝑙 𝑍𝑙⁄ , 𝑌𝑙 𝑍𝑙⁄ , 1)

𝑚𝑟 = (𝑋𝑟 𝑍𝑟⁄ , 𝑌𝑟 𝑍𝑟⁄ , 1)
   (2) 

 

Finally, the author divided the left-hand side of (1) by 𝑍𝑙𝑍𝑟  to conclude the essential matrix 

equation  

 

𝑚𝑟
𝑇𝐸𝑚𝑙 = 0    (3) 
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4.2. Shortcoming of Longuet-Higgins’s derivation  
 

Longuet-Higgins approached the problem from an algebraic perspective, he used matrix product 

as the main operation to derive the essential matrix equation. So, he has not been faced with the 
problem of transformation from one coordinate system to the other.  

 

He formed the expression 𝑀𝑟
𝑇𝑄𝑀𝑙 . And because the matrix product is an associative operation, 

the expression 𝑀𝑟
𝑇𝑄𝑀𝑙 is the product of 1×3 row matrix and a 3×3 matrix and a 3×1 column 

matrix which led to equation (1). 

 
The problem of Longuet-Higgins’ derivation started when he divided equation (1) by Z𝑙Z𝑟. As it 
is known, the position vector of a point is the unique vector from the origin of the coordinate 

system to the point itself. So, for every point 𝑀, equation (1) holds for exactly two position 

vectors 𝑀𝑙 and 𝑀𝑟  in the left and right coordinate systems, respectively. Once (1) is divided by 

Z𝑙Z𝑟 we will get the following equation 

 
𝑀𝑟

𝑇

𝑍𝑟
 ∙ 𝑄 ∙

𝑀𝑙

𝑍𝑙
 = 0    (4) 

 

Where 𝑚𝑙 =
𝑀𝑙

𝑍𝑙
 and 𝑚𝑟 =

𝑀𝑟
𝑇

𝑍𝑟
are the projection of the vectors M𝑙 and M𝑟  on the left and right 

camera planes, respectively.  

 

In projective geometry, 𝑚𝑙 could be the projection of a single world point or multiple world 

points (Figure 3). It is the projection of all world points laying on the ray drawn from the camera 

lens centre to the point 𝑀. 
 

 
 

Figure 3. the image point 𝑚𝑙 is the projection of two world points 𝑀 and 𝑁. 𝑚𝑙 is a corresponding point to 

two image points 𝑚𝑟 and 𝑛𝑟. 

 

Furthermore, there are world points visible to one camera and invisible to the other. This could be 
because these points are hidden by 3D objects in the scene. This is one of the characteristics of 

3D scenes. So, they are projected on the first camera plane and does not have an image on the 

other camera. However, when you plug this image point into 𝑚𝑙 or 𝑚𝑟 and solve equation (3), 

you will get a false corresponding point.  
 

Recall the 3D shape reconstruction as described in [1] 

 
1. Compute the fundamental (essential) matrix from point correspondences. 

2. Compute the camera matrices from the fundamental matrix. 

𝑚𝑙 𝑚𝑟 

M 

𝐶𝑙 
𝐶𝑟 

N 

𝑛𝑟 
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3. For each point correspondence 𝑚𝑙⟷𝑚𝑟, compute the point in space that projects to these 
two image points.  

 

Assuming the point 𝑝 = (1,2,1) is on the left camera plane (image). The matrix E is already 

calculated or estimated. To compute the corresponding point of 𝑝, we plug the value of p into 
equation (3).  

 

[𝑥𝑟 𝑦𝑟 1]𝐸[1 2 1]𝑇 = 0, 𝐸 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

]   (5) 

 
Substituting for the matrix 𝐸, we will get the following equation  

 

[𝑥𝑟 𝑦𝑟 1] [
𝐴1

𝐴2

𝐴3

] = 0 , where[
𝐴1

𝐴2

𝐴3

] = [
𝑎11 + 2𝑎12 + 𝑎13

𝑎21 + 2𝑎22 + 𝑎23

𝑎31 + 2𝑎32 + 𝑎33

]  (6) 

 
which leads to the following equation  
 

𝐴1𝑥𝑟 + 𝐴2𝑦𝑟 + 𝐴3 = 0    (7) 

 

There are infinite values of (𝑥𝑟, 𝑦𝑟) satisfying equation (7). Geometrically, this means that any 

point 𝑝 has many corresponding points. Which is incorrect; the certainty is each image point has 

at most one corresponding point in each other image except the case of occlusion when two 

different points have the same corresponding point.  
 

Consequently, the essential (fundamental) matrix equation does not ensure the recovery of the 

right shapes of 3D scenes.  

 

5. ESTABLISHING A DIRECT MAPPING BETWEEN THE IMAGE POINTS  
 

Because the above essential matrix derivation suffers from the drawback of an image point can 

have unlimited number of corresponding points, computer vision researchers try to directly draw 
a mapping between the image points without passing through position vectors of the 3D point. 

The next sections explore the flaws of two well-known derivations of the essential and 

fundamental matrices equations.  

 

5.1. Luong-Faugeras derivation of the essential matrix 
 

In [22], Luong et al. assert that because the vector from the first camera optical centre to the first 

imaged point 𝑚𝑙, the vector from the second optical centre to the second imaged point 𝑚𝑟, and 

the vector from one optical center to the other 𝑡 are all coplanar. In normalized coordinates, this 
constraint can be expressed simply as  

 

𝑚𝑟
𝑇 (𝑡 × 𝑅𝑚𝑙) = 0    (8) 

 

where 𝑅 and 𝑡 capture the rotation and translation of the right cameras coordinate system with 

respect to the left one. In [23], Birchfield explicitly stated that the multiplication by 𝑅  is 

necessary to transform 𝑚𝑙 into the second camera's coordinate system. The authors [22] defined 

[𝑡]× as the matrix such that [𝑡]× 𝑦 = 𝑡 × 𝑦 for any vector 𝑦, and they rewrite equation (8) as a 

linear equation 
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𝑚𝑟
𝑇 ([𝑡]×𝑅𝑚𝑙  ) = 𝑚𝑟

𝑇𝐸𝑚𝑙 = 0,     (9) 
 

Where 𝐸 = [𝑡]×𝑅 is called the Essential matrix and [𝑡]× = [
0 −𝑡3 𝑡2

𝑡3 0 −𝑡1

−𝑡2 𝑡1 0
].  

 

5.2. The flaw in Luong-Faugeras derivation  
 

Let us closely examine equation (8), 𝑚𝑟
𝑇 (𝑡 × 𝑅𝑚𝑙) = 0.  

 

We have the following facts. The point 𝑚𝑙 is on the left image, so the vector 𝑚𝑙 is defined in the 

left coordinate system and not defined in the right one. The point 𝑚𝑟 is on the right image, then 

the vector 𝑚𝑟 is defined in the right coordinate system and not defined in the left one. And the 

vector 𝑡, the translation of origin of the right coordinate system with respect to the left coordinate 

system; so, 𝑡 is defined in the left coordinate system and not defined in the right one.  

 

The left hand-side of (8) consists of three vector operations. The term inside the parenthesis is 
evaluated first which includes a vector product and a matrix product.  

 

Let assume that 𝑅𝑚𝑙 is to be evaluated first; it is the product of a rotation transformation matrix 

and a vector. So, 𝑣 = 𝑅𝑚𝑙 is the vector 𝑚𝑙 expressed in the right coordinate system. Therefore 

𝑡 × 𝑅𝑚𝑙 = 𝑡 × 𝑣 is the cross product of 𝑡 defined in the left coordinate system and 𝑣 defined in 

the right coordinate system. Thus, 𝑡 × 𝑅𝑚𝑙 is the cross product of two vectors not defined in the 

same coordinate systems; so, it is invalid.  
 

Now, let us consider that the cross-product operation 𝑡 × 𝑅 is to be evaluated first.  

 
DEFINITION  

 

The cross product (or vector product) of two vectors 

 

𝑥 = ⟨𝑥1, 𝑥2, 𝑥3⟩  and 𝑦 = ⟨𝑦1, 𝑦2, 𝑦3⟩  in ℝ3  is the vector 𝑥 × 𝑦 = ⟨𝑥2𝑦3 − 𝑥3𝑦2 , 𝑥3𝑦1 −
𝑥1𝑦3 , 𝑥1𝑦2 − 𝑥2𝑦1⟩.  
 

The cross product of two vectors x and y in ℝ3 is a vector orthogonal to both 𝑥 and 𝑦 [24].  

 

The cross product of a 3D vector and a 3×3 matrix is UNDEFINED [24].  

 

Therefore, there is no operation called cross product of a vector and a matrix; therefore, the term 

𝑡 × 𝑅 is undefined. Thus, equation (8) that is the premise of the current derivation of the essential 
matrix is invalid. And the current derivation of the essential matrix is flawed.  

 

One could claim that 𝑅𝑚𝑙 is a product of a matrix and a vector which produces a vector defined 

in the same coordinate system. Then the cross-product 𝑡 × 𝑅𝑚𝑙 is a vector defined in the left 

coordinate system. in this case, 𝑚𝑟
𝑇 ∙  (𝑡 × 𝑅𝑚𝑙) is a dot product of two vectors, one from the 

right coordinate system and the other from the left coordinate system. it is an undefined 

operation.  
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5.3. Hartley-Zisserman derivation of the fundamental matrix  
 

In the geometric derivation of the fundamental matrix equation, the authors [1] assert the 

existence of 2D homography 𝐻𝜋 mapping each point 𝑚𝑙 from the left image to a point 𝑚𝑟 on the 

right image, because the set of all such points 𝑚𝑙 in the  left image and the corresponding points 

𝑚𝑟 in the right image are projectively equivalent, since they are each projectively equivalent to 

the planar point set 𝑀 (Figure 1). Thus, 𝐹 = [e𝑟]×𝐻𝜋 that is a matrix product of a skew matrix 
and a transformation from left to right.  

 

5.4. The flaw in Hartley-Zisserman derivation  

 
The points 𝑀 in the above statement are the world points of the 3D scene to be reconstructed 

from a pair of its images. If the 3D scene is planar, why are we constructing a planar scene from 
two of its planar images in the first place. Thus, the existence of a homography mapping points of 

the left image to points on the right image is on condition that the 3D scene is planar. Because 

typical 3D scenes might contain objects with different depths (i.e., distance from the camera 
centre). So, some points on these objects can be visible to one camera and hidden from the other. 

Therefore, some image points on the left camera plane will not have corresponding points on the 

right camera plane and points on the right image will not have corresponding points on the left 

image. Furthermore, researchers recognize the existence of the occlusion problem [25] where two 

3D points or more are projected onto the same image point as in Figure 3. At the same time, they 

assert the existence of a homography between points of the left image and those on the right 
image. These facts, confirm that points on the left and right images are not projectively 

equivalent and no homography exists between them. In conclusion, the expression 𝐹 =
[e𝑟]×𝐻𝜋  where 𝐻𝜋 is a homography is irrational.  

 

6. CONCLUSION  
 

In this work, we demonstrated that the first ever derivation of the essential matrix that has been 

introduced to the computer vision community is free of flaws; however, it does not ensure a one-
to-one mapping between the image points of the two views. Later, researchers tried to address 

such shortcoming through deriving the essential and fundamental matrices equation as a mapping 

between the image points. We showed that two of the well-known of these derivations are 

mathematically flawed.  
 

The current work establishes a rigorous scrutiny of a theory that claims to be mathematically 

founded. The trend for solving computer vision problems uses machine learning tools to obtain 
good solutions without requiring any mathematical basis. 
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