
The NP-completeness of quay crane

scheduling problem

Ali Skaf, Samir Dawaliby, and Arezki Aberkane

Caplogy R&D, Paris, France

Abstract. This paper discusses the computational complexity of the quay crane scheduling prob-
lem (QCSP) in a maritime port. To prove that a problem is NP-complete, there should be no
polynomial time algorithm for the exact solution, and only heuristic approaches are used to obtain
near-optimal solutions but in reasonable time complexity. To address this, first we formulate the
QCSP as a mixed integer linear programming to solve it to optimal, and next we theoretically
prove that the examined problem is NP-complete.

Keywords: Quay crane, Container, Scheduling, Optimization, MILP, NP-complete.

1 Introduction

In any maritime port, several machines exist to unload/load containers, and quay
cranes are allowed to unload containers from the vessels or load containers into
the vessels. Each vessel is divided into several bays, and each bay contains several
containers. (Fig. 1)

Fig. 1. Vessel-Quay cranes-Bays-Containers

In this paper, we consider the quay crane scheduling problem (QCSP) in the port
of Tripoli-Lebanon. First, we present a novel mathematical Mixed Integer Linear
Programming (MILP) model, and next we prove that the QCSP is NP-complete.
A problem is NP-complete (Fig. 2) when it can be solved by a restraint class of

David C. Wyld et al. (Eds): AI, AIMLNET, BIOS, BINLP, CSTY, MaVaS, SIGI - 2022
pp. 17-27, 2022. CS & IT - CSCP 2022                                           DOI: 10.5121/csit.2022.121802

http://airccse.org/cscp.html
http://airccse.org/csit/V12N18.html
https://doi.org/10.5121/csit.2022.121802


search algorithms and can be used to simulate any other problem with a similar
algorithm. More precisely, each entry in the problem must be associated with a set
of solutions of polynomial length, in which the validity can be tested quickly (in
polynomial time for example) as the output for any input is ”yes” if the solution
set is not empty and ”no” if it is empty. The complexity class of problems of this
form is called NP, which stands for ”non-deterministic polynomial time”.
The theory of NP-completeness is designed by [1] HR Lewis (1983).
A problem is NP-complete if:

– it is in NP

– it is NP-hard

For several problems that have only NP solutions, there exist polynomial time al-
gorithms that produce good approximations of the optimal solutions.
For a given NP problem, if there is a correct answer in polynomial time, then there
is a correct answer in polynomial time for all the full NP problems.

Fig. 2. NP-complete

Formally, we define the notion of polynomial reduction as follows: let A and B be
two problems, with the aim of using the solution of A to solve B. (Fig. 3)

– A reduction of A to B is a polynomial time algorithm transforming any instance
of B into an instance of A.

– Thus, if we have an algorithm to solve A, we also know how to solve B.

– A is therefore at least as difficult to solve as B.

– B is at most as difficult to solve as A.

We also write B ≤ A.

The remainder of this paper is organized as follows: In section 2, we present a

Computer Science & Information Technology (CS & IT)18



Fig. 3. Polynomial

literature review for the NP-complete problems, then in section 3, we describe in
detail the new proposed mathematical model formulation for the QCSP problem.
Next, we provide the NP-Completeness proof and discussion in section 4. Finally,
some concluding remarks are made in section 5.

2 Literature review

[2] Plesn et al. (1979) proved that he Hamiltonian cycle problem is NP- complete
even in the case of planar digraphs with out-degrees at most 2. Clearly, the bound
two on degrees is the best possible. A Hamiltonian cycle in a graph or digraph
is a cycle containing all the points. Thus any such cycle has p points as well asp
lines (arcs) if the graph (digraph) has p points. No elegant characterization of the
graphs or digraphs which possess Hamiltonian cycles exists, although the problem
is at least one hundred years old. As the problem is a special case of the famous
traveling salesman problem, it is interesting also from the computational viewpoint.
[3] Tovey (1984) proved that 3-SAT is NP-complete when restricted to instances
where each variable appears in at most four clauses. When no variable appears
in more than three clauses, 3-SAT is trivial and SAT is NP-complete. When no
variable appears in more than two clauses, SAT may be solved in linear time.
[4] Ouyang et al. (1997) represent further evidence for the ability of DNA computing
to solve NP-complete search problems. A pool of DNA molecules corresponding to
the total ensemble of six-vertex cliques was built, followed by a series of selection
processes. The algorithm is highly parallel and has satisfactory fidelity. This work
represents further evidence for the ability of DNA computing to solve NP-complete
search problems.
[5] Kaye (2000) demonstrates that a puzzle based on the Minesweeper game is NP-
complete makes this important computer science topic accessible to high school
students. The resource described here is a set of slides showing the detailed solution

Computer Science & Information Technology (CS & IT) 19



of two introductory puzzles, following by the step-by-step simulation of digital
circuit elements required for proving NP-completeness.
[6] Liu et al. (2002) show further evidence for the ability of DNA computing to solve
NP-Complete problems. The graph-theoretic parameter that has probably received
the most attention over the years is the chromatic number. As is well-known, the
coloring problem is an NP-Complete problem. In their study, it has been solved
by means of molecular biology techniques. The algorithm is highly parallel and
has satisfactory fidelity. This work shows further evidence for the ability of DNA
computing to solve NP-Complete problems.
[7] Kellerer et al. (2004) present an introduction to NP-Completeness of Knapsack
Problems. The reader may have noticed that for all the considered variants of the
knapsack problem, no polynomial time algorithm have been presented which solves
the problem to optimality. Indeed all the algorithms described are based on some
kind of search and prune methods, which in the worst case may take exponential
time. It would be a satisfying result if we somehow could prove it is not possible to
find an algorithm which runs in polynomial time, somehow having evidence that the
presented methods are ”as good as we can do”. However, no proof has been found
showing that the considered variants of the knapsack problem cannot be solved to
optimality in polynomial time.
[8] Bresar et al. (2011) prove that the problem of determining is NP-complete for
every path ≥ 2. For path =2 this equals to the vertex cover problem (shortly VCP)
which is known to be NP-complete.
The importance of the TSP presented by [9] Hoffman et al. (2013) is that it is
representative of a larger class of problems known as combinatorial optimization
problems. The TSP problem belongs in the class of such problems known as NP-
complete. Specifically, if one can find an efficient (i.e., polynomial-time) algorithm
for the traveling salesman problem, then efficient algorithms could be found for all
other problems in the NP-complete class.
In our previous papers, [11] Skaf et al. (2018) suggested two methods to solve the
quay crane scheduling problem at port of Tripoli-Lebanon, to minimize the total
completion time for all containers from the vessel to the storage location. Later
[12] Skaf et al. (2019) proposed for the same problem a genetic algorithm to obtain
near-optimal solutions in an acceptable CPU time. After that, [13] Skaf et al. (2021)
detailed the model with results comparison with literature and benchmark.
In this study, we present a mixed-integer linear programming model to solve the
quay crane scheduling problem and a proof that this problem is NP-complete.

3 Mathematical formulation

In this section, we present the mathematical formulation of the QCSP with the
different variables, parameters and the mathematical model.

Computer Science & Information Technology (CS & IT)20



3.1 Assumptions

We consider in this study a single vessel to transport containers. It is divided into
several bays which in turn contains several containers. We also consider multi-quay
cranes to unload/load container from/to the vessel with interference constraints
between them (each bay is handled by at most one quay crane at a time). Each quay
crane can unload/load one container at a time and the most important constraint
here is that a quay crane should complete its unloading/loading in a current bay
before passing to another one. Finally, we ignore the travel time between bays, and
we do not consider any idle quay crane in this study.

3.2 Data

The notation that was used in the proposed formulation of the problem is shown
below:

– Q: set of quay cranes

– |Q|: number of quay cranes

– i : index of quay cranes i (∀i ∈ Q)

– B: set of bays

– |B|: number of bays

– j, j′ : index of bays j and j′ (∀j, j′ ∈ B)

– Cj : number of containers in bay j.

– Tc: time required for a quay crane to unload a container and place it in the
storage location. It is not the same for all containers in the different bays

– M : large integer number

3.3 Decision variables

The decision variables that was used in the proposed formulation of the problem is
shown below:

– x(j,i) =

{
1 if quay crane i unload container from bay j
0 otherwise

– z(j,j′) =


1 if the containers unloading in bay j finishes before the starting

of the containers unloading in bay j’
0 otherwise

– tj : completion time of bay j

– Cmax : makespan

Computer Science & Information Technology (CS & IT) 21



3.4 Mixed integer linear programming

The mixed integer linear formulation (MILP) was founded by [10] Leonid Kan-
torovich (1939). It is a technique for optimizing an objective function, subject to
linear inequality and equality constraints.

The MILP we propose is as follows:

Objective
Minimize Cmax (1)

Equation (1) is the objective function : minimize the makespan (completion time
of all bays).

Subject to
|Q|∑
i=1

x(j,i) = 1 ∀j ∈ B (2)

Constraint (2) : each bay must be handled only by one quay crane.

tj ≥ (Tc · Cj) ∀j ∈ B (3)

Constraint (3) : the completion time is bigger than the working time in each bay
(working time = number of containers × time needed to unload a container by a
quay crane and store it into the storage location).

tj − tj′ + (Tc · Cj′) + z(j,j′) ·M > 0 ∀j, j′ ∈ B (4)

Constraint (4) : if z(j,j′) = 1, then bay j finishes before bay j’ starts.

tj − tj′ + (Tc · Cj′)− (1− z(j,j′)) ·M ≤ 0 ∀j, j′ ∈ B (5)

Constraint (5) : if z(j,j′) = 0, bay j finishes after bay j’ starts.

|Q|∑
i=1

i · x(j,i) + 1 ≤
|Q|∑
i′=1

i′ · x(j′,i′) + (z(j,j′) + z(j′,j)) ·M

Computer Science & Information Technology (CS & IT)22



∀j, j′ ∈ B, j < j′ (6)

Constraint (6) avoid the interference between the quay cranes. If bays j and j’ are
performed simultaneously, this means that (z(j,j′) + z(j′,j)) = 0.
If quay crane i and i’ work in bay j and j’ respectively, then i+1 ≤ i’.

Cmax = max
j

tj (7)

Constraint (7) defines the Cmax value.

x(j,i) = {0, 1} ∀j ∈ B, ∀i ∈ Q (8)

z(j,j′) = {0, 1} ∀j, j′ ∈ B, j < j′ (9)

Constraints (8) and (9) define the property of the decision variables.

4 NP-completeness

In this section we discuss the complexity of the quay crane scheduling problem.

Before getting in details, we need some parameters in this discussion. Let’s suppose
that X is a set of positive integer, the working time (Tc · Cj) ∈ X (1 ≤ j ≤ |B|)
and Y is a given number which Y ∈ X.
The objective is to find all the schedules of the |Q| quay cranes which unload
containers from |B| bays without interfering with each other and whose total com-
pletion time is less or equal to Y .

In the following, we present 4 phases to proof that the quay crane scheduling prob-
lem is NP-complete:

Phase 1: Indicate that the QCSP is in NP.
The feasibility of a given quay crane schedule for the QCSP problem can be an-
alyzed in polynomial time, taking into account that the schedule must satisfy the
non-interference constraints and thus can be realized in O(|B|2) time.
After that, we check that the completion time (makespan) ≤ Y which can be done
in O(|B|) time. Therefore, the QCSP is in NP.

Phase 2: Choosing an NP-complete problem.
The partition problem is a very known NP-complete problem ([1] HR Lewis (1983)).

Computer Science & Information Technology (CS & IT) 23



The steps of this problem are defined as follows:
There are |B| elements in a fixed set L = {l1, l2, . . . , l|B|}. For each element lj ∈
L, lj ∈ X and the sum of all elements

∑
lj∈L lj = Z.

→ Can the set L be divided into two separate sub-sets L1 and L2 such that∑
lj∈L1

lj =
∑

lj∈L2
lj = Z/2?

Problem explanation with a numerical example: We suppose that the set L =
{80, 117, 57, 100, 58, 110, 174} and the sum of all elements

∑
lj∈L lj = 696. The

answer to the previous question is Yes because the set L can be divided into
two separate sub-sets L1 = {80, 110, 58, 100} and L2 = {57, 117, 174} such that∑

lj∈L1
lj =

∑
lj∈L2

lj = Z/2 = 348. (See Fig. 4.)

Fig. 4. Two subsets

The partition is obtained using the function below (developed in JAVA):

s t a t i c i n t Sp l i tPo in t ( i n t array [ ] , i n t n){

i n t lSum = 0 ;
f o r ( i n t i = 0 ; i < n ; i++) {

lSum += array [ i ] ;
i n t rSum = 0 ;
f o r ( i n t j = i+1 ; j < n ; j++ )

rSum += array [ j ] ;
i f ( lSum == rSum)

return i +1;
}
re turn =1;

}

Computer Science & Information Technology (CS & IT)24



The above function performs the following features:

– Traversing the array elements
– Adding the current element to a variable
– Finding the sum of the rest of the array elements
– Splitting the point index
– Returning -1 if it is not possible to split the array into two parts

Phase 3: Making a conversion from the partition problem to the quay crane
scheduling problem.
The partition problem is switched to the QCSP as follows: An instance of the
QCSP corresponding to an instance of the partition problem, has Q quay cranes
and |B| + |Q| bays. The given positive number X is set as Z, then the following
equations (10, 11 and 12) show the processing time of each bay, in another meaning
the processing time of bay 1 and bay |B| + 2 is set as Z/2, the processing time of
bay 2 to bay |B|+1 is set as l1 to l|B|, respectively, and the processing time of bay
|B|+ 3 to bay |B|+ |Q| is set as Z.

Tc · C1 = Tc · C|B|+2 = Z/2 (10)

Tc · Cj+1 = lj 1 ≤ j ≤ |B| (11)

Tc · Cj = Z ∀|B|+ 3 ≤ j ≤ |B|+ |Q| (12)

Table 1 shows this conversion. It indicates |Q| quay cranes, |B|+ |Q| bays and the
processing time of each bay.
After that, we must prove that the set L can be divided into two separate sub-sets
L1 and L2 such that

∑
lj∈L1

lj =
∑

lj∈L2
lj = Z/2 if all the |B| + |Q| bays can

be completed by |Q| quay cranes in Z time without interference between all quay
cranes.
Firstly, we suppose that the set L can be divided into two separate sub-sets L1 and
L2 such that

∑
lj∈L1

lj =
∑

lj∈L2
lj = Z/2.

Then, the scheduling of the |Q| quay cranes without interference is as follows:

– Quay Crane 1 unloads containers from all the bays j + 1, where lj ∈ L1 and
then bay 1.

– Quay Crane 2 unloads containers from bay |B|+2, and then all the bays j+1,
where lj ∈ L2.

– Quay Cranes 3 unloads containers from bay |B|+ 3.
– ...
– Quay Crane |Q| unloads containers from bay |B|+ |Q|.

Computer Science & Information Technology (CS & IT) 25



Clearly, in this schedule the latest completion time between all bays is Z without
any interference. Therefore, if the set L can be divided into two separate sub-sets
L1 and L2 such that

∑
lj∈L1

lj =
∑

lj∈L2
lj = Z/2, all the |B| + |Q| bays can be

completely handled by |Q| quay cranes in Z time without interference between all
quay cranes.

Table 1. Phase 3 : Transformation

Quay crane Bay Number Bay Processing time

1 1 D/2

2 l1

3 l2

... ...

|B| l|B|−1

|B|+ 1 l|B|

2 |B|+ 2 D/2

3 |B|+ 3 D

4 |B|+ 4 D

... ... ...

|Q| |B|+ |Q| D

In addition, suppose all the |B|+ |Q| bays can be completely handled by |Q| quay
cranes in Z time without any interference between them, then all the Q quay cranes
are fully used as the sum of the processing time of all the bays is |Q| · |B|.
Then, the completion time (makespan) of each quay crane must be equal to Z.
Moreover, there is no interference in the previous quay crane schedule. Accordingly,
the sum of the processing time of all bays, excepting bay 1 handled by Quay Crane
1 should be Z/2 and the sum of the processing time of all bays, excepting bay
|B|+2 handled by Quay Crane 2 should be Z/2, which means that the set L can be

Computer Science & Information Technology (CS & IT)26



divided into two separate sub-sets L1 and L2 such that
∑

lj∈L1
lj =

∑
lj∈L2

lj = Z/2.

Subsequently, if all the |B|+ |Q| bays can be completely handled by |Q| quay cranes
in Z time without interference between them, the set L can be divided into two
separate sub-sets L1 and L2 such that

∑
lj∈L1

lj =
∑

lj∈L2
lj = Z/2.

Phase 4: Proof that the above conversion is polynomial. The above conversion
can be done in O(|B|+ |Q|) time. Therefore, PARTITION PROBLEM ∝ QCSP ,
and finally the theory is proved.

5 Conclusion

In this paper, we have investigated the problem of quay crane scheduling in a
maritime port. The objective is how to orchestrate the planning of quay cranes
that unload containers from bays without interfering with each other so that the
total completion time is minimized. To this end, first we proposed a novel mixed
integer linear programming model to solve the studied problem to optimilaty, and
then we provided a theoritical analysis to prove that QCSP is NP-complete.

References

1. H. R. Lewis, “Michael r. πgarey and david s. johnson. computers and intractability. a guide
to the theory of np-completeness. wh freeman and company, san francisco1979, x+ 338 pp.,”
The Journal of Symbolic Logic, vol. 48, no. 2, pp. 498–500, 1983.

2. J. Plesn et al., “The np-completeness of the hamiltonian cycle problem in planar diagraphs
with degree bound two,” Information Processing Letters, vol. 8, no. 4, pp. 199–201, 1979.

3. C. A. Tovey, “A simplified np-complete satisfiability problem,” Discrete applied mathematics,
vol. 8, no. 1, pp. 85–89, 1984.

4. Q. Ouyang, P. D. Kaplan, S. Liu, and A. Libchaber, “Dna solution of the maximal clique
problem,” Science, vol. 278, no. 5337, pp. 446–449, 1997.

5. R. Kaye, “Minesweeper is np-complete,” The Mathematical Intelligencer, vol. 22, no. 2, pp. 9–
15, 2000.

6. Y. Liu, J. Xu, L. Pan, and S. Wang, “Dna solution of a graph coloring problem,” Journal of
chemical information and computer sciences, vol. 42, no. 3, pp. 524–528, 2002.

7. H. Kellerer, U. Pferschy, and D. Pisinger, “Introduction to np-completeness of knapsack prob-
lems,” pp. 483–493, 2004.

8. B. Brešar, F. Kardoš, J. Katrenič, and G. Semanǐsin, “Minimum k-path vertex cover,” Discrete
Applied Mathematics, vol. 159, no. 12, pp. 1189–1195, 2011.

9. K. L. Hoffman, M. Padberg, G. Rinaldi, et al., “Traveling salesman problem,” Encyclopedia
of operations research and management science, vol. 1, pp. 1573–1578, 2013.

10. L. V. Kantorovich, “Mathematical methods of organizing and planning production,” Manage-
ment science, vol. 6, no. 4, pp. 366–422, 1960.

11. A. Skaf, S. Lamrous, Z. Hammoudan, and M.-A. Manier, “Exact method for single vessel and
multiple quay cranes to solve scheduling problem at port of tripoli-lebanon,” pp. 457–461,
2018.

12. A. Skaf, S. Lamrous, Z. Hammoudan, and M.-A. Manier, “Genetic algorithm to optimize
unloading of large containers vessel in port of tripoli-lebanon,” pp. 569–574, 2019.

13. A. Skaf, S. Lamrous, Z. Hammoudan, and M.-A. Manier, “Solving methods for the quay crane
scheduling problem at port of tripoli-lebanon,” RAIRO-Operations Research, vol. 55, no. 1,
pp. 115–133, 2021.

Computer Science & Information Technology (CS & IT) 27

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.




