
David C. Wyld et al. (Eds): AIFZ, SIGPRO, NWCOM, CLSB, MLNLP, DTMN, BDIOT, CSITY - 2022

pp. 53-67, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.121605

AUGMENTED EFFICIENT ZERO-KNOWLEDGE

CONTINGENT PAYMENTS IN
CRYPTOCURRENCIES WITHOUT SCRIPTS

Peifang Ni1, 2

1TCA Laboratory, Institute of Software,

Chinese Academy of Sciences, Beijing, China
2State Key Laboratory of Cryptology, Beijing, China

ABSTRACT

Zero-Knowledge Contingent Payment presents how Bitcoin contracts can provide a solution for

the so-called fair exchange problem.Banasik, W. et al. first presented an efficient Zero-

Knowledge Contingent Payment protocol for a large class of NP-relations, which is a protocol

for selling witness. It obtains fairness in the following sense: if the seller aborts the protocol
without broadcasting the final message then the buyer finally gets his payment back. However,

we find that the seller in the protocol could refuse to broadcast the final signature of the

transaction without any compensation for the buyer. As a result, the buyer cannot get the

witness from the final signature of the transaction and has the payment for the witness locked

until finishing the large computation for a secret signing key.

In this paper, we fix this problem by augmenting the efficient Zero-Knowledge Contingent

Payment protocol. We present a new protocol where the seller needs to provide the deposit

before the zero-knowledge proof of knowledge of the witness being sold. And then the buyer

could obtain the seller's witness if the seller broadcasts the final signature of the transaction

and gets the payment and his deposit. Otherwise, the buyer could get back the payment and

obtain the seller's deposit. This new augmented protocol is constructed without any new
assumptions.

KEYWORDS

fair exchange, Bitcoin, cryptocurrencies, zero-knowledge, without scripts.

1. INTRODUCTION

The concept of cryptocurrency emerged in the last few years and recently there has been a huge

emphasis on constructing cryptocurrencies easy for circulation. The main valuable property of

these cryptocurrencies is that their security does not need to rely on any single trusted third party.

Bitcoin [1], the most prominent of the cryptocurrencies, is a decentralized payment system that is
based on maintaining a public transaction ledger in a distributed manner. The list of transactions

in this payment system is written on a public ledger, which is maintained jointly by the system

users. With the public ledger, the system can implement an idea of the so-called smart-contracts.
Consider the Zero-Knowledge Contingent Payment [2], which is a contract and shows that how

Bitcoin contracts can provide a solution for the so-called fair exchange problem. With respect to

[2], the Zero Knowledge Contingent Payment makes it possible to make payments using Bitcoin
in a trustless manner where neither the payer or payee can cheat and that the payments are given

http://airccse.org/cscp.html
http://airccse.org/csit/V12N16.html
https://doi.org/10.5121/csit.2022.121605

54 Computer Science & Information Technology (CS & IT)

to the payee only in the case that some knowledge is disclosed by the payee. The execution of
this contract is guaranteed by the rules of the underlying Bitcoin system.

To be more specific, it is executed between two parties that do not trust each other: the Seller and

the Buyer. The Buyer is looking for some value 𝑥 ∈ {0,1}∗ and the valuable conditions of 𝑥 for

him can be described as a function 𝑓: {0,1}∗ → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} (in a form of a polynomial-time

computer program), such that finding 𝑥 satisfying 𝑓(𝑥) = 𝑡𝑟𝑢𝑒 is much harder than verifying

that 𝑓(𝑥) = 𝑡𝑟𝑢𝑒 holds. Hence than, the Buyer is willing to pay for 𝑥 in the conditions that 𝑥 is

valuable for him. Imagine now that the Buyer is approached by a Seller through the internet, who

is claiming that he knows 𝑥 satisfying the valuable condition 𝑓(𝑥) = 𝑡𝑟𝑢𝑒 and willing to sell 𝑥.
Then the parties face the following problem: they need to finish the transaction on the internet in

a trustless manner where neither the Seller or the Buyer can cheat.

The Zero-Knowledge Contingent Payment protocol described in [2] is accomplished using the

combination of a hash-locked transaction and some non-standard scripts so that the data revealed

in the hashlock release is the data in need. Recently, It has been implemented in [3] for selling a
proof of a sudoku solution.

Banasik, W. et al. first created non-trivial efficient smart contracts using only the standard
transactions in the public ledger [4]. Under the assumption of semantically secure Paillier

encryption and symmetric encryption, secure commitment and time-locked commitment

schemes, the strongly unforgeable ECDSA scheme, and zero-knowledge proof of knowledge,
they constructed efficient Zero-Knowledge Contingent Payment protocol for a large class of NP-

relations, which is a protocol for selling the witness. In the protocol, the buyer first prepares a

transaction 𝑇1 sending the funds from his public key to a public key shared by the buyer and the

seller, and then they sign the transaction 𝑇2, sending the funds from the shared public key to the
seller's public key, using secret-shared signing keys in cooperation with the seller knowing the

final signature of the transaction but the buyer not. After the seller giving a zero-knowledge proof

of the witness being sold, the buyer broadcasts 𝑇1 and the seller broadcasts 𝑇2. And then the
buyer can reverse the witness from the final signature. However, we find that the seller in the

protocol could refuse to broadcast the final signature of the transaction without any compensation

for the buyer. As a result, the buyer cannot get the witness from the final signature of the

transaction and has the payment for the witness locked until finishing the large computation for a
secret signing key.

1.1. Our Results

In this paper, we fix this problem by augmenting the efficient Zero-Knowledge Contingent

Payment protocol. We present a new protocol where the seller needs to provide the deposit before
the zero-knowledge proof of knowledge of the witness being sold. And then the buyer could

obtain the seller's witness if the seller broadcasts the final signature of the transaction and gets the

payment and his deposit. Otherwise, the buyer could get back the payment and obtain the seller's
deposit. This new augmented protocol is constructed without any new assumptions. A high-level

overview is as the following.

The ECDSA signature scheme is denoted by (𝐸𝐶𝐺𝑒𝑛, 𝐸𝐶𝑆𝑖𝑔𝑛, 𝐸𝐶𝑉𝑒𝑟) . A user in Bitcoin

system is identified by his public key 𝑝𝑘 in the ECDSA signature scheme and each key 𝑝𝑘 is

called an address. A simple transaction denoted by [𝑇] simply sends some Bitcoins 𝑥 from

address 𝑝𝑘0 to 𝑝𝑘1 . [𝑇] contains the following tuple [𝑇] ≔
(𝑇𝑋𝑖𝑑(𝑇′), 𝑣𝑎𝑙𝑢𝑒: 𝑥, 𝑓𝑟𝑜𝑚: 𝑝𝑘0, 𝑡𝑜: 𝑝𝑘1) , where 𝑇𝑋𝑖𝑑(𝑇′) denotes the identifier of

transaction[𝑇′] with value at least 𝑥 that appeared earlier on the ledger and is redeemed by [𝑇].

Computer Science & Information Technology (CS & IT) 55

A complete transaction denoted by 𝑇 has a form ([𝑇], 𝐸𝐶𝑆𝑖𝑔𝑛𝑠𝑘0
([𝑇])). 𝑇𝑋𝑖𝑑(𝑇′) is defined

simply as a 𝑆𝐻𝐴256 hash of ([𝑇], 𝐸𝐶𝑆𝑖𝑔𝑛𝑠𝑘0
([𝑇])).

Under the assumption of semantically secure Paillier encryption and symmetric encryption,

secure commitment and time-locked commitment schemes, the strongly unforgeable ECDSA

scheme, and zero knowledge proof, our augmented efficient Zero-Knowledge Contingent

Payment protocol consists of four stages.

In stage 1, the buyer and seller execute a key exchange protocol to generate two key pairs for the

ECDSA signatures such that the secret keys are secret-shared between them. As a result, the

buyer holds (𝑃𝐾, 𝑆𝐾0) , (𝑃𝐾′, 𝑆𝐾′0) and seller holds (𝑃𝐾, 𝑆𝐾1), (𝑃𝐾′, 𝑆𝐾′1).

In stage 2, the seller prepares transaction 𝑇3 sending the funds 𝑝 from 𝑃𝐾𝑆 to 𝑃𝐾′ and

𝑇′3sending the funds 𝑝 from 𝑃𝐾′ to 𝑃𝐾𝑆, and then sends the hash value of 𝑇3 to the buyer. The

buyer prepares transaction 𝑇1 sending the funds 𝑣 from 𝑃𝐾𝐵 to 𝑃𝐾′, 𝑇′1 sending the funds

𝑣 + 𝑝 from 𝑃𝐾′ to 𝑃𝐾, and 𝑇2 sending the funds 𝑣 + 𝑝 from 𝑃𝐾 to the seller's public key

𝑃𝐾𝑆. They execute the unique signature generation protocol to generate the signature of [𝑇′1] for

the buyer and the signatures of 𝑇2 and [𝑇′3] for the seller. And then the seller broadcasts 𝑇3 . If

𝑇3 is not corresponding to the hash value of sent before, the buyer aborts. Otherwise, the parties

execute the following stages.

In stage 3, the seller proves the knowledge of the witness being sold by executing a zero-

knowledge proof of knowledge protocol with the buyer in the cut-and-choose technique. In the

proof, the seller uses the signature of [𝑇2] to compute the secret key for encryption of a set of

challenges and responses with the witness, and then it sends the commitments of the encryption
to the buyer. After receiving the subset of the challenges from the buyer, the seller opens the

commitments asked to open. The proof is valid if the output of the buyer's verification is true.

Otherwise, the buyer aborts.

In stage 4, if the buyer broadcasts the valid 𝑇1 and 𝑇′1, and the seller broadcasts the valid 𝑇2, the

buyer could reverse the witness from the signature of 𝑇2. If the buyer refuses to broadcast 𝑇1 and

𝑇′1 or he broadcasts illegal 𝑇1 and 𝑇′1, then the seller could broadcast 𝑇′3 to get the deposit

back. If the buyer broadcasts the valid 𝑇1 and 𝑇′1, but the seller refuses to broadcast 𝑇2, the

buyer could finally obtain his own funds together with the seller's deposit after finishing a large

computation for a secret signing key.

Therefore, it holds that:

assume the existence of semantically secure Paillier encryption and symmetric encryption, secure
commitment and time-locked commitment schemes, the strongly unforgeable ECDSA scheme, and

zero knowledge proof of knowledge. Then, there exists a secure efficient Zero-Knowledge

Contingent Payment protocol in cryptocurrencies without scripts, which obtains fairness in the
following sense: if the seller aborts protocol without broadcasting the final message then the

buyer finally gets its payment back and gets an extra financial compensation from the seller.

1.2. Related Works

Relevant to our work are the works on smart contracts that provide solutions for fair protocols in
the cryptocurrency systems. Bentov, I. and Kumaresan, R. studied secure computations in the

following model of fairness: a malicious user who aborts protocol after receiving the output is

forced to pay a mutually predefined monetary penalty [5]. They then showed how to use Bitcoin

56 Computer Science & Information Technology (CS & IT)

system to achieve secure computations with the above defined fairness in two-party setting as
well as the multiparty setting (with a honest majority) by simulating with a new ideal

functionalities as they proposed.

Andrychowicz, M. et al. showed how to obtain fair two-party secure computation protocol via the
Bitcoin system with the fairness in the following sense: if one party aborts the protocol after

learning the output but the other one not, then the other party gets a financial compensation from

the aborted one [6]. They constructed the protocol with the two-party protocol of Goldreich and
Vainish [7] additionally secured against an active adversary with zero-knowledge proofs. And

they presented one possible application of the protocol to the fair contract signing: each party is

forced to either complete the protocol or pay a fine to the other party.

1.3. Outline

In Section 2, we define the notations and definitions that are used through the paper. In Section 3,

we describe the subprotocols used in the Banasik's efficient Zero-Knowledge Contingent

Payment and give the new subprotocols used in our protocol. In Section 4, we present our
augmented efficient Zero-Knowledge Contingent Payment protocol. And Section 5 is conclusion.

2. PRELIMINARIES

2.1. Notations

We use 𝑛 to denote the security parameter. We use [𝑘] for any 𝑘 ∈ 𝑁 to denote the set

{1, … , 𝑘}. For any probabilistic algorithm 𝐴(⋅), 𝐴(𝑥) is the result of executing 𝐴 with input 𝑥

and uniformly chosen randomness. We use 𝑦 = 𝐴(𝑥) to denote that 𝑦 is set to 𝐴(𝑥). For a set

S, we use 𝑦 ∈ 𝑆 (or 𝑦 ← 𝑆) to denote that 𝑦 is chosen from S. For any language 𝐿) and

instance𝑥 ∈ 𝐿), we use {ℛ𝐿}(𝑥)) to denote the set of witnesses for 𝑥 ∈ 𝐿. A function 𝜇: 𝑁 → 𝑅

is negligible (in 𝑥) if for every positive integer 𝑐 there exists an integer 𝑁𝑐 such that for all

𝑥>𝑁𝑐 we have that |𝜇(𝑥)| <
1

𝑥𝑐
.

2.2. Elliptic Curve Digital Signature Algorithm (ECDSA)

We recall the definition of digital signature algorithm [8, 4, 9].

Definition 1 (Digital Signature Scheme): A digital signature scheme consists of a triple of

probabilistic polynomial-time algorithms (𝐺𝑒𝑛, 𝑆𝑖𝑔𝑛, 𝑉𝑒𝑟) satisfying the following conditions:

 Key-generator algorithm 𝐺𝑒𝑛: On input 1𝑛, 𝐺𝑒𝑛 outputs a pair of keys(𝑠𝑘, 𝑣𝑘);

 Signing algorithm 𝑆𝑖𝑔𝑛 : On input secret key 𝑠𝑘 and a message 𝛼 , 𝑆𝑖𝑔𝑛 outputs

signature𝜎;

 (Deterministic) Verifying algorithm 𝑉𝑒𝑟 : On input public key 𝑣𝑘 , message 𝛼 , and

signature, 𝜎 , 𝑉𝑒𝑟 returns 𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {accept, reject};
 For every pair (𝑠𝑘, 𝑣𝑘) in the range of 𝐺𝑒𝑛(1𝑛) and for every 𝛼 ∈ {0,1}∗ , the signing

and verification algorithms 𝑆𝑖𝑔𝑛 and 𝑉𝑒𝑟 satisfy

Pr[𝑉𝑒𝑟(𝑣𝑘, 𝛼, 𝑆𝑖𝑔𝑛(𝑠𝑘, 𝛼)) = 1] = 1

where the probability is taken over the internal coin tosses of algorithms 𝑆𝑖𝑔𝑛 and 𝑉𝑒𝑟.

Computer Science & Information Technology (CS & IT) 57

Definition 2 (Elliptic Curve Digital Signature Algorithm) The ECDSA signature scheme

(𝐸𝐶𝐺𝑒𝑛, 𝐸𝐶𝑆𝑖𝑔𝑛, 𝐸𝐶𝑉𝑒𝑟) is a variant of digital signature scheme algorithm, in which the

algorithms 𝐸𝐶𝐺𝑒𝑛, 𝐸𝐶𝑆𝑖𝑔𝑛, 𝐸𝐶𝑉𝑒𝑟 are defined as the followings.

 Key-generator algorithm 𝐸𝐶𝐺𝑒𝑛: On input 1𝑛 , 𝐸𝐶𝐺𝑒𝑛 chooses an elliptic curve group

(𝐺, 𝑂, 𝑔, +) over a prime field 𝑍𝑝, where 𝑂 is the neutral element, 𝑔 is the generator of 𝐺,

and the order of 𝐺 is a prime number such that ⌈𝑙𝑜𝑔2|𝐺|⌉ = 𝑛. And then 𝐸𝐶𝐺𝑒𝑛 samples a

random 𝑑 ∈𝑅 𝑍|𝐺|, and computes 𝐷 ≔ 𝑑 ⋅ 𝑔. The generated secret key is (𝑑, (𝐺, 𝑂, 𝑔, +)),

and the public key is (𝐷, (𝐺, 𝑂, 𝑔, +));

 Signing algorithm 𝐸𝐶𝑆𝑖𝑔𝑛 : Let 𝐻 be a hash function and 𝑓: 𝐺 → 𝑍|𝐺| be a reduction

function that we will define in a moment. On input secret key and message𝛼, 𝐸𝐶𝑆𝑖𝑔𝑛 first

chooses a random 𝑘 ∈𝑅 𝑍|𝐺| , and then computes 𝑟 = 𝑓(𝑘 ⋅ 𝑔) and 𝑠 = 𝑘−1(𝐻(𝛼) + 𝑑 ∙

𝑟)𝑚𝑜𝑑|𝐺|. If 𝑟 = 0 or 𝑠 = 0 then the algorithm aborts. Otherwise, the 𝐸𝐶𝑆𝑖𝑔𝑛 outputs

(𝑟, 𝑠);

 (Deterministic) Verifying algorithm 𝐸𝐶𝑉𝑒𝑟: On input public key, message 𝛼 and signature

(𝑟, 𝑠), 𝐸𝐶𝑉𝑒𝑟 first checks if 𝑟 and 𝑠 are non zero elements of 𝑍|𝐺| and then verifies if 𝑟 =

𝑓(𝐻(𝛼) ∙ 𝑠−1 ∙ 𝑔 + 𝑟 ∙ 𝑠−1 ∙ 𝐷) . If this holds, then 𝐸𝐶𝑉𝑒𝑟 outputs 𝑜𝑘 , and otherwise it

outputs⊥.

Recall that every element of 𝐺 has the form (𝑥, 𝑦) ∈ 𝑍𝑝
2. The reduction function 𝑓: 𝐺 → 𝑍|𝐺| is

defined as: on input (𝑥, 𝑦) ignores 𝑦 and produces as output 𝑓(𝑥, 𝑦) = 𝑥𝑚𝑜𝑑 |𝐺|.

Security of the ECDSA signature scheme. The ECDSA signature scheme satisfies existentially

strong unforgeability under a chosen message attack. We consider the following game played by

a polynomial time adversary𝐴. First, a key pair is sampled as (𝑣𝑘, 𝑠𝑘) ≔ 𝐸𝐶𝐺𝑒𝑛(1𝑛) and the

adversary 𝐴 is given the public verification key 𝑣𝑘. Then, 𝐴 chooses a sequence of messages

𝛼1, … , 𝛼𝑘 and learns each corresponding signature 𝜎𝑖 ≔ 𝐸𝐶𝑆𝑖𝑔𝑛𝑠𝑘(𝛼). He does it in an adaptive

way that he chooses each 𝛼𝑖 after learning 𝜎1, … , 𝜎𝑖−1. Finally, 𝐴 outputs a pair (𝛼𝑘+1, 𝜎𝑘+1).

We say that 𝐴 mauls a signature if the output (𝛼𝑘+1, 𝜎𝑘+1) satisfies that 𝐸𝐶𝑉𝑒𝑟(𝛼𝑘+1, 𝜎𝑘+1) =
𝑜𝑘 and 𝜎𝑘+1 has not been sent to 𝐴 as one of the signatures in 𝜎1, … , 𝜎𝑘. The ECDSA signature

scheme is existentially strongly unforgeable under a chosen message attack if every polynomial-
time adversary can maul a signature with at most negligible probability.

2.3. Homomorphic Encryption Schemes

We recall the definitions of encryption schemes in [4, 10, 11] and present the following

definition.

Definition 3 (Public Encryption Scheme) A public encryption scheme consists of a triple of

probabilistic polynomial-time algorithms (𝐸𝑛𝑐𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐):

 Key-generator algorithm 𝐸𝑛𝑐𝐺𝑒𝑛: On input 1𝑛, 𝐸𝑛𝑐𝐺𝑒𝑛 outputs a pair of keys (𝑝𝑘, 𝑠𝑘);

 Encryption algorithm 𝐸𝑛𝑐: On input public key 𝑝𝑘 and message 𝛼 ∈ {0,1}∗, 𝐸𝑛𝑐 outputs

ciphertext 𝑐 = 𝐸𝑛𝑐𝑝𝑘(𝛼) ∈ {0,1}∗;

 Decryption algorithm 𝐷𝑒𝑐 : On input private key 𝑠𝑘 , ciphertext 𝑐 , 𝐷𝑒𝑐 outputs 𝛼′ =
𝐷𝑒𝑐𝑠𝑘(𝑐);

 For every pair (𝑝𝑘, 𝑠𝑘) in the range of 𝐸𝑛𝑐𝐺𝑒𝑛(1𝑛) and for every 𝛼 ∈ {0,1}∗, the

encryption and decryption algorithms 𝐸𝑛𝑐 and 𝐷𝑒𝑐 satisfy

Pr [𝐷𝑒𝑐𝑠𝑘 (𝐸𝑛𝑐𝑝𝑘(𝛼)) = 𝛼] = 1

58 Computer Science & Information Technology (CS & IT)

where the probability is taken over the internal coin tosses of algorithms 𝐸𝑛𝑐 and 𝐷𝑒𝑐.

Security. To define security of an encryption scheme (𝐸𝑛𝑐𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) consider a

polynomial time adversary 𝐴 produces a pair of messages (𝑚0, 𝑚1) with access to oracle

𝐸𝑛𝑐𝑝𝑘(⋅) and 𝐷𝑒𝑐𝑠𝑘(⋅) , where (𝑝𝑘, 𝑠𝑘) = 𝐸𝑛𝑐𝐺𝑒𝑛(1𝑛) . He then receives a ciphertext 𝑐 =

𝐸𝑛𝑐𝑝𝑘(𝑚𝑏) for a random 𝑏 ∈ {0,1}, and produces 𝑏′ ∈ {0,1} without asking the oracle 𝐷𝑒𝑐𝑠𝑘(⋅

) to decrypt 𝑐 . We say that 𝐴 wins if 𝑏′ = 𝑏 . We say that the encryption scheme

(𝐸𝑛𝑐𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) is semantically secure if for every polynomial time adversary 𝐴 the

probability that he wins is at most
1

2
+ 𝜇(𝑛), where 𝜇 is some negligible function (in other words:

𝐸𝑛𝑐𝑝𝑘(𝑚0) and 𝐸𝑛𝑐𝑝𝑘(𝑚1) are computationally indistinguishable).

The definition of a symmetric-key encryption scheme is the same as that of a public encryption

scheme except that there is only one secret key 𝑘, which is usually sampled uniformly at random

from some space 𝒦 (that depends on 1𝑛). The adversary does not learn the key, but can try to

get some partial information about 𝑘 by choosing messages 𝑚1, … , 𝑚𝑛 and learning the

corresponding ciphertexts 𝐸𝑛𝑐𝑝𝑘(𝑚1), … , 𝐸𝑛𝑐𝑝𝑘(𝑚𝑛) in an adaptive way.

A public-key encryption scheme (𝐸𝑛𝑐𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) is additively homomorphic if the set of

valid messages for the public key 𝑝𝑘 is an additive group (𝐻𝑝𝑘 , +) , where the key pair

(𝑝𝑘, 𝑠𝑘) is generated by 𝐸𝑛𝑐𝐺𝑒𝑛. Moreover, the homomorphic algorithm we require is defined

by an operation ⊗: {0,1}∗ × {0,1}∗ → {0,1}∗{⊥}, such that for every valid key pair (𝑝𝑘, 𝑠𝑘) and

every pair of messages (𝑚0, 𝑚1) ∈ 𝐻𝑝𝑘 we have that 𝐷𝑒𝑐𝑠𝑘 (𝐸𝑛𝑐𝑝𝑘(𝑚0) ⊗ 𝐸𝑛𝑐𝑝𝑘(𝑚1)) =

𝑚0 + 𝑚1.

2.4. Time-lock Commitment Schemes

We recall the definitions of time-lock commitment schemes [4, 12, 13]. A commitment scheme

(𝐶𝑜𝑚𝑚𝑖𝑡, 𝑂𝑝𝑒𝑛) executed between two parties (a committer and a receiver) consists of two

phases, the commit phase and the open phase.

 Commit Phase. The committer takes as input a message 𝛼 ∈ {0,1}∗ and chooses a random

𝑟 ∈ {0,1}∗ . The committer then computes 𝑐 ≔ 𝐶𝑜𝑚𝑚𝑖𝑡(𝛼) with randomness 𝑟 and

sends it to the receiver;

 Open Phase. The committer reveals the message 𝛼 committed and the randomness 𝑟

used in the commit phase. And the receiver verifies 𝑂𝑝𝑒𝑛(𝑐, 𝛼, 𝑟) .

Security. A commitment scheme is secure if it is binding and hiding. The hiding property means

that for every 𝛼0, 𝛼1 ∈ {0,1}∗ , 𝐶𝑜𝑚𝑚𝑖𝑡(𝛼0) and 𝐶𝑜𝑚𝑚𝑖𝑡(𝛼1) are computationally

indistinguishable. The binding property means that for any PPT committer, he can reveal another

message 𝛼′ ≠ 𝛼 such that 𝑂𝑝𝑒𝑛(𝑐, 𝛼, 𝑟) = 𝛼′ with negligible probability.

A commitment scheme (𝐶𝑜𝑚𝑚𝑖𝑡, 𝑂𝑝𝑒𝑛) is a time-lock commitment scheme if the receiver can

open the commitment by himself with a significant computational effort. Every time-lock

commitment comes with two parameters, 𝜏0 and 𝜏1 (with 𝜏0 ≤ 𝜏1), and is called (𝜏0, 𝜏1)-

secure, where 𝜏0 denotes the time that everybody, including very powerful adversaries, needs to

force open the commitment, and 𝜏1 denotes the time needed by the honest users to force open the

commitment.

Computer Science & Information Technology (CS & IT) 59

2.5. Zero-knowledge Proofs of Knowledge

We recall the definitions of zero-knowledge protocols [4, 14, 15, 16] and give a simple

introduction.

Definition 4 (Interactive Proof System) A pair of interactive Turing machines 〈𝑃, 𝑉〉 is called an

interactive proof system for any language 𝐿 if machine 𝑉 is polynomial-time and the following
two conditions hold:

 Completeness: There exists a negligible function 𝑐 such that for every 𝑥 ∈ 𝐿,

Pr[〈𝑃, 𝑉〉(𝑥) = 1] > 1 − 𝑐(|𝑥|)

 Soundness: There exists a negligible function 𝑠 such that for every 𝑥 ∉ 𝐿 and every

interactive machine 𝐵, it holds that

Pr[〈𝑃, 𝑉〉(𝑥) = 1] < 𝑠(|𝑥|)

𝑐(⋅) is called the completeness error and 𝑠(⋅) is the soundness error.

Zero-knowledge protocols are interactive proof systems with zero-knowledge property, which

means that the prover knows a witness 𝜔 for some instance 𝑥 ∈ 𝐿 and convinces the verifier

that 𝑥 ∈ 𝐿 without providing the verifier with any additional information beyond the fact that

𝑥 ∈ 𝐿.

A zero-knowledge protocol is called a zero-knowledge proof of knowledge if 𝐿 ∈ 𝑁𝑃 and for

every prover 𝑃∗ there exists a polynomial-time knowledge extractor, that can output a witness 𝜔

for 𝑥 ∈ 𝐿 by interacting with 𝑃∗. We follow the requirement in [4], suppose that the last two

messages in the zero-knowledge proof of knowledge protocol are: a challenge 𝑐 sent by the

verifier to prover, and the prover's response 𝑟 corresponding to the challenge 𝑐. The knowledge

extractor extracts witness 𝜔 after being given transcripts of two accepting executions that are

identical except that the challenges are different (and the responses may also be different).

2.6. Bitcoin Transaction Syntax

A complete transaction denoted by 𝑇 has a form ([𝑇], 𝐸𝐶𝑆𝑖𝑔𝑛𝑠𝑘0
([𝑇])) , where [𝑇] ≔

(𝑇𝑋𝑖𝑑(𝑇′), 𝑣𝑎𝑙𝑢𝑒: 𝑥, 𝑓𝑟𝑜𝑚: 𝑝𝑘0, 𝑡𝑜: 𝑝𝑘1) . Another standard type of the transaction is called

multisig transaction [4], where [𝑇] has a form (𝑇𝑋𝑖𝑑(𝑇′), 𝑣𝑎𝑙𝑢𝑒: 𝑥, 𝑓𝑟𝑜𝑚: 𝑝𝑘0, 𝑡𝑜 𝑘 − 𝑜𝑢𝑡 −
𝑜𝑓𝑚: 𝑝𝑘1, … , 𝑝𝑘𝑚) and it is signed by 𝑠𝑘0. It can be redeemed by a transaction 𝑇′′ with the

form ([𝑇′′], 𝜎𝑖1
, … , 𝜎𝑖𝑘

) , 1 ≤ 𝑖1 < ⋯ < 𝑖𝑘 ≤ 𝑚 and for every 1 ≤ 𝑗 ≤ 𝑘 it holds that

𝐸𝐶𝑉𝑒𝑟𝑝𝑘𝑖𝑗
([𝑇′′], 𝜎𝑖𝑗

) = 𝑜𝑘.

3. THE SUBPROTOCOLS IN THE ZERO-KNOWLEDGE CONTINGENT

PAYMENT PROTOCOL

In this section, we describe the subprotocols used in Banasik's efficient Zero-Knowledge
Contingent Payment system and give the new formalization used in our protocol.

60 Computer Science & Information Technology (CS & IT)

3.1. The Two-party ECDSA Key Generation Protocol

The first ingredient is a protocol called 𝑆ℎ𝑎𝑟𝑒𝑑𝐾𝐺𝑒𝑛, in which two parties, the Seller and Buyer,
generate a key pair (public key, private key) for ECDSA, in such a way that the secret key is

secret-shared between the Seller and Buyer. This protocol is still used in our final protocol.

To be more precise, fix an elliptic curve (𝐺, 𝑂𝑔, +) constructed over a prime field 𝑍𝑝 and let

𝐶𝑜𝑚 = (𝐶𝑜𝑚𝑚𝑖𝑡, 𝑂𝑝𝑒𝑛) be a secure (computational hiding) commitment scheme, both parties

take as input a security parameter 1𝑛, the overview of 𝑆ℎ𝑎𝑟𝑒𝑑𝐾𝐺𝑒𝑛 is as following:

 Seller: samples 𝑑𝑆 ← 𝑍|𝐺|
∗ , computes 𝐷𝑆 ≔ 𝑑𝑆 ⋅ 𝑔 and 𝑐 ≔ 𝐶𝑜𝑚𝑚𝑖𝑡(𝐷𝑆), and sends 𝑐 to

the Buyer

 Buyer: samples 𝑑𝐵 ← 𝑍|𝐺|
∗ , computes 𝐷𝐵 ≔ 𝑑𝐵 ⋅ 𝑔 and sends 𝐷𝐵 to the Seller;

 Seller: sends 𝑂𝑝𝑒𝑛(𝐷𝑆) to the Buyer;

 The Seller and Buyer compute the ECDSA public key separately: 𝑝𝑘 ≔ 𝑑𝑆 ⋅ 𝐷𝐵 = 𝑑𝐵 ⋅ 𝐷𝑆

and abort if 𝑝𝑘 =0. And the secret key 𝑠𝑘: = 𝑑𝑆 ⋅ 𝑑𝐵 is secret-shared between the two
parties.

3.2. The Unique Signature Generation Protocol

We will present two formalizations of the unique signature generation protocol, 𝑈𝑆𝐺1 and

𝑈𝑆𝐺2 . 𝑈𝑆𝐺1 is a little different from the 𝑈𝑆𝐺 protocol used in Banasik's efficient Zero-
Knowledge Contingent Payment system [4].

The 𝑈𝑆𝐺 protocol uses 𝐾𝑆𝑖𝑔𝑛𝐺𝑒𝑛 as a subroutine, in which the parties jointly sign a message

𝑧 using the secret-shared signing key generated by 𝑆ℎ𝑎𝑟𝑒𝑑𝐾𝐺𝑒𝑛. Recall that 𝐺 is an elliptic

curve group for ECDSA signature scheme 𝐸𝐶𝐺𝑒𝑛, 𝐸𝐶𝑆𝑖𝑔𝑛, 𝐸𝐶𝑉𝑒𝑟 , 𝑇𝐿𝐶𝑜𝑚 =
(𝑇𝐿𝐶𝑜𝑚𝑚𝑖𝑡, 𝑇𝐿𝐹𝑜𝑟𝑐𝑒𝑂𝑝𝑒𝑛) is a time-locked commitment scheme, and

(𝐴𝑑𝑑𝐻𝑜𝑚𝐺𝑒𝑛, AddHomEnc, AddHomDec) is a Paillier encryption scheme which is additively

homomorphic over 𝑍𝑛′, where 𝑛′ > 2 ⋅ |𝐺|4. Let 𝐹 be a one-way function. Protocol KSignGen

is described as follows.

 Seller and Buyer: They jointly create signing randomness 𝐾 using the same way in

𝑆ℎ𝑎𝑟𝑒𝑑𝐾𝐺𝑒𝑛. The Seller holds 𝐾𝑆 ∈ 𝑍|𝐺|
∗ and 𝐾𝑆 ≔ 𝑘𝑠 ⋅ 𝑔 and the Buyer holds 𝐾𝐵 ∈ 𝑍|𝐺|

∗

and 𝐾𝐵 ≔ 𝑘𝐵 ⋅ 𝑔. Finally the parties both know the signing randomness 𝐾 ≔ 𝑘𝑠 ⋅ 𝑘𝐵 ⋅ 𝑔,

parse 𝐾 as (𝑥, 𝑦), compute 𝑟 ≔ 𝑥𝑚𝑜𝑑 |𝐺|, and abort if𝑟 = 0;

 Seller: He creates a new key pair (𝑝𝑘𝐴𝐻 , 𝑠𝑘𝐴𝐻) ≔ AddHomGen(1𝑛) in the Paillier

encryption scheme, computes the ciphertext 𝑐𝑆 ≔ AddHomEnc𝑝𝑘𝐴𝐻
(𝑑𝑆) , and sends the

public key 𝑝𝑘𝐴𝐻 and the ciphertext 𝑐𝑆;

 Buyer: On receiving 𝑝𝑘𝐴𝐻 and 𝑐𝑆 from the Seller, he computes 𝑐0 ≔ 𝑘𝐵
−1 ⋅ 𝐻(𝑧)𝑚𝑜𝑑|𝐺|,

𝑐1 ≔ AddHomEnc𝑝𝑘𝐴𝐻
(𝑐0) , 𝑡 ≔ 𝑘𝐵

−1 ⋅ 𝑟 ⋅ 𝑑𝐵𝑚𝑜𝑑 |𝐺| , 𝑐2 ≔ 𝑐1⨂(𝑐𝑆)𝑡 , samples 𝑢 ←

{1, … , |𝐺|2}, computes 𝑐𝐵 ≔ 𝑐2⨂AddHomEnc𝑝𝑘𝐴𝐻
(𝑢 ⋅ |𝐺|), and sends the ciphertext 𝑐𝐵;

 Seller: On receiving 𝑐𝐵 , he computes 𝑆0 ≔ AddHomDec𝑠𝑘𝐴𝐻
(𝑐𝐵), 𝑠 ≔ 𝑘𝑆

−1𝑠0 𝑚𝑜𝑑 |𝐺|

and aborts if 𝑠 =0. The final signature of 𝑧 is 𝜎 ≔ (𝑟, 𝑠) if ECVer𝑝𝑘(𝑧, 𝜎) = 𝑜𝑘 and

otherwise the Seller aborts. At the end he commits to 𝑆 = 𝐹(𝜎) , creates a time-lock

commitment to 𝑑𝑆, and sends Γ𝑖 ≔ 𝐶𝑜𝑚𝑚𝑖𝑡(𝑆) and Φ𝑖 ≔ TLCommit(𝑑𝑆);

We stress that when the two parties execute 𝐾𝑆𝑖𝑔𝑛𝐺𝑒𝑛, the one who is supposed to obtain the

final signature at the end of 𝐾𝑆𝑖𝑔𝑛𝐺𝑒𝑛 plays the role of ``Seller''.

Computer Science & Information Technology (CS & IT) 61

The 𝑈𝑆𝐺 protocol is executed after the parties generate 𝑎 key pairs (𝑠𝑘1 , 𝑝𝑘1), … , (𝑠𝑘𝑎 , 𝑝𝑘𝑎)

using the SharedKGen protocol.

 Buyer: He chooses a random subset 𝐽 ⊆ {1, … , 𝑎}, such that |𝐽| = 𝑎 − 𝑏. Let 𝑗1, … , 𝑗𝑏

denote the set {1, … , 𝑎}\𝐽. And then he chooses message 𝑧 to be signed and sends it to

the Seller；

 Seller and Buyer: For 𝑖 = 1, the parties execute the 𝐾𝑆𝑖𝑔𝑛𝐺𝑒𝑛(1𝑛) protocol with

𝑝𝑘𝑖 ≔ 𝑑𝑆
𝑖 ⋅ 𝑑𝐵

𝑖 ⋅ 𝑔. And at the end of each execution, the Seller sends the commitment

Γ𝑖 ≔ Commit(𝑆𝑖) , where 𝑆𝑖 = 𝐹(𝜎𝑖) , and the time-lock commitment Φ𝑖 ≔

TLCommit(𝑑𝑆
𝑖)；

 Buyer: He sends 𝐽 to Seller；

 Seller: For each 𝑗 ∈ 𝐽, the Seller opens the commitments to 𝑆𝑗 and 𝑑𝑆
𝑗
, and sends 𝜎𝑗, 𝑘𝑆

𝑗

and 𝑠𝑘𝐴𝐻
𝑗

 to Buyer；

 Buyer: He aborts if any of the commitments did not open correctly. Otherwise, for each

𝑗 ∈ 𝐽, he verifies if the following holds:

 ECVer𝑝𝑘𝑗(𝑧, 𝜎𝑗) = 𝑜𝑘;

 𝐹(𝜎𝑗) = 𝑆𝑗;

 𝑑𝑆
𝑗 ⋅ 𝑑𝐵

𝑗 ⋅ 𝑔 = 𝑝𝑘𝑗;

 AddHomDec𝑠𝑘𝐴𝐻

𝑗 (𝑐𝑆
𝑗) = 𝑑𝑆

𝑗
.

If the verification fails then the Buyer aborts. Otherwise, the unique signature is the set

{𝜎𝑗𝑖}, where 𝑖 ∈ {1, … , 𝑏}.

In this paper, the 𝑈𝑆𝐺1 protocol is the same as the 𝑈𝑆𝐺 protocol except that 𝑈𝑆𝐺1 outputs the

set {𝜎𝑖 }, where 𝑖 ∈ {1, … , 𝑎} , as the unique signature. For the technique used in the final

protocol, we assume that each 𝑆𝑖from the 𝑈𝑆𝐺1 protocol is divided into 2𝑛 parts 𝑆𝑖,1, … , 𝑆𝑖,2𝑛

each of size 𝑛. In addition, we assume that each part 𝑆𝑖,𝑗 is committed separately.

The 𝑈𝑆𝐺2 protocol is the same as the KSignGen(1𝑛) protocol except that there is no further

computation after obtaining the signature 𝜎 ≔ (𝑟, 𝑠), of which the verification result is 𝑜𝑘.

4. THE AUGMENTED ZERO-KNOWLEDGE CONTINGENT PAYMENT

PROTOCOL

In this section we show how to use the subprotocols to construct the augmented two-party Zero-

Knowledge Contingent Payment Protocol protocol with fairness in the following sense: if the
malicious seller aborts protocol without broadcasting the final message then the buyer finally gets

his payment back and an extra financial compensation from the seller.

4.1. Security Definition

In our protocol, the Seller sells to the Buyer a value 𝑥 such that 𝑓(𝑥) = 𝑡𝑟𝑢𝑒 (for some public

function 𝑓: {0,1}∗ → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}. We assume that the price of 𝑥 is 𝑣 Bitcoins and the deposit

of the Seller for this transaction is 𝑝 Bitcoins. Hence, before an execution of the protocol starts,

there is some unspent transaction 𝑇0 on the blockchain that sends 𝑣 Bitcoins to 𝑝𝑘𝐵 and some

unspent transaction 𝑇′0 on the blockchain that sends 𝑝 Bitcoins to 𝑝𝑘𝑆 . The parties initially

share the following common input: security parameter 1𝑛 , price 𝑣 for the secret 𝑥 , deposit

value𝑝 for the computation of a time-lock committed message, parameters 𝑎, 𝑏 ∈ 𝑁 such that

𝑎 > 𝑏, an elliptic curve group 𝐺, 𝑂, 𝑔, + for an ECDSA signature scheme, such that ⌈𝑙𝑜𝑔2|𝐺|⌉ =

62 Computer Science & Information Technology (CS & IT)

𝑛, and parameters (𝜏0, 𝜏1) for the time-lock commitment. We say that the final protocol is 𝜀 −
𝑠𝑒𝑐𝑢𝑟𝑒 if, except with probability 𝜀 + 𝜇(𝑛), the following properties hold:

 if the honest Buyer loses his funds then he learns 𝑥′such that 𝑓(𝑥′) = 𝑡𝑟𝑢𝑒;

 if the honest Seller does not get Buyer's funds then the Buyer learns no information about 𝑥;
 if an honest Buyer is forced to open a time-lock commitment then he finally does not lose

his funds and obtains a financial compensation from the Seller.

4.2. Instantiations and Assumptions

Instantiations.F is a one-way function and we use a standard symmetric encryption scheme

EncGen, Enc, Dec and the additively-homomorphic public key encryption scheme

(AddHomGen, AddHomEnc, AddHomDec) introduced by Pascal Paillier [11]. The elements

on which we perform the addition operations are the exponents in the elliptic curve group of the

ECDSA scheme. Hence the Paillier encryption scheme is homomorphic over 𝑍𝑛′, where n′ > 2 ⋅
|G|4, and ⌈𝑙𝑜𝑔2|𝐺|⌉ = 𝑛.

We use a standard commitment scheme Com = (Commit, Open) that is based on hash function

and secure in the random oracle model [4]. Let 𝐻 be a hash function and a commitment to

message 𝑥 is defined as Commit (x):=H(x||r), where 𝑟 ∈ {0,1}∗. And Open is to reveal(𝑥, 𝑟).

The binding property follows from the collision-resistance of 𝐻 because that a commitment that

can be open in two different ways would form a collision for 𝐻. And the hiding property follows

from the fact that H(x||r) does not reveal any information about 𝑥. We use the classic (𝜏0, 𝜏1)-

secure timed commitments TLCom = (TLCommit, TLForceOpen) in [16] and assume that

𝜏1 = 10 ⋅ 𝜏0 as in [4].

We consider the two-party protocol, executed between a Buyer and a Seller, in which the Seller

sells to the Buyer 𝑥 such that 𝑓(𝑥) = 𝑡𝑟𝑢𝑒 , in the active security settings.The parties are

connected by a secure channel, which can be easily obtained using the standard cryptographic
techniques. One user in Bitcoin is identified by his public key in the ECDSA signature scheme,

which helps to establish the secure channel between each other. Without loss of generality, we set

(𝑃𝐾𝐵, 𝑆𝐾𝐵) and (𝑃𝐾𝑆, 𝑆𝐾𝑆) to be the ECDSA key pairs of the Buyer and Seller respectively.

Assumptions. We assume that Paillier encryption and symmetric encryption are semantically

secure, Com and TLCom are secure commitment schemes, and the ECDSA scheme is strongly

unforgeable. Hence, the subprotocols in Section 3 are secure.

We keep the form of the assumption of zero-knowledge proof of knowledge protocol in [4]. We

also assume that the public function 𝑓 has a zero-knowledge proof of knowledge protocol,

denoted by ℱ , in which the Seller can prove the knowledge of 𝑥 such that 𝑓(𝑥) = 𝑡𝑟𝑢𝑒 .

Protocol ℱ consists of two phases: the 𝑆𝑒𝑡𝑢𝑝ℱ phase and the 𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒ℱ phase. After

executing the𝑆𝑒𝑡𝑢𝑝ℱ phase, the views of the Seller and Buyer are denoted by 𝑆ℱ and 𝐵ℱ

respectively.

In the 𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒ℱ phase, the Buyer generates challenge message as 𝑐ℱ =
GenChallengeℱ (𝐵ℱ) and sends 𝑐ℱ to Seller. Then the Seller calculates the corresponding

response 𝑟ℱ = GenResponseℱ(𝑥, 𝑆ℱ , 𝑐ℱ) and sends 𝑟ℱ to the Buyer. At the end, the Buyer

decides to accept or reject the proof according to the output of function =
VerifyResponseℱ(𝐵ℱ , 𝑐ℱ , 𝑟ℱ) ∈ {true, false}.

Computer Science & Information Technology (CS & IT) 63

Protocol ℱ is a proof of knowledge since we require that there is a knowledge extractor

Extractℱ such that Extractℱ(𝐵ℱ , 𝑐ℱ
1 , 𝑟ℱ

1, 𝑐ℱ
2 , 𝑟ℱ

2) and 𝑓(𝑥′) = 𝑡𝑟𝑢𝑒 if only =

VerifyResponseℱ(𝐵ℱ , 𝑐ℱ
𝑖 , 𝑟ℱ

𝑖) = 𝑡𝑟𝑢𝑒 for 𝑖 = 1,2 and 𝑐ℱ
1 ≠ 𝑐ℱ

2 . It means that a witness for 𝑓

can be extracted from the correct answers corresponding to two different challenges. We also

assume that the challenge 𝑐ℱ is sampled uniformly from the set 𝑋𝐴ℱ
= {0,1} in Seller's view.

4.3. The Protocol

Our protocol consists of four stages and the final protocol called SellWitness is depicted on
Fig.1.

 Stage 1. Using the two-party ECDSA key generation protocol SharedKGen, the Buyer and

Seller jointly generate 𝑎 + 1 key pairs (𝑠𝑘1 , pk1), … , (𝑠𝑘𝑎+1, pk𝑎+1) , where pk𝑖: = 𝑑𝑆
𝑖 ⋅

𝑑𝐵
𝑖 ⋅ 𝑔 and 𝑠𝑘𝑖 ≔ 𝑑𝑆

𝑖 ⋅ 𝑑𝐵
𝑖 . As a result, the Buyer holds (𝑃𝐾, 𝑆𝐾0) ≔ ((pk1, … , pk𝑎),

 (𝑑𝐵
1 , … , 𝑑𝐵

𝑎)) , (𝑃𝐾′, 𝑆𝐾′0) ≔ (pk𝑎+1, 𝑑𝐵
𝑎+1)) and the Seller holds (𝑃𝐾, 𝑆𝐾1) ≔

((pk1, … , pk𝑎), (𝑑𝑆
1, … , 𝑑𝑆

𝑎)) , (𝑃𝐾′, 𝑆𝐾′1) ≔ (pk𝑎+1 , 𝑑𝑆
𝑎+1)) ;

 Stage 2. The parties respectively produce the messages to be signed. If one prepares a

transaction 𝑇, then the message to be signed is [𝑇]. The procedure is called GenMsg𝑇. The

Seller prepares transaction 𝑇3 sending the funds 𝑝 from 𝑃𝐾𝑆 to 𝑃𝐾′ and 𝑇′3 sending the

funds 𝑝 from𝑃𝐾′ to 𝑃𝐾𝑆, and then sends the hash value of𝑇3 to the Buyer. And then the

Buyer prepares transaction 𝑇1 sending the funds 𝑣 from 𝑃𝐾𝐵 to 𝑃𝐾′, 𝑇′1 sending the

funds 𝑣 + 𝑝 from 𝑃𝐾′ to 𝑎 -out-of- 𝑎 + 𝑏 − 1𝑃𝐾, 𝑃𝐾𝐵, … , 𝑃𝐾𝐵 (consists of 𝑏 − 1𝑃𝐾𝐵),

and 𝑇2 sending the funds 𝑣 + 𝑝 from 𝑃𝐾 to 𝑃𝐾𝑆 . They execute the unique signature

generation protocol 𝑈𝑆𝐺2 using (𝑃𝐾′, 𝑆𝐾′0) and (𝑃𝐾′, 𝑆𝐾′1) to generate the signature

of[𝑇′
1]for the Buyer and the signature of [𝑇′

3] for the Seller. And then they execute the

𝑈𝑆𝐺1 using (𝑃𝐾, 𝑆𝐾0) and (𝑃𝐾, 𝑆𝐾1) to generate the signatures of [𝑇2] for the Seller, in

which the Seller will commit to 𝑆𝐾1 using TLCom and send to the Buyer. And then the

Seller broadcasts 𝑇3. If 𝑇3 is not corresponding to the hash value of sent before, then the

Buyer aborts; otherwise, the parties execute the following stages;

 Stage 3. The Seller proves the knowledge of 𝑥 such that 𝑓(𝑥) = 𝑡𝑟𝑢𝑒 by executing a zero-

knowledge proof of knowledge protocol ℱ with the Buyer in the cut-and-choose technique;

 Stage 4. The Buyer either extracts 𝑥 such that 𝑓(𝑥) = 𝑡𝑟𝑢𝑒 or takes his funds back and

obtains the Seller's deposit.

Theorem. Suppose Paillier encryption and symmetric encryption are semantically secure, 𝐶𝑜𝑚

and TLCom are secure commitment schemes, and the ECDSA scheme used in the construction

of the 𝑈𝑆𝐺1 and 𝑈𝑆𝐺2 is strongly unforgeability. Additionally, there is a zero knowledge proof

ℱ of knowledge of 𝑥 s.t. 𝑓(𝑥) = 𝑡𝑟𝑢𝑒 of the required form. Then the SellWitness (Fig.1) is

𝜀-secure for 𝜀 = (𝑏/𝑎)𝑏.

Proof. Recall that SellWitness is 𝜀 -secure if, except with probability 𝜀 + 𝜇(𝑛), the following

properties hold: (1) if an honest Buyer loses funds then he learns 𝑥′ such that 𝑓(𝑥′) = 𝑡𝑟𝑢𝑒; (2)

if an honest Seller does not get Buyer's funds then the Buyer learns no information about 𝑥; (3) if

an honest Buyer is forced to open a time-lock commitment, then he finally does not lose his funds
and obtains a financial compensation from the Seller. Hence then, we show the security analysis

of SellWitness in two cases: (i) the Buyer is honest and the Seller is mailicious, and (ii) the

Seller is honest and, while the Buyer is malicious.

At the beginning of this proof, we stress that the security of the unique signature generation

protocol 𝑈𝑆𝐺1 follows that of the 𝑈𝑆𝐺 protocol used in Banasik's efficient Zero-Knowledge

64 Computer Science & Information Technology (CS & IT)

Contingent Payment system [4], and the security of the 𝑈𝑆𝐺2 protocol follows that of the
ECDSA.

For case (i), the honest Buyer loses his funds only if he broadcasts transactions 𝑇1 and 𝑇′1 is

redeemed by the Seller or it just locks the Buyer's funds forever. Since with probability≥ 1 −
(𝑏/𝑎)𝑏 − 𝜇0(𝑛) (for a negligible 𝜇0(𝑛)) at least one of the 𝑏 chosen executions, consist of

execution 𝑖 for 𝑖 ∈ {1, … , 𝑎}\𝑗 , of the KSignGen procedure was completed honestly by the

Seller (guaranteed by the security of 𝑈𝑆𝐺1 protocol). While if the Seller does not redeem 𝑇′1,

the honest Buyer will be able to redeem transaction 𝑇′1 and get back his funds together with the

Seller's deposit after that the Buyer force-opens one time-locked puzzle Φ𝑖 in a honestly

completed execution 𝑖 of KSignGen, where 𝑖 ∈ {1, … , 𝑎}\𝑗. Hence then, the property (3) follows

and the Buyer's funds cannot be locked forever except with probability (𝑏/𝑎)𝑏 − 𝜇0(𝑛).

Assume that the Seller redeems transaction 𝑇′1 and he can redeem 𝑇′1 only via transaction 𝑇2.

Then the Buyer can use signatures �̂�𝑖 to calculate secrets 𝑆𝑖,𝑗 . Then he decrypts all the values

𝜎𝑖,𝑗 to get all the challenges and responses 𝑐𝑘
𝑖,𝑗

,𝑟𝑘
𝑖,𝑗

. At the end using any pair of responses he can

calculate 𝑥′ = Extractℱ(𝐵ℱ
𝑖,𝑗

, 𝑐1
𝑖,𝑗

, 𝑟1
𝑖,𝑗

, 𝑐2
𝑖,𝑗

, 𝑟2
𝑖,𝑗

) s.t. 𝑓(𝑥′) = 𝑡𝑟𝑢𝑒 with probability ≥ 1 − 𝜇1(𝑛),

where 𝜇1(𝑛) is negligible (see the proof of Lemma 2 in [4]). Hence then, the property (1)

follows.

Computer Science & Information Technology (CS & IT) 65

For case (ii), if an honest Seller does not get the Buyer's funds, the property (2) is guaranteed by
the zero-knowledge property of the zero-knowledge proof of knowledge protocol.

Figure 1. The SellWitnessProtocol.

5. CONCLUSIONS

In this paper, with respect to the unfairness between the buyer and seller in the Zero-Knowledge

Contingent Payment protocol, we present protocol SellWitness to achieve that, if the seller is

malicious, then the honest buyer will get back his payment and some penalty paid by the seller. In

Common Input: function 𝑓: {0,1}∗ → {true, false}.
Private Input: Seller holds value 𝑥 such that 𝑓(𝑥) = 𝑡𝑟𝑢𝑒.
- Stage 1:

 The parties execute the SharedKGen protocol a + 1 times using the provided parameters. As a

result, the Buyer holds (𝑃𝐾, 𝑆𝐾0), (𝑃𝐾′, 𝑆𝐾′0) and the Seller holds(𝑃𝐾, 𝑆𝐾1), (𝑃𝐾′, 𝑆𝐾′1) as defined
previously.

- Stage 2:

 The Seller generates transactions 𝑇3 and 𝑇′3, and then sends the hash value of 𝑇3 to the Buyer;

 The Buyer generates transactions 𝑇1,𝑇′1 and 𝑇2;

 The Seller and buyer execute𝑈𝑆𝐺1 and 𝑈𝑆𝐺2 with the keys generated in Stage 1 to generate the

corresponding signatures of [𝑇′1], [𝑇′
3] and [𝑇2]. And the Buyer holds complete transaction 𝑇′1

and Seller holds complete transactions 𝑇′
3 and 𝑇2, and the unique signature {𝜎𝑖} (𝑖 ∈ {1, … , 𝑎}) of

[𝑇2];
 The Seller sends commitment Γ𝑖 ≔ Commit(𝑆𝑖) of 𝑆𝑖 = ℱ(𝜎𝑖) and the time-lock commitment

Φ𝑖 ≔ TLCommit(𝑑𝑆
𝑖). Each 𝑆𝑖 is divided into 2n parts 𝑆𝑖,1 , … , 𝑆𝑖,2𝑛 with size n and each part 𝑆𝑖,𝑗

is committed separately. Let {𝑆𝑖}, where 𝑖 ∈ {1, … , 𝑎}\𝐽, denote the unopened set of Γ𝑖 ≔
Commit(𝑆𝑖). And the Seller also broadcasts 𝑇3. If 𝑇3 is not corresponding to the hash value sent

before, the Buyer aborts. Otherwise, the parties execute the following stages.

- Stage 3: for 𝑖 ∈ {1, … , 𝑎}\𝐽,

 For 𝑗 ∈ {1, … ,2𝑛}, the Seller and Buyer execute the Setupℱ
𝑖,𝑗

 phase and learn the views Sℱ
𝑖,𝑗

 and Bℱ
𝑖,𝑗

respectively;

 For 𝑗 ∈ {1, … ,2𝑛}, the Seller calculates two challenges 𝑐1
𝑖,𝑗

 and 𝑐2
𝑖,𝑗

 in random order, which will be

chosen by the Buyer later to calculate the responses 𝑟𝑘
𝑖,𝑗 = GenResposeℱ(𝑥, 𝐵ℱ𝑖,𝑗 , 𝑐𝑘

𝑖,𝑗) for 𝑘 = 1.2;

 For 𝑗 ∈ {1, … ,2𝑛},, the Seller uses Sℱ
𝑖,𝑗

 to encrypt Γ𝑘
𝑖,𝑗 = Enc𝑆𝑖,𝑗(𝑐𝑘

𝑖,𝑗 , 𝑟𝑘
𝑖,𝑗) for 𝑘 = 1,2 And he

commits to 𝛾𝑘
𝑖,𝑗

for 𝑘 = 1.2;

 The Buyer chooses random subset 𝒥𝑖 ⊆ {1, … ,2𝑛} of size 𝑛 and sends 𝑖, 𝑐𝐵
𝑖,𝑗 ≔ GenChallengeℱ for

𝑗 ∈ 𝒥𝑖 to the Seller;

 For 𝑗 ∈ 𝒥𝑖 , the Seller opens his commitment to 𝑆𝑖,𝑗 and checks that 𝑐𝐵
𝑖,𝑗 = 𝑐𝑘

𝑖,𝑗
 for 𝑘 = 1 or 𝑘 = 2.

He opens the commitments to Γ𝑘
𝑖,𝑗

 for only this k;

 For 𝑗 ∉ 𝒥𝑖, the Seller opens his commitments to Γ𝑘
𝑖,𝑗

 for k = 1,2;

 The Buyer verifies all the commitments;

 For 𝑗 ∈ 𝒥𝑖 , the Buyer decrypts (𝑐𝑖,𝑗 , 𝑟𝑖,𝑗) = Dec𝑆𝑖,𝑗(𝛾𝑘
𝑖,𝑗), and checks that 𝑐𝑖,𝑗 = 𝑐𝐵

𝑖,𝑗
 and

VerifyResponseℱ(𝐵ℱ
𝑖,𝑗

, 𝑐𝐵
𝑖,𝑗

, 𝑟𝑖,𝑗) = 𝑡𝑟𝑢𝑒.

- Stage 4:

 The Buyer broadcasts 𝑇1 and 𝑇′1, and then the two parties wait until they are confirmed finally;

 If transactions 𝑇1 and 𝑇′1 are valid as expected, the Seller broadcasts 𝑇2 and uses signatures

𝜎1 , … , 𝜎𝑎 to get her payment, and otherwise he broadcasts 𝑇′3 to has his deposit back;

 If transaction 𝑇2 is valid as expected, the Buyer uses signature 𝜎𝑖 to calculate secrets 𝑆𝑖,𝑗 and then

decrypts all the values γ𝑖,𝑗 to get the corresponding challenges 𝑐𝑘
𝑖,𝑗

and responses 𝑟𝑘
𝑖,𝑗

. At the end, the

Buyer uses any pair of responses to calculate 𝑥′ = Extractℱ(𝐵ℱ
𝑖,𝑗 , 𝑐1

𝑖,𝑗 , 𝑟1
𝑖,𝑗 , 𝑐2

𝑖,𝑗 , 𝑟2
𝑖,𝑗). Otherwise, he

force-opens time-locked puzzles Φ𝑖 (𝑖 ∈ {1, … , 𝑎\𝐽}), and uses any of the opened values 𝑑𝑆
𝑖 to get

his funds back and obtain the Seller's deposit as well.

66 Computer Science & Information Technology (CS & IT)

the further work, we will optimize SellWitness, e.g., replacing the time-lock building block with
some timeless primitives to allow the parties to have unlimited number of valid transactions.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers for their valuable comments. This

work is supported in part by the National Key R&D Program of China (No. 2020YFB1005801)
and in part by the National Natural Science Foundation of China (No. 62172396).

REFERENCES

[1] Nakamoto S. Bitcoin: A peer-to-peer electronic cash system[J]. Decentralized Business Review,

2008: 21260.

[2] Campanelli M, Gennaro R, Goldfeder S, et al. Zero-knowledge contingent payments revisited:

Attacks and payments for services[C]//Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security. 2017: 229-243.

[3] Greg Maxwell. “The first successful Zero-Knowledge

ContingentPayment.”https://bitcoincore.org/en/2016

[4] Banasik W, Dziembowski S, Malinowski D. Efficient zero-knowledge contingent payments in

cryptocurrencies without scripts[C]//European symposium on research in computer security.
Springer, Cham, 2016: 261-280.

[5] Bentov I, Kumaresan R. How to use bitcoin to design fair protocols[C]//Annual Cryptology

Conference. Springer, Berlin, Heidelberg, 2014: 421-439.

[6] Andrychowicz M, Dziembowski S, Malinowski D, et al. Fair two-party computations via bitcoin

deposits[C]//International Conference on Financial Cryptography and Data Security. Springer, Berlin,

Heidelberg, 2014: 105-121.

[7] Goldrcich O, Vainish R. How to solve any protocol problem-an efficiency improvement[C]//

Conference on the Theory and Application of Cryptographic Techniques. Springer, Berlin,

Heidelberg, 1987: 73-86.

[8] An J H, Dodis Y, Rabin T. On the security of joint signature and encryption[C]//International

conference on the theory and applications of cryptographic techniques. Springer, Berlin, Heidelberg,

2002: 83-107.
[9] Boneh D, Shen E, Waters B. Strongly unforgeable signatures based on computational Diffie-

Hellman[C]//International Workshop on Public Key Cryptography. Springer, Berlin, Heidelberg,

2006: 229-240.

[10] Katz J, Lindell Y. Introduction to modern cryptography[M]. CRC press, 2020.

[11] Paillier P. Public-key cryptosystems based on composite degree residuosity classes[C]//International

conference on the theory and applications of cryptographic techniques. Springer, Berlin, Heidelberg,

1999: 223-238.

[12] Boneh D, Naor M. Timed commitments[C]//Annual international cryptology conference. Springer,

Berlin, Heidelberg, 2000: 236-254.

[13] Rivest R L, Shamir A, Wagner D A. Time-lock puzzles and timed-release crypto[J]. 1996.

[14] Bellare M, Goldreich O. On defining proofs of knowledge[C]//Annual International Cryptology
Conference. Springer, Berlin, Heidelberg, 1992: 390-420.

[15] Goldreich, O.: Foundations of Cryptography, vol. 1. Cambridge University Press, New York (2006).

ISBN: 0521035368.

[16] Goldwasser S, Micali S, Rackoff C. The knowledge complexity of interactive proof-

systems[M]//Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and

Silvio Micali. 2019: 203-225.

Computer Science & Information Technology (CS & IT) 67

AUTHORS

Peifang Ni received the Ph.D. degree in the Institute of Information Engineering, Chinese

Academy of Sciences, in 2020. She is currently a postdoctoral with the Trusted

Computing and Information Assurance Laboratory, Institute of Software, Chinese

Academy of Sciences. Her major research interests include applied cryptography, security

protocol and blockchain consensus.

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	Abstract
	Keywords
	fair exchange, Bitcoin, cryptocurrencies, zero-knowledge, without scripts.

