
Wireless Secret Sharing Game between Two
Legitimate Users and an Eavesdropper

Lei Miao, Hongbo Zhang, and Dingde Jiang

Dept. of Engineering Technology, Middle Tennessee State University,
Murfreesboro, TN 37132, USA

Dept. of Engineering Technology, Middle Tennessee State University,
Murfreesboro, TN 37132, USA

School of Astronautics & Aeronautic, University of Electronic Science and
Technology of China, Sichuan, China

Abstract. Wireless secret sharing is crucial to information security in the era of Internet of
Things. One method is to utilize the effect of the randomness of the wireless channel in the
data link layer to generate the common secret between two legitimate users Alice and Bob. This
paper studies this secret sharing mechanism from the perspective of game theory. In particular,
we formulate a non-cooperative zero-sum game between the legitimate users and an eavesdropper
Eve. In a symmetrical game where Eve has the same probability of successfully receiving a packet
from Alice and Bob when the transmission distance is the same, we show that both pure and
mixed strategy Nash equilibria exist. In an asymmetric game where Eve has different probabilities
of successfully receiving a packet from Alice and Bob, a pure strategy may not exist; in this case,
we show how a mixed strategy Nash equilibrium can be found.
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1 Introduction

Security and privacy in wireless networking relies on symmetric-key cryptography,
which requires pre-established private keys at both the transmitter and the receiver.
In the era of Internet of Things (IoT) where Machine to Machine (M2M) communi-
cations frequently occur with minimum human intervention, automatic and secure
sharing of secrets for the purpose of cryptography is crucial to information secu-
rity. There are various ways to share secrets automatically in wireless networks.
One direction is to combine cryptographic schemes and channel coding techniques
so that transmitted messages between two legitimate users Alice and Bob cannot
be decoded by the eavesdropper Eve [1] [2]. Recent works along this line can be
found in [3], [4], and [5] for interference, broadcast, and multiple access channels,
respectively. Another approach exploits the principle of reciprocity [6] in wireless
communications and extracts the secret from the common observation between Alice
and Bob on the wireless channel state [7] [8] [9]. All these methods mentioned above
are collectively known as the physical layer solutions, which essentially exploit the
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randomness and varying nature of wireless channels to share secrets. They do not
work very well when the speed of variation in wireless channels is slow and may also
require costly modifications to existing communication protocols and infrastructure.

In a different direction, the effect of wireless channel dynamics on the data link
layer is utilized to share secrets [10], [11], [12]. The idea behind works along this
line is as follows: Alice and Bob keep sending each other unicast packets without
retry, using which the secret is derived; Eve would eventually lose a packet and be
unable to figure out the secret even if she knew exactly the mechanism Alice and
Bob use. More details of this approach can be found in our previous work [13] where
we discuss optimal secret sharing between Alice and Bob with the presence of Eve.
Specifically, we assume in [13] that Eve’s location is random, and only Alice and
Bob can choose how to generate the secret; we show that when the probability of
successfully transmitting a packet is monotonically decreasing with the transmission
distance and Eve’s location is uniformly distributed, the optimal strategy for Alice
and Bob to minimize the probability that Eve figures out the secret is to generate
half of the secret from each one of them.

In this paper, we consider the case that Eve can also choose her location in
order to maximize her probability of receiving all packets and figuring out the
secret. Specifically, we assume that both the legitimate users (Alice and Bob) and
the eavesdropper (Eve) do not know each other’s strategy but are both rational. Let
Pe be the probability of Eve figuring out the secret. Then, Alice and Bob’s goal is to
minimize Pe or maximize −Pe, and Eve’s goal is to maximize Pe. This observation
motivates us to formulate the problem as a zero-sum game between the legitimate
users and the eavesdropper.

Security games have been studied extensively on the interaction between legit-
imate and malicious users, and game-theoretic approaches have been applied to a
wide range of problems, including security at the physical and MAC layers, security
at the application layer, cryptography, etc. For comprehensive reviews, see [14] [15]
[16]. Our secret sharing game is different from the existing ones in the literature: we
study how to share secrets using the effect of the unreliable nature of wireless chan-
nels on the data link layer. Our results are based on the probability function of Eve
successfully receiving a packet. Nonetheless, our analysis does not rely on a specific
form of the probability function; instead, our work would be applicable to any prob-
ability function as long as a mild assumption is satisfied. The main contributions of
this paper is as follows: (i) We show that the optimal secret sharing problem can be
considered as a game between two legitimate users and the eavesdropper; (ii) We
analyze the symmetric game case and identify both pure and mixed strategy Nash
equilibria; (iii) For the asymmetric game case, we discover two different scenarios
that yield pure and mixed Nash equilibrium, respectively; and (iv) We show how the
mixed strategy Nash equilibrium can be found when the probabilities of successful
packet transmission are known.
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The organization of the rest of the paper is as follows: in Section 2, we discuss
the system model and formulate the game; in Section 3, we present the main results
of the optimal secret sharing zero-sum game; and finally, we conclude in Section 4.

2 System Model and Problem Formulation

In our system model, the two legitimate users Alice and Bob are at two differ-
ent locations that are D meters away, and they are trying to exchange N packets
{Pkt1, Pkt2, . . . , PktN}, using which the secret is calculated. One simply way to
obtain the secret is to exclusive-OR all N packets together: secret = Pkt1⊕Pkt2⊕
· · · ⊕PktN . Due to the unreliable nature of wireless communications, Eve will have
high probability of losing one or more packets when N is large so that she will not
be able to figure out the secret. Without loss of generality, we let N be an even
number. For ease of notation, We assume that each of the two game players, i.e.,
the legitimate users and the eavesdropper, has three strategies. For Alice and Bob,
the three strategies are: Alice sends all N packets to Bob, Bob sends all N packets
to Alice, and each one of them sends N/2 packets to the other. We use SA, SB, and
SAB to denote these three strategies, respectively. Eve chooses to stay somewhere
between Alice and Bob, and she also has three different strategies: stay close to
Alice, stay close to Bob, and stay in the exact middle. We use LA, LB, and LM

to denote these three locations/strategies, respectively. Note that although we only
have three strategies defined for each player, our results can be extended to the
cases that more strategies are available. We further assume that locations LA and
LB are ε, ε ∈ (0, D2 ), meters away from Alice and Bob, respectively; location LM is
D
2 meters away from both Alice and Bob. Thus, PA(ε), PA(D − ε), and PA(

D
2 ) are

the probabilities of Eve successfully receiving a packet from Alice when Eve’s strat-
egy is LA, LB, and LM , respectively. Similarly, PB(ε), PB(D − ε), PB(

D
2 ) are the

probabilities of Eve successfully receiving a packet from Bob when Eve’s strategy is
LB, LA, and LM , respectively.

Let PA(d) and PB(d) be the probability of Eve successfully receiving a packet
from Alice or Bob, respectively, when the transmission distance is d. We have the
following assumption about PA(d) and PB(d).

(i) Each packet transmission is independent from each other; (ii) PA(d) and
PB(d) are time-invariant; (iii) PA(ε) > PA(

D
2 ) > PA(D− ε) and PB(ε) > PB(

D
2 ) >

PB(D − ε); and (iv) PA(
D
2 ) >

1
2 [PA(D − ε) + PA(ε)] and PB(

D
2 ) >

1
2 [PB(D − ε) +

PB(ε)]. The assumptions above is quite generic and does not require the exact
form of functions PA(d) and PB(d). Parts (i) and (ii) above are valid in slow-
fading environments where the coherence time of the wireless channel is long and
the channel state is stable during the period of secret sharing. Part (iii) states that
the key factor that determines the probability of successful packet transmission is
the distance, which is especially true in long-distance wireless communications. An
example of PA(d) and PB(d) supporting the monotonicity assumption in VANET
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(Vehicular Ad Hoc Networks) environments can be found in [17], in which Killat et
al. simulate and verify a theoretical probability of successful transmission function
of distance inferred from the Nakagami-m distribution of RF wave propagation. It
is well known that in free space, the path loss of RF signals is proportional to the
square of distance; part (iv) above reflects this: in spite of random factors such as
channel fading, the signal’s power and the probability of successful transmission
attenuates faster when the distance is larger.

3 Optimal Secret Sharing as a Zero-Sum Game

Let sL and sE be the strategies of the legitimate users, i.e., Alice and Bob, and Eve,
the eavesdropper, respectively. We have sL ∈ {SA, SB, SAB} and sE ∈ {LA, LB, LM}
We use UL(sL, sE) = −Pe and UE(sL, sE) = Pe to denote the utility functions of
the legitimate users and Eve, respectively. Essentially, Alice and Bob would like
to minimize the probability of Eve figuring out the secret, and Eve would like to
maximize the same probability.

Definition 1. A strategy profile (s∗L, s
∗
E) is a Nash equilibrium if UL(s

∗
L, s
∗
E) ≥

UL(sL, s
∗
E) for each feasible strategy sL and UE(s

∗
L, s
∗
E) ≥ UE(s

∗
L, sE) for each fea-

sible strategy sE.

3.1 Symmetric Game

We first consider a symmetric game scenario that the following hold:

PA(LA) = PB(LB) = P (ε), PA(LB) = PB(LA) = P (D − ε),
and PA(LM ) = PB(LM ) = P (D/2).

We have the utility matrix shown in Table 1 where the utility functions of Eve
are positive and the ones of Alice and Bob are negative. Next, let us first introduce
an auxiliary lemma.

Table 1. Utility matrix of the symmeric game.
Alice and Bob

SA, q1 SAB, q2 SB, 1− q1 − q2

Eve
LA, p1 ±PN (ε) ±P

N
2 (ε)P

N
2 (D − ε) ±PN (D − ε)

LM , p2 ±PN (D2 ) ±PN (D2 ) ±PN (D2 )

LB, 1− p1 − p2 ±PN (D − ε) ±P
N
2 (ε)P

N
2 (D − ε) ±PN (ε)
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Lemma 1. P
N
2 (ε)P

N
2 (D − ε) < PN (D2 )

Proof : Because P (ε) ∈ (0, 1), P (D − ε) ∈ (0, 1), and P (D2 ) ∈ (0, 1), we only need
to show that P (ε)P (D − ε) < P 2(D2 ). Because ε ∈ (0, D2 ), D − ε 6= ε. Since P (·) is
monotonically decreasing, we have

[P (D − ε)− P (ε)]2 = P 2(D − ε) + P 2(ε)− 2P (D − ε)P (ε) > 0,

i.e.,
1

4
[P 2(D − ε) + P 2(ε)] >

1

2
[P (D − ε)P (ε)]. (1)

From part (iv) of Assumption 2, we have

P 2(
D

2
) = P 2(

1

2
(D − ε) + 1

2
ε) > [

1

2
P (D − ε) + 1

2
P (ε)]2

=
1

4
[P 2(D − ε) + P 2(ε)] +

1

2
[P (D − ε)P (ε)]

Invoking (1), we have P 2(D2 ) > P (D − ε)P (ε) �.
We are now ready to discuss the pure strategy result of the symmetric game.

Lemma 2. Strategy profile (SAB, LM ) is a pure strategy Nash equilibrium.

Proof: It can be seen from the utility matrix that UL(SAB, LM ) = UL(SA, LM ) =
UL(SB, LM ) = −PN (D2 ). Invoking Lemma 1, we have

UE(SAB, LM ) = PN (
D

2
) > P

N
2 (ε)P

N
2 (D − ε) = UE(SAB, LA) = UE(SAB, LB).

From Definition 1, it follows that strategy profile (SAB, LM ) is a pure strategy
Nash equilibrium. �

Lemma 2 indicates that in the pure strategy Nash equilibrium, Alice and Bob
each generates half of the packets and Eve stays in the middle location LM . We
now turn our attention to a mixed strategy Nash equilibrium, in which Eve has
probabilities p1, p2, and p3 = 1 − p1 − p2 to use strategies LA, LM , and LB,
respectively; similarly, Alice and Bob have probabilities q1, q2, and q3 = 1− q1− q2
to use strategies SA, SAB, and SB, respectively.

Lemma 3. In a mixed strategy Nash equilibrium, Eve’s strategy is to stay at LM

with probability 1; Alice and Bob should have positive probabilities on all three strate-
gies SA, SB, and SAB so that:

q1P
N (ε) + q2P

N
2 (ε)P

N
2 (D − ε) + q3P

N (D − ε) < PN (
D

2
) (2)

and
q1P

N (D − ε) + q2P
N
2 (D − ε)P

N
2 (ε) + q3P

N (ε) < PN (
D

2
) (3)
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Proof: Suppose that 0 < q1 < 1, 0 < q2 < 1, and 0 < 1 − q1 − q2 < 1. In a mixed
strategy Nash equilibrium, we have:

− p1PN (ε)− p2PN (
D

2
)− (1− p1 − p2)PN (D − ε)

= −p1P
N
2 (ε)P

N
2 (D − ε)− p2PN (

D

2
)− (1− p1 − p2)P

N
2 (ε)P

N
2 (D − ε)

= −p1PN (D − ε)− p2PN (
D

2
)− (1− p1 − p2)PN (ε)

Solving the above equations, we get p1 = p3 = 0, and p2 = 1. If it is the case in the
mixed strategy Nash equilibrium, we must also have (2) and (3).

Next, we verify that when (2) and (3) hold, ∃ q1, q2, and q3 so that 0 < q1 < 1,
0 < q2 < 1, and 0 < q3 < 1. Let q1 = q3, and (2) and (3) become one inequality:

2q1[P
N (ε)+PN (D− ε)]+ q2P

N
2 (ε)P

N
2 (D− ε) < PN (

D

2
) = 2q1P

N (
D

2
)+ q2P

N (
D

2
)

(4)
Invoking Lemma 1, we have q2P

N
2 (ε)P

N
2 (D− ε) < q2P

N (D2 ). We now consider two
cases.
Case 1: 2q1[PN (ε)+PN (D− ε)] ≤ 2q1P

N (D2 ). In this case, (4) always holds as long
as q1, q2, and q3 are nonzero probabilities.
Case 2: 2q1[P

N (ε) + PN (D − ε)] > 2q1P
N (D2 ). In this case, we can always pick

small enough positive q1 and q3 values so that (4) holds. �

3.2 Asymmetric Game

We now consider an asymmetric game scenario that PA(d) > PB(d), i.e., when the
transmission distance is the same, Eve has higher probability to successfully receive
a packet from Alice than from Bob. For example, if Alice has higher transmission
power than Bob or Bob is closer to a noise source, then the signal to noise ratio
between Alice and Eve may be higher than that between Bob and Eve, causing the
asymmetric game scenario described above. We have the following utility matrix
shown in Table 2.

Table 2. Utility matrix of the asymmeric game.
Alice and Bob

SA, q1 SAB, q2 SB, 1− q1 − q2

Eve
LA, p1 ±PN

A (ε) ±P
N
2

A (ε)P
N
2

B (D − ε) ±PN
B (D − ε)

LM , p2 ±PN
A (D2 ) ±P

N
2

A (D2 )P
N
2

B (D2 ) ±PN
B (D2 )

LB, 1− p1 − p2 ±PN
A (D − ε) ±P

N
2

B (ε)P
N
2

A (D − ε) ±PN
B (ε)
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Note that similar to the utility matrix in the symmetric game case, we only
show the utility functions of Eve; the ones of Alice and Bob are negative and are
not shown above.

Lemma 4. If PA(d) > PB(d), and PB(ε) ≤ PA(D−ε), then strategy profile (SB, LB)
is a pure strategy Nash equilibrium.

Proof: Because ε ∈ (0, D/2) and PB(d) is monotonically decreasing, we have

PN
B (ε) > PN

B (
D

2
) > PN

B (D − ε), i.e.,

UE(SB, LB) > UE(SB, LM ) > UE(SB, LA). (5)

By assumption, PB(ε) ≤ PA(D − ε), we get

PN
B (ε) ≤ P

N
2

B (ε)P
N
2

A (D − ε) ≤ PN
A (D − ε). (6)

Multiplying (6) by −1 yields:

−PN
B (ε) ≥ −P

N
2

B (ε)P
N
2

A (D − ε) ≥ −PN
A (D − ε), i.e.,

UL(SB, LB) ≥ UL(SAB, LB) ≥ UL(SA, LB). (7)

Combining (5) and (7), it follows that strategy profile (SB, LB) is a pure strategy
Nash equilibrium. �

The intuition behind Lemma 4 is that if PB(d) is so much less than PA(d) so
that PB(ε) ≤ PA(D− ε), then the best strategy of the legitimate users is to always
let Bob send the packets; conversely, the best strategy of Eve is to stay close to Bob
so that she could maximize the probability of receiving all packets.

Lemma 5. If PA(d) > PB(d) and PB(ε) > PA(D−ε), then there is no pure strategy
Nash equilibrium.

Proof: We discuss the three columns of the utility matrix individually.
(1) Column #1: We have UE(SA, LA) = PN

A (ε) > UE(SA, LM ) = PN
A (D2 ) >

UE(SA, LB) = PN
A (D − ε) due to part (iii) of Assumption 2. Therefore, only strat-

egy profile (SA, LA) can possibly be a pure strategy in the first column. However,
we have UL(SA, LA) = −PN

A (ε) < −PN
B (ε) < −PN

B (D − ε) = UL(SB, LA) in the
first row. Therefore, there is no pure strategy Nash equilibrium in the first column
of the utility matrix.

(2) Column #2: Because UE(SA, LA) = PN
A (ε) > UE(SAB, LA) = P

N
2

A (ε)P
N
2

B (D −
ε) > UE(SB, LA) = PN

B (D − ε), strategy profile (SAB, LA) cannot be a pure strat-
egy Nash equilibrium. Similarly, because UE(SA, LM ) = PN

A (D2 ) > UE(SAB, LM ) =

P
N
2

A (D2 )P
N
2

B (D2 ) > UE(SB, LM ) = PN
B (D2 ), strategy profile (SAB, LM ) cannot be
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a pure strategy Nash equilibrium either. Finally, because UE(SA, LB) = PN
A (D −

ε) < UE(SAB, LB) = P
N
2

A (D − ε)P
N
2

B (ε) < UE(SB, LB) = PN
B (ε), strategy profile

(SAB, LB) cannot be a pure strategy Nash equilibrium.
(3) Column #3: Similarly to the Column #1 case, there is no pure strategy Nash
equilibrium in the third column either. The analysis is very similar to the Column
#1 case, and we omit the details. �

Lemma 5 shows that when PB(ε) > PA(D − ε), i.e., PB(d) is not too much less
than PA(d), no pure strategy Nash equilibrium exists. According to [18], at least
one mixed strategy Nash equilibrium always exists in this case. The utility functions
are:

−p1PN
A (ε)− p2PN

A (
D

2
)− p3PN

A (D − ε) (q1)

−p1P
N
2

A (ε)P
N
2

B (D − ε)− p2P
N
2

A (
D

2
)P

N
2

B (
D

2
)− p3P

N
2

B (ε)P
N
2

A (D − ε) (q2)

−p1PN
B (D − ε)− p2PN

B (
D

2
)− p3PN

B (ε (q3)

q1P
N
A (ε) + q2P

N
2

A (ε)P
N
2

B (D − ε) + q3P
N
B (D − ε) (p1)

q1P
N
A (

D

2
) + q2P

N
2

A (
D

2
)P

N
2

B (
D

2
) + q3P

N
B (

D

2
) (p2)

q1P
N
A (D − ε) + q2P

N
2

B (ε)P
N
2

A (D − ε) + q3P
N
B (ε) (p3)

where (q1), (q2), and (q3) are the payoffs of the legitimate users when strategies
SA, SAB, and SB are used, respectively; (p1), (p2), and (p3) are the payoffs of Eve
when strategies LA, LM , and LB are used, respectively. The procedure of finding the
mixed strategy Nash equilibrium involves two steps: proposition and verification. In
the first step, we make an assumption about either {p1, p2, p3} or {q1, q2, q3} and
use the utilization functions to solve for the other set of probabilities. If the solution
is feasible and we are able to use it in the second step to verify that the proposition
provided in Step 1 is indeed true, the Nash equilibrium is found. Next, we formally
present the procedure in Algorithm 1 where we only show the propositions about
{p1, p2, p3}; the pseudo code of making propositions about {q1, q2, q3} is very similar.

3.3 Numerical Example

In this subsection, we present a numerical example. For ease of calculation, we let
N = 2. The probabilities are: PA(ε) = 0.99, PA(

D
2 ) = 0.94, PA(D − ε) = 0.80,

PB(ε) = 0.90, PB(
D
2 ) = 0.84, and PB(D− ε) = 0.70. Invoking Lemma 5, there is no

pure strategy Nash equilibrium. The mixed strategy utility functions corresponding
to (q1) through (p3) are:

−0.3401p1 − 0.2364p2 − 0.64 (8)
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Algorithm 1 Finding mixed strategy Nash equilibrium in an asymmetric game
when PB(ε) > PA(D − ε)
1: Proposition: enumerate the following assumptions.
2: p1, p2, and p3 are all non-zero probabilities; solve (p1)=(p2)=(p3) for q1, q2, q3

and go to Verification.
3: For any two probabilities p′ and p′′ ∈{p1, p2, p3}, assume they are non-zero and

use p′′′ to denote the remaining probability. Solve (p′)=(p′′)>(p′′′) for q1, q2, q3
and go to Verification.

4: Verification:
5: if the solution is infeasible then
6: Continue to the next assumption
7: else
8: if q1,q2, and q3 are all positive then
9: Solve (q1)=(q2)=(q3) for p1, p2, p3.

10: end if
11: if two probabilities q′ and q′′ ∈{q1, q2, q3} are positive, and the remaining

probability q′′′ is 0 then
12: Solve (q′) = (q′′) > (q′′′) for p1, p2, p3.
13: end if
14: if q′ ∈{q1, q2, q3} is 1, and the other two probability q′′ and q′′′ are 0 then
15: Solve (q′) > (q′′) and (q′) > (q′′′) for p1, p2, p3.
16: end if
17: if the solution of p1, p2, p3 matches with the proposition then
18: Nash equilibrium is found and exit
19: else
20: Continue to the next assumption
21: end if
22: end if
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0.027p1 − 0.0504p2 − 0.72 (9)

0.32p1 + 0.1044p2 − 0.81 (10)

0.4901q1 + 0.203q2 + 0.49 (11)

0.178q1 + 0.084q2 + 0.7056 (12)

−0.17q1 − 0.09q2 + 0.81 (13)

We start out by assuming that p1 ∈ (0, 1), p2 ∈ (0, 1), and 1 − p1 − p2 ∈ (0, 1).
Under this proposition, we have (11) = (12) = (13), whose solution is q1 = 1.946,
q2 = −3.292, and 1 − q1 − q2 = 2.346. This is infeasible, meaning that p1, p2, and
1− p1 − p2 cannot be all positive and less than 1.

Next, we discuss three cases of p1, p2, and 1− p1 − p2.
Case 1: p1 ∈ (0, 1), p2 ∈ (0, 1), and 1−p1−p2 = 0. It yields that (11) = (12) > (13).
There are two solutions that ensure q1, q2, and 1− q1 − q2 are not all positive and
less than 1. Therefore, we have two subcases:
Case 1.1: q1 = 0.6908, q2 = 0, and 1−q1−q2 = 0.3092. It implies that at equilibrium,
we must have (8) = (10) > (9), which has no solution between 0 and 1 for p1 and
p2.
Case 1.2: q1 = 0.5469, q2 = 0.4531, and 1−q1−q2 = 0. It implies that at equilibrium,
we must have (8) = (9) > (10), which has solutions of p1 and p2 so that p1 + p2 ∈
(0, 1). It implies that 1− p1 − p2 ∈ (0, 1), which is impossible.
Case 2: p1 ∈ (0, 1), p2 = 0, and 1−p1−p2 ∈ (0, 1). It yields that (11) = (13) > (12).
There are no solutions.
Case 3: p1 = 0, p2 ∈ (0, 1), and 1 − p1 − p2 ∈ (0, 1). In this last case, we have
(12) = (13) > (11). The only feasible solution to it is q1 = 0, q2 = 0.6, and
1 − q1 − q2 = 0.4. If this solution is also the one in equilibrium, we need to have
(9) = (10) > (8), which also has a feasible solution: p1 = 0, p2 = 0.5814, and
1− p1 − p2 = 0.4186.
It completes the numerical example, and the mixed Nash equilibrium is as follows:

(p1, p2, 1− p1 − p2) = (0, 0.5814, 0.4186)

(q1, q2, 1− q1 − q2) = (0, 0.6, 0.4)

4 Conclusions

We have studied the optimal secret sharing problem between two legitimate users
(Alice and Bob) and an eavesdropper (Eve), formulated as a non-cooperative zero-
sum game. In the symmetric game case, both pure and mixed strategy Nash equi-
libria exist. Our results indicate that regardless of the type of the equilibrium, Eve
should always stay in the middle of Alice and Bob. In the pure strategy Nash equilib-
rium, the best strategy of Alice and Bob is to generate half of the packets from each

Computer Science & Information Technology (CS & IT)38



one of them; in a mixed strategy Nash equilibrium, Alice and Bob could generate
all the packets from one user only, but some inequalities involving the probabilities
must hold.

In the asymmetric game case that Eve has better chance to successfully receive
packets from Alice than from Bob, we show that there are two scenarios: if it is
very asymmetrical, then a pure strategy Nash equilibrium exists, in which Bob is
the one who generates all the packets and Eve chooses to stay near Bob; o.w., a
mixed strategy equilibrium exists and can be calculated.
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