
David C. Wyld et al. (Eds): NLPA, AIS, BDAP, SOENG, IPPR - 2022

pp. 77-90, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.121407

DEVELOPMENT OF COMMUNICATING

STREAM X-MACHINE TOOL FOR MODELING

AND GENERATING TEST CASES FOR

AUTOMATED TELLER MACHINE

Bashir Adewale Sanusi1, Emmanuel Ogunshile1, Mehmet Aydin1,

Stephen Olatunde Olabiyisi2 and Mayowa Oyedepo Oyediran3

1Department of Computer Science and Creative Technologies,

University of the West of England, Bristol, United Kingdom
2Department of Computer Science,

Ladoke Akintola University of Technology, Ogbomoso, Nigeria
3Department of Computer Sciences, Ajayi Crowther University, Oyo, Nigeria

ABSTRACT

The improvement of this paper takes advantage of the existing formal method called Stream X-

Machine by optimizing the theory and applying it to practice in a large-scale system. This

optimized formal approach called Communicating Stream X-Machine (CSXM) applied in

software testing based on its formal specifications to a distributed system as it points out its

advantages and limits of the use of the existing formal methods to this level. However, despite

the tremendous works that has been done in the software testing research area, the origin of

bugs or defects in a software is still cost and takes more time to detect. Therefore, this paper has

proven that the current state of art challenge is due to that lack of a formal specification of what
exactly a software system is supposed to do. In this paper, CSXM principles was used for the

development of Automated Teller Machine (ATM) given formal specification which outputs

conforms with the implementation. Moreso, the computational strength of Remote Method

Invocation (RMI) network interface in Java programming was used to provide communication

between the stand-alone systems i.e., the client (ATM) and server (Bank) in the context of this

paper. The results of this paper have been proven and helps software developers and

researchers takes early action on bugs or defects discovered by software testing.

KEYWORDS

Formal Method, Software Testing; Stream X-machine; Communicating Stream X-Machine;
Software Testing; Distributed System; Formal Specification; Defects; Automated Teller

Machine; Remote Method Invocation; Java Programming Language.

1. INTRODUCTION

In computational term, testing attempts to achieve correctness by detecting all the faults that are
present in an implementation, for the errors to be removed. Nevertheless, software defect is

referred to as a flaw, fault or failure in a computer system or program which gives an unexpected

or incorrect result [1]. It gives either an incorrect, or unexpected result, and behaves in
unintended ways. The unexpected result is identified during software testing and marked as a

defect [1]. Stream X-Machine (SXM) testing methodology is a complete functional testing

approach to software and hardware testing that exploits the scalability of the SXM model of

http://airccse.org/cscp.html
http://airccse.org/csit/V12N14.html
https://doi.org/10.5121/csit.2022.121407

78 Computer Science & Information Technology (CS & IT)

computation [2]. SXM testing method provides repeatable and strong guarantees of functional
correctness, up to a specification [3]. To model systems composed of communicating agents and

introduction of stand-alone SXM models, communication is suitable by exchanging messages

between components processing functions [4]. In addition, the design of a Communicating X-

machine system (CXM) is referred to as the graph whose nodes are the components and edges are
simply the communication channels among all. Sequel to the issue of integrating a society of X-

machine into a communicating system for the goal of building large-scale software systems

which fulfil their requirements, several classes of CXM models have been presented [5].
However, CXM is a formal model which ease a regimented development of large-scale systems.

Nevertheless, the optimization of the existing formal method in use called SXM has leads to

theory of the Communicating Stream X-Machine (CSXM) which has been proven and best suited
the specification of a distributed system. With the ever-expanding areas of applications today

including embedded and real-time systems, safety-critical systems, service-oriented architectures

and so on, it is often easy to lose sight of the essential similarities that exist among all of these

systems using formal methods. But the critical issue is the relationship between the proposed
solution and the understanding of the problem’s originator as to whether the proposed solution

does, in fact provide the desired answer. Therefore, in this paper the strength of the CSXM was

used to specify a distributed system called Automated Teller Machine (ATM) which was
correctly implemented and satisfies the challenge of software testing.

2. RELATED WORK

[6], transformed X-machine specification written in X-Machine Language (XML) and which is
automatically converted into an executable java code. This research was unable to write test

cases, and it is limited to the theory of standalone X-machine components. [7], reports on the

development and formal verification of CompCert, i.e., a compiler from Clight which is referred
to as the subset of the C programming language to PowerPC assembly code. This research used

the Coq proof assistant both for programming the compiler and for proving its correctness. Also,

it stated that the verified compiler is useful in the context of the critical software and its formal
verification.

[8], center the research on providing tool support for business-level, example-based specifications

which are mapped to the browser level for automatic verification. This research allows
refactoring support for the evolution of existing browser-level tests into business-level

specifications, and it provides feedback on coverage as the resulting business rule tables may be

incomplete, contradictory, or redundant. [9], stated formal verification are used for exhaustive
investigation of the system space which ensures that undetected failures in the behavior are

excluded. The research constructs the system incrementally from subcomponents, based on the

software architecture. According to this study, developing a safe multi-agent robotic system to
ensure the correctness properties of safety and liveness was a challenge. In conclusion, the

development approach allows for formal verification during the specification definition.

According to [10], the software testing may consume 35% to 40% of a software development
budget. However, the manual and automated testing methods seems complementary to each

other. In this study, it is stated that the purpose of testing is to find out defects or bugs, the causes,

and approaches in which this fault can be fixed as early as possible. It is therefore stated that the
testing requires more project effort and time than any other software development activity which

needs a suitable strategy to make the testing successful.

[11], analyzes three states of the art formally verified implementations of distributed systems
which includes Iron-Fleet, Verdi, and Chapar. This research sees through the code review, testing

and found a total of sixteen bugs in which some produces serious consequences, including

Computer Science & Information Technology (CS & IT) 79

crashing servers, returning incorrect results to clients, and invalidating verification guarantees.
Therefore, this research develops a testing toolkit called PK, which focuses on testing these parts

and is able to automate the detection of thirteen out of sixteen bugs.

[12], share their experience and discuss the open problems or challenges that the software testing,
verification, and compiler development presents. Although, the aim was to deliberate on new

ideas on how to approach these problems. It is concluded that there is no universal appropriate

name for this field. However, the compiler explains most of the work in this field and is not
difficult to explain to people but has the barrier of excluding some subjects such as debuggers.

Due to this reason, the research decided to keep the name compiler testing and verification for

future research works.

[13], developed an automatic Java X-Machine testing tool for software development. This

research focuses on addressing the software complexity and changing the software developers’

expectations with the motive of reducing the amount or cost in detecting defects in software
systems. It was concluded that this research could not generate test cases automatically.

[14], stated that for a compiler correctness theorem to assure complete trust, then such theorem
must reflect the reality of how the compiler will be used. Although, the variation of theorems,

stated in remarkably different ways, develops questions about what researchers meant by a

compiler is correct. Therefore, this study developed a framework with the idea to understand
compiler correctness theorems in the presence of linking and applying it to understanding and

comparing this diversity of results. Hence, this research did not only focus on the strengths and

weaknesses but also gain insight into what should be expected from compiler correctness

theorems of the future research.

[1], conducted experiments on publicly available bug prediction dataset that is a repository for

most open-source software. This research used Genetic algorithm to extract relevant data features
from the acquired dataset and machine learning algorithms was used to predict defect in software

system. [15], proposed an enhanced fault-detection W method for increasing software reliability

in safety-critical embedded systems. The research stated the testing time of the proposed method

takes much time than the W method during the software testing.

[16], stated software defect prediction is one of the most encouraging exercises of the testing

phase of the software development life cycle. In this case this research created a framework to
anticipate the modules that deformity inclined the software quality. Nonetheless, GA was used to

extract the relevant features from publicly available data sets to eliminate the possibility of

overfitting and the relevant features were classified into defective or non-defective. In
conclusion, the outcome indicated that ECLIPSE JDT CORE, ECLIPSE PDE UI, EQUINOX

FRAMEWORK and LUCENE has the accuracy, precision, recall and the f-score of 86.93, 53.49,

79.31 and 63.89% respectively, 83.28, 31.91, 45.45 and 37.50% respectively, 83.43, 57.69, 45.45

and 50.84% respectively and 91.30, 33.33, 50.00 and 40.00% respectively.

[17], study and evaluate a narrative verification approach based on Bounded Model Checking

(BMC) and Satisfiability Modulo Theories (SMT) to verify C++ source codes. This research
verification approach analyses bounded C++ source codes by encoding into SMT various

sophisticated features that the C++ programming language offers which includes inheritance,

templates, polymorphism, exception handling, and the standard template libraries. Nevertheless,
the research compares Efficient SMT BMC (ESBMC) to The Low-Level BMC (LLBMC) and

DIVINE, which are the state-of-the-art verifiers to check C++ source code directly from the

LLVM bitcode. It is concluded in this research that ESBMC can handle a wide range of C++

source codes, presenting a higher number of correct verification results.

80 Computer Science & Information Technology (CS & IT)

Therefore, in this paper, having reviewed some existing papers on the previous methods that
researchers have applied in the software testing stage of the software development lifecycle, but

this area of research remains researchable and continuous research area. Formal methods as being

proven lately by researchers in specifying how a system should work. Hence, the SXM was

improved on by using the Communicating Stream X-Machine (CSXM) theory to prove that the
specification conforms with the implementation of the said case study and will be used in future

research to assure the correctness, testing, and verification of a compiler design by integrating the

strength and computational use of machine learning algorithms so as to construct test programs
which will be used to determine whether a compiler behaves correctly.

3. METHODOLOGY

As the Software Development Life Cycle (SDLC) is said to be the most used and oldest
formalized framework for constructing distributed systems [18]. The strength of this

methodology framework was used to build the large-scale distributed system (ATM) in this

paper. There are different models in SDLC but the choice of waterfall model in this paper was its
strength of step-by-step flow in respect to its importance or an organized process that makes sure

every stage is followed carefully before moving on to the next steps. As a result of this, the

waterfall model was adopted in this paper to divide the software development work into
sequential steps and smaller process to optimize the design and specification of the SXM. The

strength of this methodology has helped this paper to build and deliver a correct and stable

system. It also creates a clear understanding of the task ahead as stated in the last paragraph of

section 2 of this paper which enables a better estimate and identify errors earlier i.e., the
specifications conforming with the implementation. Nevertheless, advancement in computing

capabilities puts higher demand on the software system and the developers. This raises the issues

of cost, delivery of faster software, and conforming to the needs of the end users. Therefore,
SDLC strength was used in this paper to measure the correctness, testing which identify

inefficiencies and verifying them in the development process which helps in fixing the errors and

run smoothly. Therefore, the case study ATM was designed and implemented using the CSXM
formal theory written in Java programming language to test and proof the correctness of the

developed system.

3.1. Steps followed in this Paper

The following are the stages that was adopted in this case study. Figure 1 represents the

diagrammatic design of the developed system that was used in this paper.

 Requirement Gathering and Analysis: this phase is the definition of the requirements

considered in planning which established what the software system is supposed to do as

specified and its requirements. In this paper, ATM was the software constructed which
required the ability to make transactions such as deposit, withdrawal e.t.c. However, this

requirement includes the definition of the resources used to build this software which is

use of CSXM specification to develop the software system. Hence, CSXM theory is the
requirement used in this process.

 System Design: This phase models the functioning of the software system i.e., how the

system is working. Also, the CSXM specification was written in Java Programming

language which defined the way end users interacted with the software system and how

the application responded to the end users’ input. In this paper, the system was developed
to run on MS Windows platform due to the methods used in solving the problems in the

case study specified. With respect to the strength of Java programming language, the

Computer Science & Information Technology (CS & IT) 81

Remote Method Invocation (RMI) was the method defined in the software system which
enables the communication between the SXMs.

 Software Development: This phase is the system coding which is used as the access

control in the software system. In this paper, this stage was used to track changes to the

code, helps to verify the system by ensuring the specification conforms with this

implementation. Nevertheless, finding, and fixing errors is an area generating interest in
the field of software engineering which cannot be left out in the development process

such as generating test cases or compilation of the code to ensure the software system

runs as specified. This paper utilizes the computational power of the formal method
(CSXM) which leads to the next stage of this life cycle.

 Software Testing: In SDLC, testing stage is a critical phase of the development process

of a software system. Nonetheless, the choice of the formal method (CSXM) used in this

paper was to explore one of the strengths which involves testing the correctness of the
software system. In this paper, as the entire system was tested for any defects or bugs and

failures so also verified by ensuring the specification conforms with the implementation.

 Maintenance: Over the decades, the cost and time of software testing continues to be a

researchable area among researchers and everyday concern among software developers.

At this phase, the software system is completed and being used by the end users.
However, the end users may or may not discover defects that was not found during the

testing stage which makes this stage an important phase in the SDLC. Therefore, the

bugs found during this process are resolved and generate the new development cycles.

Figure 1. The Flowchart of the Developed System

3.2. Stream X-machine

In particular, the benefit of this model is that it permits a system to be driven, with extra care,

through its states and transitions while noticing the results at each progression. These are

82 Computer Science & Information Technology (CS & IT)

observer esteems that ensure that specific capacities were executed on each progression [4].
Because of this explanation, complex software systems might be deteriorated into a pecking order

of SXM, planned in a hierarchical way and tried in a base up manner. However, SXM is an eight

tuple which are as follows;

 (1)

Where;

: is the finite set of states

: is the finite set of input symbols

: is the finite set of output symbols

: is a (possibly infinite) set called memory

: is the finite set of distinct processing functions; a processing function is a non-empty (partial)

function of type

: is the Initial state

: is the (partial) next-state function,

: is the initial memory

Beginning from the initial state alongside the initial memory , an input symbol

activate a function which in turn generate a transition to a new state and a new

memory state . However, sequence of transitions generated by the stream of input symbols

is called the computation. Therefore, the output of a computation is the sequence of results

generated by the sequence of transitions.

3.3. Communicating Stream X-machine

In this paper, the CSXM systems model was adopted, and it is further reviewed below. Therefore,

CSXM with x-machine components are a triplet tuple [5];

 (2)

Where;

i. is the set of x-machine components of the system of the form

. Such x-machine components of the system are

called the Communicating X-Machine (CXM). in the definition stated above refers to

a SXM with memory . The and directly correspond to the values that can be

communicated by input and output ports of the th CSXM such that ,

and . The symbol is simply used to indicate that a port is empty and the initial

values of the x-machine ports are set to and .

ii. is simply referred to as the set of matrices of order to form the values of the

matrix variable which supposed to be used for creating communication amongst the x-

machine components. Therefore, for any and any pair of x-machine such that

are the data value stored in shows at most one message that is being processed

from the memory of x-machine to the memory of x-machine . Thus,

each element of the matrix can be considered as a temporary buffer variable where

the property holds.

Computer Science & Information Technology (CS & IT) 83

iii. Basically, all messages that are sent from the CXM that is x-machine and which

is x-machine are data values from the memory and respectively. The symbol

in the matrices is used to specify that there is no message, where the symbol is simply

used for specifying a channel that is not going to be used (an x-machine communicating

with itself disallowed). The individual elements of the matrices are derived from the

machine memory , where;

 (3)

iv. simply defines the initial communication matrix as assuming a valid

communication between the x-machine that is x-machine and which is x-machine

 is allowed; otherwise, the initial matrix is defined as so as to indicate that

the communication between the two x-machines are disallowed. Nevertheless, the

matrix shows that an x-machine communicating with itself is definitely not

allowed.

v. Generally, the th CXM component can only read from the th column and then write to

the th row of the communication matrix.

Also, for any , any value and any pair of indices , , with .

i. If an output variant of , denoted by is defined as;

 (4)

 (5)

ii. If an input variant of , denoted by is defined as;

 (6)

 (7)

As stated in equation (4), (5), (6), and (7) above, simply denotes several acceptable transitions

from one matrix to another. Generally, CXM is a five tuple;

 (8)

Recall, SXM in equation (1) which is equivalent to and

stated below;

 (9)

Where;

i. and has been defined within equation (2) above

ii. and are the finite set of input and output symbols respectively

iii. is the finite set of states of each x-machine component gathered into a communicating

system must be partitioned as where corresponds to the processing states

in each x-machine component in the communicating system and is the set of

84 Computer Science & Information Technology (CS & IT)

communicating states corresponding to the central medium where all the x-machine

components have been integrated and where holds. Therefore, this implies

that for each in each x-machine component, the functions emerging from are

processing functions. For instance, in the state different functions can be triggered, in

this scenario one of them is arbitrarily chosen or if no function can be applied the entire

CXM system halts. However, if the machine is in state then all the functions

emerging from state are communicating functions. Otherwise, while the machine is in

state , if different functions can be applied then one of them is arbitrarily chosen, else if

this is not the case then the machine simply does not change it current state and would

have to wait until one of such functions can be applied.

iv. a set or possibly infinite set called the memory

v. The type of the machine is defined as a set where is called the set of

processing function and is the set of communicating functions and .

Notably, each element is a relation (partial function) of the type below;

 (10)

4. RESULTS AND DISCUSSION

In this paper, to assure the correctness, testing, and verification of the formal method used called

the CSXM, a software system was developed called Automated Teller Machine (ATM) as it is one
of the good and reliable examples of a distributed system. The ATM called client in this in this

paper is the combination of computer terminal which communicates with one another to a bank’s

central computers also referred to as server in the context of this paper. The software system
specifications in this paper enables end users to perform transactions such as login (security

check), deposit, withdraw, inquiry, statement, and account details.

4.1. Developed System

The understanding of SXM and CSXM from theory to practice was used in a real-world scenario
to proof the correctness and to test whether the ATM specification conforms with the developed

implementation as constructed in this paper. However, as stated in equation (8) which includes

the SXM, input, and output port. The SXM specified in this paper represents the overall
specification of the said case study (ATM) as shown in figure 2 below. The figure 2 represents

the state diagram of the overall case study (ATM). In formal methods, the said theory can be

represented either by mathematical notation as stated in section 3.1 above or by state diagram

which is the diagrammatical representation of the specified mathematical notations. From figure
2, the states include start, ATM_OutofSource, Insert_Card, and Continue_Transaction, where

start is the initial state. Also, the transitions are ATM_InUse, Card_Insert, ATM_Not_Available,

and Transaction_Aborted. The transition functions enable the states to move from one to another.
Nevertheless, the strength of memory included in this model enables each customer stored

information to be assessed when their information is being verified from the server. In this paper,

the distributed banking system consist of some ATM referred to as client and a server called the
bank which communicates via Java Remote Method Invocation (RMI). The server controls all

users account information where an end user can use the following operations at an ATM.

i. void deposit (int acnt, int amt): this simply referred to when the operation increases the
balance of end user account acnt by amt and returns nothing.

Computer Science & Information Technology (CS & IT) 85

ii. withdraw (int acnt, int amt): this simply referred to when the operation decreases the
balance of end user account acnt by amt and returns nothing.

iii. Float inquiry (int acnt): this referred to when the operation returns the balance of the end

user account acnt.

iv. GetStatement (Date from, Date to): this also referred to when the operation returns a
statement object of the transaction history of the said account acnt.

Nevertheless, the client (ATM) was used to initiate an end user operation by calling a remote
method on the bank server to execute the specified procedure such as withdraw with its

parameters as presented in Fig. 3 and Fig. 4 represents server (bank) authentication by validating

the end users’ card and pin before a transaction can be performed. Figures 3 and 4 are specified
as two different SXM which are communicated with the RMI and give the representation of the

communicating stream x machine (CSXM) as shown in Figure 5 below. In these figures the states

are represented in oval shapes while the transitions are represented in arrows.

Furthermore, the concept of SXM and CSXM are discussed in section 3 of this paper. However,

this paper is incomplete without giving details about the RMI. Java programming language has

the strength which enables software developers write large scale object-oriented system of this
manner where objects on different computers i.e., SXMs can interact in a distributed network.

Regardless, RMI was used in this paper because it has the ability to pass one or more objects

along with the request which suites the aim of this paper. This object includes information that
change the service that is performed in the remote computer.

Moreso, in this paper when a user at the client (ATM) fills out an expense account, the SXM

specification interacting with the user was communicated using RMI with a SXM specification in
the server (Bank) that had the latest policy about the expense reporting. As a result of this, the

program send back an object and associated method information that enables the client (ATM)

program to screen the end users expense account data in a way that was consistent with the bank
policy.

Figure 2. State Diagram of the Overall Case Study (ATM)

86 Computer Science & Information Technology (CS & IT)

Figure 5. State Diagram of the CSXM.

The formal method (CSXM) used in this paper enables the end user and the bank save time by
locating mistakes early which gives the advantage of correct system i.e., the specification

meeting the implementations. However, whenever the bank policy changed, it would require a

change to the SXM specification in only one computer. The RMI used in this paper was
implemented as three layers when communicating with the SXMs i.e., client (ATM) and the

server (Bank) as represented in Figure 6. These layers are as follows;

i. Stud: the stud used here is called the proxy that appears to the calling program which is
then the program that is later called for the service.

ii. Remote Reference Later (RRL): the RRL was used to determine whether the request is to

call a single remote service or more when considering a multicast.
iii. Transport Later: the transport connection layer was used to set up and manage the end

user’s request.

Hence, a single request was transmitted down through the layers on one machine and up through
the layers at the other end. Also, the output of the generated test cases is presented in Fig. 7

below.

Computer Science & Information Technology (CS & IT) 87

Figure 6. Architecture of the RMI.

Figure 7. Output of the Generated Test Cases.

4.2. Evaluation of the Developed Tool

In this paper, the developed tool was evaluated check for the correctness of the system by

checking the specification if it conforms with the implementation. Furthermore, during this

process some parts of the code are indicated which needs refactoring and the generated report are
acted upon to assure the correctness of the software system. Moreso, the source code changes are

monitored, and the functionality of this tool checks up to 500,000 lines of code. Therefore, the

choice of the black box testing method was selected simply because it evaluates the functionality
of an application or tool without having investigated its internal structure. Software testers and

88 Computer Science & Information Technology (CS & IT)

programmers were considered in the testing phase without disclosing the structure and design of
the source code.

5. CONCLUSION

In conclusion, software testing in SDLC still continues to be a great research interest among
researchers and software developers. However, many works have been done but still removing

defects or bugs during and after development process is crucial and cannot be left out. First

version of this paper was also based on using the formal method (SXM) strengths to ensure all
specified in the software was implemented correctly. Optimization and improvement in the SXM

extend the interest of using formal methods specification for future software testing. CSXM

theory was used and practiced in this paper because of its advantage over the previous techniques

of solving large-scale system problems. Nevertheless, this is not the end of this great research
area as more work are proposed for future problems. Notably, the trending research as established

the area compiler design where bugs not only cause unintended behavior with possibly severe

consequence but also make software debugging more difficult because it is not easy to detect
whether the bugs actually come from the compiler used to compile the source code or the source

code itself. This as also been observed in SDLC process to avoid spending more time in checking

for errors in the source code. One of the challenges is the lack of a formal specification of what
exactly a compiler is supposed to do. Therefore, the future research will focus on reviewing the

computational power of machine learning algorithms and integrating it with the strengths of

CSXM to assure the correctness, testing, and verification of a compiler design.

ACKNOWLEDGMENT

First, we would like to give our sincere gratitude to Almighty God for His supports in every

aspect of our lives and for His mercy, protection, and provision during this research. Our

unalloyed appreciation goes to all the staffs in the Department of Computer Science and Creative
Technologies and the entire staff of the Faculty of Environment and Technology for their

continuous supports, guidance, and invaluable suggestions throughout the duration of this

research. God’s wisdom and understanding to continue guiding students and colleagues will not
depart from you all.

REFERENCES

[1] Sanusi, B. A., Olabiyisi, S. O., Olowoye, A. O. and Olatunji, B. L. (2019). Software Defect

Prediction System using Machine Learning based Algorithms. Journal of Advances in Computational

Intelligence Theory, 1(3), 1–9. http://doi.org/10.5281/zenodo.35908 41

[2] X-machine. (2021). In Wikipedia. https://en.wikipedia.org/wiki/X-machine.

[3] Simons, A.J.H. and Leftticaru, R. (2020). A Verified and Optimized Stream X-Machine Testing

Method, with Application to Cloud Service Certification. Software Testing, Verification and

Reliability. 30(3): e1729. https://doi.org/10.1002/stvr.1729

[4] Kefalas, P., Stamatopoulou, I, Sakellariou, I. and Eleftherakis, G. (2008). Transforming

Communicating X-Machines into P Systems. Nat Comput. 8:817–832 DOI 10.1007/s11047-008-
9103-y

[5] Ogunshile E. (2011). A Machine with Class: A Framework for Object Generation, Intergration and

Language Authentication (FROGILA). Ph.D. Thesis. The University of Sheffield. United Kingdom.

[6] Ogunshile, E.K.A. (2005). Automatic Generation of Java Code from Communicating X-machine

Specifications. MSc (Eng) Thesis. Department of Computer Science. The University of Sheffield,

England, United Kingdom.

[7] Leroy, X. (2009). Formal Verification of a Realistic Compiler. Communications of the ACM. Vol. 52.

No. 7. Pages 107-115. DOI: 10.1145/1538788.1538814

Computer Science & Information Technology (CS & IT) 89

[8] Mugridge, R., Utting, M. and Streader, D. (2011). Evolving Web-Based Test Automation into Agile

Business Specifications. Future Internet. Vol. 3. Page 159-174.

[9] Akhtar, N. and Missen, M.M (2014). Contribution to the Formal Specification and Verification of a

Multi-Agent Robotic System. European Journal of Scientific Research. ISSN 1450-216X / 1450-

202X Vol.117 No.1. Page 35-55.
[10] Sharma, R. and Sangwan, M. (2016). To Improve Correctness, Quality and Reducing Testing Time.

International Journal of Computer Science and Mobile Computing. (IJCSMC). Vol. 5. Issue 6. Page

211-217.

[11] Fonseca, P., Zhang, K., Wang, X. and Krishnamurthy, A. (2017). An Empirical Study on the

Correctness of Formally Verified Distributed Systems. EuroSys ’17. ACM. ISBN 978-1-4503-4938-

3/17/04. DOI: http://dx.doi.org/10.1145/3064176.3064183.

[12] Chen, J., Donaldson, A. F., Zeller, A., and Zhang, H. (2017). Testing and Verification of Compilers.

Dagstuhl Reports. Vol. 7. Issue 12. Page 50-65.

[13] Ogunshile, E.K.A. (2018). CompleX-Machine: An Automated Testing Tool using X-Machine

Theory. International Journal of Computer and Systems Engineering 12 (3).

[14] Patterson, D. and Ahmed, A. (2019). The Next 700 Compiler Correctness Theorems (Function Pearl).

Proc. ACM Program. Lang. 3, ICFP, Article 85. Page 1-29. https://doi.org/10.1145/3341689
[15] Koo, B., Bae, J., Kim, S., Park, K. and Kim, H. (2020). Test Case Generation Method for Increasing

Software Reliability in Safety-Critical Embedded Systems. Electronics 2020, 9(5),

797; https://doi.org/10.3390/electronics9050797.

[16] Olatunji, B. L., Olabiyisi, S. O., Oyeleye, C. A., Sanusi, B. A., Olowoye, A. O. and Ofem, O. A.

(2020). Development of Software Defect Prediction System using Artificial Neural Network.

International Journal of Advances in Applied Sciences. Vol. 9. No. 4. Page 284-293. ISSN:2252-

8814. DOI: 10.11591/ijaas.v9.i4.pp284-293.

[17] Monteiro, F. R., Gadelha, M. R. and Cordeiro, L. C. (2021). Model Checking C++ Programs.

Software Testing, Verification and Reliability. 32:e1793. Page 1-30. https://doi.org/10.1002/stvr.1793

[18] Elliott, G. (2004). Global Business Information Technology. An Integrated Systems Approach.

Pearson Education. Page 87.

 AUTHORS

Bashir Adewale Sanusi is currently an Associate Lecturer in the Department of

Computer Science and Creative Technologies, University of the West of England

(UWE), Bristol, United Kingdom. He received B.Tech. and M.Tech. in Computer

Engineering and Computer Science from Ladoke Akintola University (LAUTECH),

Ogbomoso, Nigeria in 2015 and 2021 respectively. Also undergoing his Ph.D. degree in

Computer Science from University of the West of England (UWE). He began his career

in LAUTECH as a Graduate Assistant in 2018. He has published 6 peer-reviewed Journal articles and

Conference paper.

Dr Emmanuel Ogunshile, Ph.D. is a Senior Lecturer in Computer Science and Chair
Athena SWAN process at the University of the West of England (UWE), Bristoll, UK-

conducting highly innovative Teaching, Research, Scholarship and Administration in

Computer Science and Software Engineering. Previously, he graduated with an

MSc(Eng) in Advanced Software Engineering (2005) following a BEng(Hons) in

Software Engineering (2003) and a Ph.D. in the subject of Computer Science (2011) all

at The University of Sheffield, England, UK.

Mehmet Aydin joined CSCT department at the end of January 2015 as Senior

Lecturer in Computer Science. Prior to this post, I have worked in academic and

research positions for various universities including University of Bedfordshire,

London South Bank University and University of Aberdeen. I am editorial board
member of a number of international peer-reviewed journals, and have

been serving as committee member of various international conferences. I am also

member of EPSRC Review College and fellow of Higher Education Academy.

90 Computer Science & Information Technology (CS & IT)

Stephen Olatunde Olabiyisi is Professor of Computer Science in the Department of

Computer Science, Ladoke Akintola University of Technology (LAUTECH),

Ogbomoso, Nigeria. He received B.Tech., M.Tech and Ph.D. degrees in Applied

Mathematics from LAUTECH, Nigeria, in 1999, 2001 and 2006 respectively. He also

received M.Sc. degree in Computer Science from University of Ibadan, Ibadan, Nigeria
in 2003. He began his career in LAUTECH as a Graduate Assistant in 2000 and rose

through the ranks to become a Professor in 2013. He has supervised 51 Doctoral (Ph.D)

students and 58 Master’s students and published over 200 peer-reviewed Journal articles and Conference

papers. He is currently the Director, LAUTECH ICT Center.

Oyediran Mayowa Oyedepo is a senior lecturer in the department of Computer

Engineering in Ajayi Crowther University, Oyo town in Nigeria, he has a PhD in

Computer Engineering from Ladoke Akintola University of Technology, Ogbomoso.

Nigeria. He is specialized in Distributed Systems and Applications with focused on

Cloud computing, fog computing, MANETs and the likes.

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	1. Introduction
	2. Related Work
	3. Methodology
	3.1. Steps followed in this Paper
	3.2. Stream X-machine
	3.3. Communicating Stream X-machine

	4. Results and Discussion
	4.1. Developed System
	4.2. Evaluation of the Developed Tool

	5. Conclusion
	Acknowledgment
	References

