
David C. Wyld et al. (Eds): CCSIT, SIPP, PDCTA, AISC, NLPCL, BIGML, NCWMC - 2021

pp. 185-199, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.110715

EFFECTS OF NONLINEAR FUNCTIONS ON

KNOWLEDGE GRAPH CONVOLUTIONAL

NETWORKS FOR RECOMMENDER SYSTEMS

WITH YELP KNOWLEDGE GRAPH

Xing Wei and Jiangjiang Liu

Department of Computer Science, Lamar University, Beaumont, USA

ABSTRACT

Knowledge Graph (KG) related recommendation method is advanced in dealing with cold start

problems and sparse data. Knowledge Graph Convolutional Network (KGCN) is an end-to-end

framework that has been proved to have the ability to capture latent item-entity features by

mining their associated attributes on the KG. In KGCN, aggregator plays a key role for

extracting information from the high-order structure. In this work, we proposed Knowledge

Graph Processor (KGP) for pre-processing data and building corresponding knowledge
graphs. A knowledge graph for the Yelp Open dataset was constructed with KGP. In addition,

we investigated the impacts of various aggregators with three nonlinear functions on KGCN

with Yelp Open dataset KG.

KEYWORDS

Recommender Systems, Knowledge Graph, Activation Function.

1. INTRODUCTION

In 2019, the number of internet users reached 7.71 billion [1], and 2.5 quintillion bytes of data

was being created every day [2]. It becomes more and more challenging for people and

companies to cope with such dramatic data explosion. For example, Netflix, the online
streaming-service provider, offers more than 10 thousand movies and TV shows from which

users can choose. The traditional search method only displays the sorted list of items relating to

the search key word and cannot provide specific items in different users’ interests, so the users

may not find the items they really want. The heavy information overload has become a major
problem for both consumers and providers of the online content industry.

To better deliver content to users, one of the practical strategies is personalization. As a
successful solution, the recommender systems have been playing a vital and indispensable role in

Web applications, ranging from search engines and E-commerce to social media sites and online

streaming services. Almost every online content provider has applied a recommender system.

The traditional recommendation methods, such as Collaborative Filtering (CF) and content-based

recommendation, have achieved good performance on rating data. However, despite CF’s

effectiveness and universality, its ability on modeling side information, such as item attributes
and user profiles [3], suffers from the cold start problem, which happens when items added to the

catalogue have either none or very little interactions and consequently process sparse data where

http://airccse.org/cscp.html
http://airccse.org/csit/V11N07.html
https://doi.org/10.5121/csit.2021.110715

186 Computer Science & Information Technology (CS & IT)

users and items have few interactions. As a common solution for those problems, model-based
methods are designed to transform user ID, item ID, and the side information into a generic

feature vector that compensates for the sparse data and improves the recommendation

performance, such as matrix factorization [4], factorization machine (FM) [5], and Wide & Deep

[6].

However, these methods only view each interaction between entities as an independent data

instance rather than linked data with relations. This makes them insufficient to distill attribute-
based collaborative signals from the collective behaviors of users. As we can see in Figure 1,

there is an interaction between User John and Movie m2, which is directed by Director D1, and

Director D1 directed Movie m2 and Movie m4. CF methods can only determine the similarity of
users who also watched Movie m2, such as User David and User Paul. Model-based methods find

the similar items Movie m21 and Movie m2 by the same attributes of Actor A1 and Director

D1.As we can see, based on these two types of information, not only recommendation can be

generated, but also a high-order relationship can be found, which connects user and item with one
or multiple linked attributes.

Figure 1. A movie example of knowledge graph. Relations r1: actor of, r2: director of, r3: producer of, r4:

screenwriter of.

Computer Science & Information Technology (CS & IT) 187

Therefore, to fulfill the shortage of traditional recommendation methods, graphsare a solution to
collaborating with side information. Knowledge graphs (KGs) are composed of structured

information of the real world, which links attributes themselves as well as with users and items.

Typically, a knowledge graph is a directed heterogeneous graph in which each edge is

represented as a triple (head entity, relation, tail entity), indicating that two entities are connected
by a specific relation, e.g., (George Lucas, film, director, Star Wars). In general, because we can

process the information from the high-order structure of the knowledge graph, by comparing with

the traditional model method, the knowledge graph related method is advanced in dealing with
cold start problems and sparse data.

Several recent efforts have applied knowledge graphs on the recommendation system. For
example, knowledge graph embedding methods, which transfer entities and relations to low-

dimensional representation vectors [21], and graph algorithm-based methods, which exploit the

latent information from users, items, and the relations in between them by treating knowledge

graph as a high-order structure information network [22]. KGCN is an end-to-end framework that
captures latent item-entity features by mining their associated attributes from the high-order

relationships on the KG. Additionally, an aggregator plays an important role in the KGCN. In the

field of graph-related neural networks, aggregators widely operate with nonlinear functions such
as ReLU [7], Leaky ReLU [8], and Tanh [9].

1.1. Our Contributions

To build a knowledge graph from scratch often requires tremendous time and effort, which is an

obstacle for most researchers studying knowledge graphs. The process of adopting knowledge
graphs for business analytics to support decision making is even more challenging and time

consuming.

To tackle this challenge, we propose an efficient tool, Knowledge Graph Processor (KGP), with a

user-friendly interface that can easily transfer the raw dataset to a knowledge graph format

dataset. We built a Yelp knowledge graph from a Yelp Dataset by using KGP.

We also conducted analysis on aggregators used in the Knowledge Graph Convolutional

Network, with several widely adopted nonlinear functions and achieved significant improvement,

compared to the original KGCN with ReLU aggregators.

We released the code of KGP and Yelp Knowledge Graph datasets (knowledge graphs). The

source code and the dataset are available at https://github.com/XingWeiLamar/KGP.

2. RELATED WORK

2.1. Knowledge Graph

A knowledge graph is a multi-relational graph constructed by entities (nodes) and relations

(different types of edges). Each edge represents a triple of the form (head entity, relation, tail

entity). Recently, the knowledge graph (KG) has been rapidly applied to various applications.

Large-scale knowledge graphs for academic and commercial purposes, such as NELL, DBpedia,

Google Knowledge Graph, and Microsoft Satori, have become the core data structure of many
practical applications from named entity disambiguation [20] and information extraction [17] to

search engines [18] and question/answer systems [10].

188 Computer Science & Information Technology (CS & IT)

Traditional recommendation techniques, such as collaborative filtering, usually represent
customer-items interaction as an N-dimensional vector, then model their interaction by specific

techniques, such as inner product or neural networks. However, CF methods usually suffer from

limited performance when user-item interactions are very sparse, and they perform poorly when

processing new products and users. To address those limitations, a common paradigm is to turn
the user-item interaction into a more feature-based scenario, where attributes of users and items

are transformed into the model as vectors to remedy the sparsity and perform better in cold start

scenarios. [6]

2.2. Recent Knowledge Graph Related Recommender System

The successful applications of knowledge graphs in a wide variety of tasks have inspired

researchers to study KG on improving the performance of recommendation systems. In

comparison with knowledge-free methods, applying knowledge graphs on recommender system
gains advantages in three ways: 1) discovering latent connections among items of knowledge

graphs by the semantic relatedness among items; 2) exploring users’ interests to increase the

diversity of the recommendation from the varied types of relations; and 3) improving the exam
inability of recommender systems due to the connections of user’s historically-liked and

recommended items in the knowledge graph.

There are three types of knowledge-aware recommender systems, based on current research.
First, embedding-based methods [19] pre-process a knowledge graph with knowledge graph

embedding algorithms then process user entity embedding into recommendation. Embedding-

based methods can easily utilize KGs to fulfill the needs of recommender systems. However, the
knowledge graph embedding algorithms are designed to model rigorous semantic relatedness

[13], which can perform much better on graph applications (e.g., link prediction) rather than

recommendation systems. Furthermore, embedding-based methods do not usually do end-to-end
way training. Second, path-based methods [11] provide instruction for recommendation from

discovered patterns of connections among entities in a KG. It is barely applied in practical terms

from a cost and effectiveness perspective because meta-paths/meta-graphs need to be manually

designed. Third, hybrid methods [12] combine the former two methods and learn user-item
embeddings by extracting the structure of knowledge graphs.

2.3. Nonlinear Functions

For Neural Networks, the purpose of the nonlinear activation function is to introduce non-

linearity into the output. A neural network without a nonlinear activation function is essentially a
linear regression model. The activation function does the non-linear transformation to the input-

making so it is capable of learning and performing more complex tasks.

The most common nonlinear activation function is ReLU, which is defined as: σ(x) = max {0, x}.

Hence, whenever x is negative, the function returns 0. When X is positive, it returns x. Note that

this function is not differentiable at 0, and hence the back propagation will fail at this point.

Nonetheless, in general, because of the precision issues of floating-point numbers in computers,
this situation barely appear in reality, and ReLU as defined above works well in practice.

Computer Science & Information Technology (CS & IT) 189

Figure 2. ReLU

One of the variations of ReLU is Leaky-ReLU [1], which is given by: σ(x) = x if x > 0 and a · x

otherwise, in which a is an adjustable constant. Instead of defining the ReLU function as 0 for
negative values of x, it is defined as an extremely small linear component of x. By making this

small modification, the gradient of the left side of the graph comes out to be a non-zero value.

Hence, we would no longer encounter dead neurons in that region.

Figure 3. Leaky-ReLU

Exponential Linear function is also a special case of ReLU. The function is given by: σ(x) = x for

x > 0 and a · (e x − 1) for x<0, where a is a hyper-parameter to be learned from the data. Unlike

the Leaky-ReLU and parametric ReLU functions, instead of a straight line, ELU uses a log curve
for defining the negative values.

190 Computer Science & Information Technology (CS & IT)

Figure 4. ELU

3. PROPOSED WORK

3.1. Knowledge Graph Processor

Data analysts often spend most of their time on data pre-processing. Data scientists mostly spend
80 percent of their time on finding, cleansing, and organizing data. [16] In the experiment, we

utilized the Yelp dataset as a benchmark, which is publicly accessible and varies in terms of

domain, size, and sparsity.

Therefore, to conquer this problem, we developed an easy-to-use tool, Knowledge Graph

Processor, KGP, which is able to pre-process the raw dataset efficiently and effectively. The

workflow chart of KGP is shown in Figure 5. First, KGP detects the format of the dataset. If it is
stored in JSON format, KGP will transfer the JSON file to CSV format. Next, KGP performs a

data cleaning function to remove the duplicated values and null value in the dataset. Then, users

will input the relation’s name and assign the head and tail of the knowledge graph triplet by
selecting the column number in the dataset, so KGP can extract the selected data from those

columns and construct them with relation named as a triplet. After users finish the triplets

building, KGP extracts those triplets and reconstructs them into a CSV file and assigns an index
value for each item. Finally, after users input a user-item interaction file, which usually is the file

stores rating information, the KGP transforms the rating file from explicit feedback to implicit

feedback. (explanation is in section 3.2)

Computer Science & Information Technology (CS & IT) 191

Figure 5. Working Flow of KGP

3.2. Yelp Knowledge Graph with KGP

By using KGP, we constructed a Yelp knowledge graph from Yelp open dataset1 which contains

over 6 million reviews, nearly 20 thousand businesses. The local businesses such as restaurants,
bars, spas and barber shops are viewed as items.

Beside the item-to-item interactions, we extracted item knowledge from the local business

information network (e.g., categories, locations, and attributes) as knowledge graph data. To
ensure the knowledge graph quality, we pre-processed the three knowledge graph parts by

filtering out entities with frequency lower than 10, and retaining the relations appearing in at least

50 triplets. The basic statistics of the datasets are presented in Table 1.

To reduce the noise deviation and test the performance of the model in a different sparsity, we

use 10-core, 20-core, and 30-core settings to ensure that each item has at least 10 interactions, 20
interactions, and 30 interactions in the knowledge graph.

The original rating dataset is explicit feedback, in which the rated stars are from 0-5, with 5 is the

best and 0 as the worst. From the rating stars, we can directly understand how much the user likes
or dislikes the business. However, the practical data behaviors are implicit feedback, which are

more complicated and important. We transform the explicit feedback into implicit feedback

where the entry will be marked with 1, indicating that the user rated the item positively, with the
positive rating threshold as 4, and sample an unwatched set marked as 0 for each user.

3.3. Problem Formulation

In this study, there is a set of Mof users U = {u1, u2…, um} and a set of N of items I = {i1, i2,

….,in}. The user-item interaction matrix P ∈ Rm×n defined as users’ implicit feedback, which
yui=1indicates that user u engages with item v, such as, browsing and clicking, if not yui=0.

Moreover, the knowledge graph G is defined as entity-relation-entity triples (h,r,t). Here h∈E,

1https://www.yelp.com/dataset

192 Computer Science & Information Technology (CS & IT)

r∈R, and t∈E infer the head, relation, and tail. E and R are the set of entities and relations in the
knowledge graph. For example, the triple (Star Wars: The Rise of Skywalker, movie; director;

J.J. Abrams) indicates the fact that J.J. Abrams is the director of the movie Star Wars: The Rise of

Skywalker. In our scenarios, an item i ∈ I correspond to one entity e ∈ E. For instance, in movie

recommendations, the knowledge also contains the item “Star Wars: The Rise of Skywalker” as
an entity.

The KGCN model is to predict whether user u has potential interest in new item i by given the
user-item matrix P and the knowledge graph G. We have a prediction function fui=F(u,v|Θ,Y,G),

where Pui denotes the probability that user u will engage with item i, and Θ denotes the model

parameters of function F.

3.4. Analysis of Three Aggregators for Knowledge Graph Convolutional Networks

Knowledge Graph Convolutional Networks [14] is an end-to-end framework that explores users’
preferences on knowledge graph for recommender systems. The Architecture KGCN is shown as

Figure 6, where the first KGCN layer captures the high-order structural proximity by aggregating

each entity’s representation and its neighborhood representation into a single vector. Then the
Learning Layer will take the H-order entity representation fed into a function RdxRd →R to

predict probability.

First, consider a candidate pair of user u and item(entity) v. N(v) is denoted as the set of entities

directly connected to v, and rei, ej is denoted as the relation between entity ei and ej. The function:

RdxRd →R is used to calculate the score between a user and a relation:

𝜋𝑣
𝑢 = 𝑔(𝑢, 𝑟) (1)

Figure 6. KGP+KGCN Architecture

Computer Science & Information Technology (CS & IT) 193

In the formula, u 𝜖 Rd and r 𝜖 Rd are the representations of user u and relation r, and d is the
dimension of representations. The function is to compute the importance between relation r and

user u. For instance, a user might have more interests in restaurants in specific categories and

another user may be more concerned about whether or not the restaurant is kid-friendly.

The below linear function combines v’s neighborhood to capture the topological proximity

structure of item v.

𝑉𝑁(𝜈)

𝑢 = ∑ �̃�𝑟𝜈,𝑒
𝑢 𝑒′

𝑒∈𝑁(𝑣)

(2)

�̃�𝑟𝜈,𝑒
𝑢 is the normalized user-relation score：

π̃rν,e
u =

exp(πrv,e
u)

∑ exp (πrv,c

u)
e∈N(v)

(3)

The e denotes the representation of entity e. User-relation scores perform as personalized filters

in the formula 2 because we aggregate the neighbors with bias, with respect to these user-relation

scores.

Next, KGCN layer aggregates the entity representation v and its neighborhood representation

𝑉𝑆(𝜈)

𝑢 into a single vector by aggregators. ReLU is the default aggregator used in KGCN.

Aggregators perform a significant role in the KGCN, and different non-linear functions can affect

the output of the KGCN. In this study, we analyze the effectiveness of three aggregators with the

following different nonlinear function.

aggSum = σ(w ⋅ (v + vs(ν)
u) + b) (4)

aggconcat = σ(w ⋅ concat(v, vs(ν)
u) + b) (5)

aggneighbor = σ(w ⋅ vs(ν)
u + b) (6)

where 𝜎 denotes non-linear functions, w and b are transformation weight and bias.

The KGCN layer extends 1-order entity representation to h-order entity representation by

iterating the KGCN layer multiple times, so the algorithm can explore the user’s interests more

comprehensively. To achieve that, the KGCN layer first propagates the initial representation of
each entity to its neighbors and aggregates the vectors to receive the 1-order representations.

Then it repeats the procedure and aggregates the 1-order representation and its neighbors to

obtain the 2-order representations. The combination of an entity and its neighbors up to h hops
away is the h-order representation of an entity.

The KGCN learning algorithm is as the following. The algorithm receives a pair of users and

items then calculates the receptive field M of v layer by layer. Next the aggregation repeats H

times: in iteration h, it calculates the neighborhood representation of each entity e ∈ M[h] then

aggregates it with its own representations ⅇu[h-1] to achieve the representation to be used in the

next iteration. Last, the final H-order entity representation vu will be pass to the prediction

function f: Rd × Rd→ R with user representation u.

194 Computer Science & Information Technology (CS & IT)

�̂�𝑢𝑣 = 𝑓(𝑢, 𝑣𝑢) (7)

4. EXPERIMENTS

4.1. Datasets

Yelp open dataset contains over 6 million reviews, nearly 20 thousand businesses.

MovieLens-20M is a widely used benchmark dataset for movie recommendation, which contains

over 20 million explicit ratings (rating from 1-5). The knowledge graph of MovieLens-20M is

pre-constructed by Wang with Microsoft Satori [14].

Table 1. Statistics of the datasets

 10-Core 20-Core 30-Core MovieLens-20M

Number of Users 44837 44784 16295 138159

Number of Items 71822 26613 2550 16954

Number of interactions 876829 320872 24611 13501622

Number of Entities 70534 25509 1822 102569

Number of Relations 34 34 33 32

Number of KG Triples 1268941 627552 60463 499474

4.2. Data Pre-processing

We built a Yelp Knowledge Graph from a Yelp open dataset. To reduce the noise deviation and

test the performance of the model in different sparsity, we use 10-core, 20-core, and 30-core
settings to ensure that each item has at least 10 interactions, 20 interactions, and 30 interactions in

the knowledge graph. Please see the statistics of each datasets in Table 1.

4.3. Nonlinear Function Setting

In the experiment, to achieve the best performance, we set a as 0.2 for the Leaky ReLU. For the
ELU a is 1.

4.4. Baseline

We tested the dataset with 3 baselines, in which the first baseline is a well-known KG-free

baseline, the second one is a KG-aware method, and the third one is the KGCN with ReLU
function.

LibFM [7] is a software implementation for factorization machines that features stochastic
gradient descent (SGD) and alternating least squares (ALS) optimization as well as Bayesian

inference using Markov Chain Monte Carlo (MCMC).

RippleNet [15] is a memory-network-like approach propagating user preferences over the

entities in KG and iteratively extending a user’s potential interest along links in the KG to

provide recommendation.

Computer Science & Information Technology (CS & IT) 195

4.5. Experiments Setup

In KGCN, the function g and f are set as inner product, σ is non-linear function for non-last-layer

aggregator, and tanh for last-layer aggregator. We applied hyper-parameters as follows:

Each hyper-parameter is determined by the best Accuracy (AUC) on the corresponding dataset.

For each dataset, we randomly select 80% of rating interaction history as the training set and 20%
as the evaluation set, as well as a test set, respectively. Each experiment is repeated three times,

and the average outcome is reported. The performance of each method is evaluated by two

evaluation criteria: AUC and F1, which are applied to evaluate the click through rate (CTR)

prediction. The test set was applied in training model to predict each interaction.

For the baseline, we use the Python vision of LibFm, Pylibfm to test the dataset. The number of

factors is 10, the number of training epochs is 50, and the initial learning rate is 1×10-4. For the
RippleNet, dimension of embeddings is 8, number of hops is 2, learning rate is 0.02, l2 weight is

1×10-7, batch size is 1024. For the KGCN ReLU λ is 3×10-8, μ is 0.003, batch size is 1024, H is

8, d is 64, S is 8.

Table 2. Basic Hyper Parameter Setting for KGCN

 10-Core 20-Core 30-Core MovieLens-20M

Dimension of embeddings(d) 128 64 128 32

Neighbor Sampling size(S) 8 8 8 4

Depth of receptive field(H) 2 2 2 2

L2 Regularize Weight(λ) 2×10
-9

 2×10
-9

 3×10
-5

 2×10
-7

Learning Rate(μ) 3×10
-3

 3×10
-3

 6×10
-4

 2×10
-2

Batch Size 1024 1024 1024 65536

5. RESULT

The results of click through rate are presented in Table 3. We have the following observations:

Among all the models, the KGCN Leaky ReLU-sum achieves the best performance on the
average of the three datasets.

In general, comparing with KG free model LibFM, we find that the improvements of KGCN
Leaky ReLU-sum on 10-core and 20-core are 15% and 13% higher than 30-core. This

demonstrates that KGCN Leaky ReLU-sum can well addres0.80.s sparse scenarios, since the 10-

core and 20-core datasets are sparser than 30-core.

RippleNet shows strong performance compared with the KG-free baseline, because RippleNet

also uses a multi-hop neighborhood structure, which also captures the proximity information

from the KG.

196 Computer Science & Information Technology (CS & IT)

Table 3. The results of AUC and F1 in CTR prediction

 10-Core 20-Core 30-Core MovieLens-20M

 AUC F1 AUC F1 AUC F1 AUC F1

PyLibFm 0.715 0.674 0.723 0.671 0.702 0.655 0.955 0.903

RippleNet 0.903 0.863 0.897 0.855 0.721 0.639 0.968 0.912

KGCN-Leak-ReLU-Sum 0.914 0.854 0.896 0.835 0.791 0.674 0.979 0.934

KGCN-Leak-ReLU-Concat 0.913 0.850 0.903 0.841 0.768 0.662 0.978 0.933

KGCN-Leak-ReLU-

Neighbor 0.838 0.774 0.814 0.753 0.484 0.595 0.977 0.932

KGCN-ELU-Sum 0.906 0.842 0.895 0.833 0.754 0.629 0.977 0.931

KGCN-ELU-Concat 0.902 0.840 0.903 0.841 0.708 0.725 0.978 0.932

KGCN-ELU-Neighbor 0.835 0.755 0.814 0.753 0.665 0.582 0.976 0.932

KGCN-ReLU-Sum 0.912 0.851 0.891 0.833 0.765 0.650 0.978 0.932

KGCN-ReLU-Concat 0.912 0.852 0.905 0.842 0.773 0.666 0.977 0.931

KGCN-ReLU-Neighbor 0.838 0.779 0.814 0.751 0.454 0.495 0.977 0.932

KGCN-Leak-ReLU Average 0.888 0.826 0.871 0.810 0.681 0.644 0.978 0.933

KGCN-ELU Average 0.881 0.813 0.871 0.809 0.709 0.645 0.977 0.932

KGCN-ReLU Average 0.887 0.827 0.870 0.809 0.664 0.604 0.977 0.932

Among the three original KGCN aggregators, KGCN Sum and KGCN Concat perform

significantly better than KGCN-Neighbour, and KGCN Neighbour shows a clear gap on 30-Core
setting dataset; that may be because the KGCN Neighbour only aggregated the neighborhood’s

representation and does not include the information from the entity itself.

The last three lines of Table 3 represent the average performance of each non-linear function

implementing on the three aggregators. We can see that Leaky ReLU function obtains the best

results for all three datasets, which may be because Leaky ReLU overcomes the dead ReLU
problem. When the representation values are negative, the Leaky ReLU returns a small

fraction;in contrast, the ReLU always return 0. ELU function performs the worst among the three

functions, which may be because for ELU, σ(x) = x when x > 0 and a · (e x − 1) when x < 0,

KGCN is lack of ability to learn and update the value of a when the input value is negative.

We conducted experiments on how hyper parameter influences the performance of a KGCN-

Leaky ReLU-Sum model. In Table 4, we can see the influence of the neighbor sampling size
from 2 to 64. The model performs best when S=8. This is because a too small S does not have

enough capacity to incorporate neighborhood information, while a too large S is prone to be

misled by noises.

Table 4. AUC Result of Leaky ReLU-Sum KGCN with Different Neighbour Sampling Size S

S 2 4 8 16 32 64

10-Core 0.886 0.895 0.913 0.910 0.912 0.912

20-Core 0.872 0.886 0.903 0.903 0.899 0.892

30-Core 0.770 0.764 0.769 0.757 0.792 0.789

Computer Science & Information Technology (CS & IT) 197

We can see the influence of depth of receptive field H on the model by setting H from 1 to 4 in
Table 5, which illustrates that the model reacts sensitively on the variation of H.

The model performs best when H=2 and collapse dramatically when H is greater than 2, which

may be because a larger H brings massive noises to the model and the too-long relation-chain
makes little sense when inferring inter-item similarities.

Table 5. AUC Result of Leaky ReLU-Sum KGCN with Different Depth of Receptive Field H

H 1 2 3 4

10-Core 0.878 0.904 0.504 0.505

20-Core 0.875 0.897 0.507 0.507

30-Core 0.785 0.770 0.382 0.385

Table 6 displays the effects of dimension of embedding d on performance of the model. The

result is intuitive: performance improves dramatically as the d increases; when d is 128, the

model achieves the best performance, since the larger d can include more information of users
and entities. When d is greater than 128, the model is drawn back by overfitting.

Table 6. AUC result of KGCN with different dimension of embedding D

D 4 8 16 32 64 128 256

10-Core 0.820 0.858 0.893 0.900 0.903 0.914 0.903

20-Core 0.824 0.827 0.886 0.892 0.890 0.894 0.898

30-Core 0.780 0.817 0.806 0.753 0.751 0.785 0.773

6. CONCLUSION AND FUTURE WORKS

In this paper, we proposed an efficient and effective data preprocessing and knowledge graph

generation tool, Knowledge Graph Processor (KGP). By using the KGP, we constructed a

knowledge graph for a Yelp dataset. Our proposed KGP can process JSON, CSV, and text files.
More features could be supported, such as automatically extracting information from well-build

knowledge graph database.

By testing KGCN on the Yelp knowledge graph and MovieLens-20M dataset with Leaky ReLU,

ELU, and ReLU non-linear functions, Leaky ReLU is able to improve performance of the

original KGCN for recommendation systems. The reason is because Leaky ReLU has an

advantage on overcoming dead ReLU problem as well as its robust performance when the input
values are negative.

We point out two avenues for future work: 1) The knowledge graph’s content and quality can
significantly affect the performance of KGCN. An interesting direction of future research is to

quantify the quality of the knowledge graph dataset; 2) We investigated the influence of the

nonlinear function in the first layer of the aggregator. Future work could explore the impact of the

different nonlinear functions on the second layer, and the impact of the optimizer is also a
valuable direction to study.

198 Computer Science & Information Technology (CS & IT)

REFERENCES

[1] Jeannie Dougherty. (2019). Internet growth + usage stats 2019: Time online, devices, users.

https://www.clickz.com/internet-growth-usage-stats-2019-time-online-devices-users/235102/

[2] Charlotte Johnson. (2019) How much Data is Produced every Day 2019? https://www.the-next-

tech.com/blockchain-technology/how-much-data-is-produced-every-day-2019/

[3] Xiang Wang, Xiangnan He, Fuli Feng, Liqiang Nie, and Tat-Seng Chua. (2018). “TEM: Tree-

enhanced Embedding Model for Explainable Recommendation”, WWW, ppl 1543–1552

[4] Yehuda Koren, Robert Bell and Chris Volinsky. (2009, August). Matrix Factorization Techniques for
Recommender Systems. IEEE 2009

 [5] Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-Thieme. (2011, July). Fast

context-aware recommendations with factorization machines. SIGIR’11.

 [6] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,

Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong,

Vihan Jain, Xiaobing Liu. (2016). “Wide & Deep Learning for Recommender Systems”,

DLRS@RecSys. ppl 7–10.

[7] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. (2017).” Non-Local Neural

Networks”, arXiv preprint arXiv:1711.07971, vol. 10.

[8] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua

Bengio. (2018). “Graph attention networks”, The 6th International Conferences on Learning

Representations
[9] Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard Zemel. (2016). “Gated Graph Sequence

Neural Networks”, arXiv: Learning, 2016.

[10] Xiao Huang, Jingyuan Zhang, Dingcheng Li, Ping Li. (2019). “Knowledge Graph Embedding Based

Question Answering”, WSDM '19: Proceedings of the Twelfth ACM International Conference on

Web Search and Data Mining (January), ppl 105–113. https://doi.org/10.1145/3289600.3290956

[11] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S Yu. (2018). “Leveraging Metapath Based

Context for Top-N Recommendation With A Neural Co-Attention Model”, the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining. ACM, ppl 1531–1540

[12] Zhu Sun, Jie Yang, Jie Zhang, Alessandro Bozzon, Long-Kai Huang, and Chi Xu. (2018). “Recurrent

knowledge graph embedding for effective recommendation”, the 12th ACM Conference on

Recommender Systems. ACM, 297–305
[13] Joan Bruna, Wojciech Zaremba, Arthur Szlam, Yann LeCun. (2014). “Spectral Networks and Locally

Connected Networks on Graphs”, arXiv:1312.6203v3

[14] Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi Guo, (2019, May). “Knowledge Graph

Convolutional Networks for Recommender Systems”, WWW. ACM ISBN 978-1-4503-6674-

8/19/05

[15] Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie,

and Minyi Guo, (2018). “RippleNet: Propagating User Preferences on the Knowledge Graph for

Recommender Systems”, CIKM. ppl 417–426

[16] Crowd Flower. (2016). 2016 Data science report, https://visit.figure-eight.com/rs/416-

ZBE142/images/ CrowdFlower_DataScienceReport_2016.pdf

[17] Amit Singhal. (2012). “Introducing The Knowledge Graph: Things, Not Strings,”

https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
[18] Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, and Daniel S. Weld. (2011).

“Knowledge-based weak supervision for information extraction

of overlapping relations,” Proc. 49th Annu. Meeting Assoc. Comput. Linguistics, ppl 541–550

[19] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y Chang. (2018).

“Improving Sequential Recommendation with Knowledge-Enhanced Memory Networks”, the 41st

International ACM SIGIR Conference on Research & Development in Information Retrieval. ACM,

505–514

[20] Sherzod Hakimov, Sherzod Hakimov, Salih Atilay Oto and Erdogan Dogdu (2012). “Named entity

disambiguation using linked data,” Proc. 9th Extended Semantic Web Conf.

[21] Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi Khandelwal, Brandon

Norick, and Jiawei Han. (2014). “Personalized entity recommendation: A heterogeneous information
network approach”, the 7th ACM International Conference on Web Search and Data Mining. ACM,

ppl 283–292.

https://www.clickz.com/internet-growth-usage-stats-2019-time-online-devices-users/235102/
https://www.the-next-tech.com/blockchain-technology/how-much-data-is-produced-every-day-2019/
https://www.the-next-tech.com/blockchain-technology/how-much-data-is-produced-every-day-2019/
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html

Computer Science & Information Technology (CS & IT) 199

[22] Huan Zhao, Quanming Yao, Jianda Li, Yangqiu Song, and Dik Lun Lee. 2017. “Metagraph based

recommendation fusion over heterogeneous information networks”, the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. ACM, ppl 635–644.

AUTHORS

Xing Wei is a graduate students in the department of Computer Science at Lamar

University. His research interests focus on data analytics for recommender systems.

Jiangjiang (Jane) Liu is a professor in the department of Computer Science at Lamar

University. Her research interests are on data analytics, cloud computing, and high

performance computing.

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

http://airccse.org/

	Xing Wei and Jiangjiang Liu
	Department of Computer Science, Lamar University, Beaumont, USA
	Abstract
	Knowledge Graph (KG) related recommendation method is advanced in dealing with cold start problems and sparse data. Knowledge Graph Convolutional Network (KGCN) is an end-to-end framework that has been proved to have the ability to capture latent ite...
	Keywords
	Recommender Systems, Knowledge Graph, Activation Function.

