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ABSTRACT 
 

Knowledge Graph (KG) related recommendation method is advanced in dealing with cold start 

problems and sparse data.  Knowledge Graph Convolutional Network (KGCN) is an end-to-end 

framework that has been proved to have the ability to capture latent item-entity features by 

mining their associated attributes on the KG. In KGCN, aggregator plays a key role for 

extracting information from the high-order structure.  In this work, we proposed Knowledge 

Graph Processor (KGP) for pre-processing data and building corresponding knowledge 
graphs. A knowledge graph for the Yelp Open dataset was constructed with KGP. In addition, 

we investigated the impacts of various aggregators with three nonlinear functions on KGCN 

with Yelp Open dataset KG. 
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1. INTRODUCTION 
 
In 2019, the number of internet users reached 7.71 billion [1], and 2.5 quintillion bytes of data 

was being created every day [2]. It becomes more and more challenging for people and 

companies to cope with such dramatic data explosion. For example, Netflix, the online 
streaming-service provider, offers more than 10 thousand movies and TV shows from which 

users can choose. The traditional search method only displays the sorted list of items relating to 

the search key word and cannot provide specific items in different users’ interests, so the users 

may not find the items they really want. The heavy information overload has become a major 
problem for both consumers and providers of the online content industry. 

 

To better deliver content to users, one of the practical strategies is personalization. As a 
successful solution, the recommender systems have been playing a vital and indispensable role in 

Web applications, ranging from search engines and E-commerce to social media sites and online 

streaming services. Almost every online content provider has applied a recommender system. 
 

The traditional recommendation methods, such as Collaborative Filtering (CF) and content-based 

recommendation, have achieved good performance on rating data. However, despite CF’s 

effectiveness and universality, its ability on modeling side information, such as item attributes 
and user profiles [3], suffers from the cold start problem, which happens when items added to the 

catalogue have either none or very little interactions and consequently process sparse data where 
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users and items have few interactions.  As a common solution for those problems, model-based 
methods are designed to transform user ID, item ID, and the side information into a generic 

feature vector that compensates for the sparse data and improves the recommendation 

performance, such as matrix factorization [4],  factorization machine (FM) [5], and Wide & Deep 

[6]. 
 

However, these methods only view each interaction between entities as an independent data 

instance rather than linked data with relations. This makes them insufficient to distill attribute-
based collaborative signals from the collective behaviors of users. As we can see in Figure 1, 

there is an interaction between User John and Movie m2, which is directed by Director D1, and 

Director D1 directed Movie m2 and Movie m4. CF methods can only determine the similarity of 
users who also watched Movie m2, such as User David and User Paul. Model-based methods find 

the similar items Movie m21 and Movie m2 by the same attributes of Actor A1 and Director 

D1.As we can see, based on these two types of information, not only recommendation can be 

generated, but also a high-order relationship can be found, which connects user and item with one 
or multiple linked attributes. 

 

 
 

Figure 1. A movie example of knowledge graph. Relations r1: actor of, r2: director of, r3: producer of, r4: 

screenwriter of. 
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Therefore, to fulfill the shortage of traditional recommendation methods, graphsare a solution to 
collaborating with side information. Knowledge graphs (KGs) are composed of structured 

information of the real world, which links attributes themselves as well as with users and items. 

Typically, a knowledge graph is a directed heterogeneous graph in which each edge is 

represented as a triple (head entity, relation, tail entity), indicating that two entities are connected 
by a specific relation, e.g., (George Lucas, film, director, Star Wars). In general, because we can 

process the information from the high-order structure of the knowledge graph, by comparing with 

the traditional model method, the knowledge graph related method is advanced in dealing with 
cold start problems and sparse data.  

 

Several recent efforts have applied knowledge graphs on the recommendation system. For 
example, knowledge graph embedding methods, which transfer entities and relations to low-

dimensional representation vectors [21], and graph algorithm-based methods, which exploit the 

latent information from users, items, and the relations in between them by treating knowledge 

graph as a high-order structure information network [22]. KGCN is an end-to-end framework that 
captures latent item-entity features by mining their associated attributes from the high-order 

relationships on the KG. Additionally, an aggregator plays an important role in the KGCN.  In the 

field of graph-related neural networks, aggregators widely operate with nonlinear functions such 
as ReLU [7], Leaky ReLU [8], and Tanh [9]. 

 

1.1. Our Contributions 
 

To build a knowledge graph from scratch often requires tremendous time and effort, which is an 

obstacle for most researchers studying knowledge graphs. The process of adopting knowledge 
graphs for business analytics to support decision making is even more challenging and time 

consuming. 

 
To tackle this challenge, we propose an efficient tool, Knowledge Graph Processor (KGP), with a 

user-friendly interface that can easily transfer the raw dataset to a knowledge graph format 

dataset. We built a Yelp knowledge graph from a Yelp Dataset by using KGP.  

 
We also conducted analysis on aggregators used in the Knowledge Graph Convolutional 

Network, with several widely adopted nonlinear functions and achieved significant improvement, 

compared to the original KGCN with ReLU aggregators. 
 

We released the code of KGP and Yelp Knowledge Graph datasets (knowledge graphs). The 

source code and the dataset are available at https://github.com/XingWeiLamar/KGP. 

 

2. RELATED WORK 
 

2.1. Knowledge Graph 
 
A knowledge graph is a multi-relational graph constructed by entities (nodes) and relations 

(different types of edges). Each edge represents a triple of the form (head entity, relation, tail 

entity). Recently, the knowledge graph (KG) has been rapidly applied to various applications. 
 

Large-scale knowledge graphs for academic and commercial purposes, such as NELL, DBpedia, 

Google Knowledge Graph, and Microsoft Satori, have become the core data structure of many 
practical applications from named entity disambiguation [20] and information extraction [17] to 

search engines [18] and question/answer systems [10].  
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Traditional recommendation techniques, such as collaborative filtering, usually represent 
customer-items interaction as an N-dimensional vector, then model their interaction by specific 

techniques, such as inner product or neural networks.  However, CF methods usually suffer from 

limited performance when user-item interactions are very sparse, and they perform poorly when 

processing new products and users. To address those limitations, a common paradigm is to turn 
the user-item interaction into a more feature-based scenario, where attributes of users and items 

are transformed into the model as vectors to remedy the sparsity and perform better in cold start 

scenarios. [6] 
 

2.2. Recent Knowledge Graph Related Recommender System 
 
The successful applications of knowledge graphs in a wide variety of tasks have inspired 

researchers to study KG on improving the performance of recommendation systems. In 

comparison with knowledge-free methods, applying knowledge graphs on recommender system 
gains advantages in three ways: 1) discovering latent connections among items of knowledge 

graphs by the semantic relatedness among items; 2) exploring users’ interests to increase the 

diversity of the recommendation from the varied types of relations; and 3) improving the exam 
inability of recommender systems due to the connections of user’s historically-liked and 

recommended items in the knowledge graph. 

 

There are three types of knowledge-aware recommender systems, based on current research. 
First, embedding-based methods [19] pre-process a knowledge graph with knowledge graph 

embedding algorithms then process user entity embedding into recommendation. Embedding-

based methods can easily utilize KGs to fulfill the needs of recommender systems. However, the 
knowledge graph embedding algorithms are designed to model rigorous semantic relatedness 

[13], which can perform much better on graph applications (e.g., link prediction) rather than 

recommendation systems.  Furthermore, embedding-based methods do not usually do end-to-end 
way training. Second, path-based methods [11] provide instruction for recommendation from 

discovered patterns of connections among entities in a KG. It is barely applied in practical terms 

from a cost and effectiveness perspective because meta-paths/meta-graphs need to be manually 

designed. Third, hybrid methods [12] combine the former two methods and learn user-item 
embeddings by extracting the structure of knowledge graphs.  

 

2.3. Nonlinear Functions 
 

For Neural Networks, the purpose of the nonlinear activation function is to introduce non-

linearity into the output. A neural network without a nonlinear activation function is essentially a 
linear regression model. The activation function does the non-linear transformation to the input-

making so it is capable of learning and performing more complex tasks.  

 
The most common nonlinear activation function is ReLU, which is defined as: σ(x) = max {0, x}. 

Hence, whenever x is negative, the function returns 0. When X is positive, it returns x. Note that 

this function is not differentiable at 0, and hence the back propagation will fail at this point. 

Nonetheless, in general, because of the precision issues of floating-point numbers in computers, 
this situation barely appear in reality, and ReLU as defined above works well in practice. 
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Figure 2. ReLU 

 

One of the variations of ReLU is Leaky-ReLU [1], which is given by: σ(x) = x if x > 0 and a · x 

otherwise, in which a is an adjustable constant. Instead of defining the ReLU function as 0 for 
negative values of x, it is defined as an extremely small linear component of x. By making this 

small modification, the gradient of the left side of the graph comes out to be a non-zero value. 

Hence, we would no longer encounter dead neurons in that region. 

 

 
 

Figure 3. Leaky-ReLU 

 
Exponential Linear function is also a special case of ReLU. The function is given by: σ(x) = x for 

x > 0 and a · (e x − 1) for x<0, where a is a hyper-parameter to be learned from the data. Unlike 

the Leaky-ReLU and parametric ReLU functions, instead of a straight line, ELU uses a log curve 
for defining the negative values. 
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Figure 4. ELU 

 

3. PROPOSED WORK 
 

3.1. Knowledge Graph Processor 
 

Data analysts often spend most of their time on data pre-processing.  Data scientists mostly spend 
80 percent of their time on finding, cleansing, and organizing data. [16] In the experiment, we 

utilized the Yelp dataset as a benchmark, which is publicly accessible and varies in terms of 

domain, size, and sparsity.  
 

Therefore, to conquer this problem, we developed an easy-to-use tool, Knowledge Graph 

Processor, KGP, which is able to pre-process the raw dataset efficiently and effectively. The 

workflow chart of KGP is shown in Figure 5. First, KGP detects the format of the dataset. If it is 
stored in JSON format, KGP will transfer the JSON file to CSV format. Next, KGP performs a 

data cleaning function to remove the duplicated values and null value in the dataset. Then, users 

will input the relation’s name and assign the head and tail of the knowledge graph triplet by 
selecting the column number in the dataset, so KGP can extract the selected data from those 

columns and construct them with relation named as a triplet. After users finish the triplets 

building, KGP extracts those triplets and reconstructs them into a CSV file and assigns an index 
value for each item. Finally, after users input a user-item interaction file, which usually is the file 

stores rating information, the KGP transforms the rating file from explicit feedback to implicit 

feedback. (explanation is in section 3.2) 
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Figure 5. Working Flow of KGP 

 

3.2. Yelp Knowledge Graph with KGP 
 

By using KGP, we constructed a Yelp knowledge graph from Yelp open dataset1 which contains 

over 6 million reviews, nearly 20 thousand businesses. The local businesses such as restaurants, 
bars, spas and barber shops are viewed as items. 

 

Beside the item-to-item interactions, we extracted item knowledge from the local business 

information network (e.g., categories, locations, and attributes) as knowledge graph data. To 
ensure the knowledge graph quality, we pre-processed the three knowledge graph parts by 

filtering out entities with frequency lower than 10, and retaining the relations appearing in at least 

50 triplets. The basic statistics of the datasets are presented in Table 1. 
 

To reduce the noise deviation and test the performance of the model in a different sparsity, we 

use 10-core, 20-core, and 30-core settings to ensure that each item has at least 10 interactions, 20 
interactions, and 30 interactions in the knowledge graph.  

 

The original rating dataset is explicit feedback, in which the rated stars are from 0-5, with 5 is the 

best and 0 as the worst. From the rating stars, we can directly understand how much the user likes 
or dislikes the business. However, the practical data behaviors are implicit feedback, which are 

more complicated and important. We transform the explicit feedback into implicit feedback 

where the entry will be marked with 1, indicating that the user rated the item positively, with the 
positive rating threshold as 4, and sample an unwatched set marked as 0 for each user. 

 

3.3. Problem Formulation 
 

In this study, there is a set of Mof users U = {u1, u2…, um} and a set of N of items I = {i1, i2, 

….,in}. The user-item interaction matrix P ∈ Rm×n defined as users’ implicit feedback, which 
yui=1indicates that user u engages with item v, such as, browsing and clicking, if not yui=0. 

Moreover, the knowledge graph G is defined as entity-relation-entity triples (h,r,t). Here h∈E, 

                                                
1https://www.yelp.com/dataset 
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r∈R, and t∈E infer the head, relation, and tail. E and R are the set of entities and relations in the 
knowledge graph. For example, the triple (Star Wars: The Rise of Skywalker, movie; director; 

J.J. Abrams) indicates the fact that J.J. Abrams is the director of the movie Star Wars: The Rise of 

Skywalker. In our scenarios, an item i ∈ I correspond to one entity e ∈ E. For instance, in movie 

recommendations, the knowledge also contains the item “Star Wars: The Rise of Skywalker” as 
an entity.  

 

The KGCN model is to predict whether user u has potential interest in new item i by given the 
user-item matrix P and the knowledge graph G. We have a prediction function fui=F(u,v|Θ,Y,G), 

where Pui denotes the probability that user u will engage with item i, and Θ denotes the model 

parameters of function F. 

 

3.4. Analysis of Three Aggregators for Knowledge Graph Convolutional Networks 

 

Knowledge Graph Convolutional Networks [14] is an end-to-end framework that explores users’ 
preferences on knowledge graph for recommender systems. The Architecture KGCN is shown as 

Figure 6, where the first KGCN layer captures the high-order structural proximity by aggregating 

each entity’s representation and its neighborhood representation into a single vector. Then the 
Learning Layer will take the H-order entity representation fed into a function RdxRd →R to 

predict probability. 

 
First, consider a candidate pair of user u and item(entity) v. N(v) is denoted as the set of entities 

directly connected to v, and rei, ej  is denoted as the relation between entity ei and ej.  The function: 

RdxRd →R is used to calculate the score between a user and a relation: 

 

𝜋𝑣
𝑢 =  𝑔(𝑢, 𝑟) (1) 

 
 

Figure 6. KGP+KGCN Architecture 
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In the formula, u 𝜖 Rd and r 𝜖 Rd are the representations of user u and relation r, and d is the 
dimension of representations. The function is to compute the importance between relation r and 

user u. For instance, a user might have more interests in restaurants in specific categories and 

another user may be more concerned about whether or not the restaurant is kid-friendly.  

 
The below linear function combines v’s neighborhood to capture the topological proximity 

structure of item v. 

 

𝑉𝑁(𝜈)

𝑢 = ∑ �̃�𝑟𝜈,𝑒
𝑢 𝑒′

𝑒∈𝑁(𝑣)

 
(2) 

�̃�𝑟𝜈,𝑒
𝑢 is the normalized user-relation score： 

 

π̃rν,e
u =

exp(πrv,e
u )

∑ exp (πrv,c

u )
e∈N(v)

 
(3) 

 
The e denotes the representation of entity e. User-relation scores perform as personalized filters 

in the formula 2 because we aggregate the neighbors with bias, with respect to these user-relation 

scores. 
 

Next, KGCN layer aggregates the entity representation v and its neighborhood representation 

𝑉𝑆(𝜈)

𝑢  into a single vector by aggregators. ReLU is the default aggregator used in KGCN.  

 
Aggregators perform a significant role in the KGCN, and different non-linear functions can affect 

the output of the KGCN. In this study, we analyze the effectiveness of three aggregators with the 

following different nonlinear function.  
 

aggSum = σ(w ⋅ (v + vs(ν)
u ) + b) (4) 

 

aggconcat = σ(w ⋅ concat(v, vs(ν)
u ) + b) (5) 

 

aggneighbor = σ(w ⋅ vs(ν)
u + b) (6) 

 

where 𝜎 denotes non-linear functions, w and b are transformation weight and bias. 
 

The KGCN layer extends 1-order entity representation to h-order entity representation by 

iterating the KGCN layer multiple times, so the algorithm can explore the user’s interests more 

comprehensively. To achieve that, the KGCN layer first propagates the initial representation of 
each entity to its neighbors and aggregates the vectors to receive the 1-order representations. 

Then it repeats the procedure and aggregates the 1-order representation and its neighbors to 

obtain the 2-order representations. The combination of an entity and its neighbors up to h hops 
away is the h-order representation of an entity. 

 

The KGCN learning algorithm is as the following. The algorithm receives a pair of users and 

items then calculates the receptive field M of v layer by layer.  Next the aggregation repeats H 

times: in iteration h, it calculates the neighborhood representation of each entity e ∈ M[h] then 

aggregates it with its own representations ⅇu[h-1] to achieve the representation to be used in the 

next iteration. Last, the final H-order entity representation vu will be pass to the prediction 

function f:  Rd × Rd→ R with user representation u. 
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�̂�𝑢𝑣 = 𝑓(𝑢, 𝑣𝑢) (7) 

  

4. EXPERIMENTS 
 

4.1. Datasets 
 

Yelp open dataset contains over 6 million reviews, nearly 20 thousand businesses.  

 
MovieLens-20M is a widely used benchmark dataset for movie recommendation, which contains 

over 20 million explicit ratings (rating from 1-5). The knowledge graph of MovieLens-20M is 

pre-constructed by Wang with Microsoft Satori [14].  
 

Table 1. Statistics of the datasets 

 

  10-Core 20-Core 30-Core MovieLens-20M 

Number of Users 44837 44784 16295 138159 

Number of Items 71822 26613 2550 16954 

Number of interactions 876829 320872 24611 13501622 

Number of Entities 70534 25509 1822 102569 

Number of Relations 34 34 33 32 

Number of KG Triples 1268941 627552 60463 499474 

 

4.2. Data Pre-processing 
 

We built a Yelp Knowledge Graph from a Yelp open dataset. To reduce the noise deviation and 

test the performance of the model in different sparsity, we use 10-core, 20-core, and 30-core 
settings to ensure that each item has at least 10 interactions, 20 interactions, and 30 interactions in 

the knowledge graph. Please see the statistics of each datasets in Table 1.  

 

4.3. Nonlinear Function Setting 
 

In the experiment, to achieve the best performance, we set a as 0.2 for the Leaky ReLU. For the 
ELU a is 1. 

 

4.4. Baseline 
 

We tested the dataset with 3 baselines, in which the first baseline is a well-known KG-free 

baseline, the second one is a KG-aware method, and the third one is the KGCN with ReLU 
function.  

 

LibFM [7] is a software implementation for factorization machines that features stochastic 
gradient descent (SGD) and alternating least squares (ALS) optimization as well as Bayesian 

inference using Markov Chain Monte Carlo (MCMC). 

 
RippleNet [15] is a memory-network-like approach propagating user preferences over the 

entities in KG and iteratively extending a user’s potential interest along links in the KG to 

provide recommendation. 
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4.5. Experiments Setup 
 

In KGCN, the function g and f are set as inner product, σ is non-linear function for non-last-layer 

aggregator, and tanh for last-layer aggregator. We applied hyper-parameters as follows: 
 

Each hyper-parameter is determined by the best Accuracy (AUC) on the corresponding dataset. 

For each dataset, we randomly select 80% of rating interaction history as the training set and 20% 
as the evaluation set, as well as a test set, respectively. Each experiment is repeated three times, 

and the average outcome is reported. The performance of each method is evaluated by two 

evaluation criteria: AUC and F1, which are applied to evaluate the click through rate (CTR) 

prediction. The test set was applied in training model to predict each interaction. 
 

For the baseline, we use the Python vision of LibFm, Pylibfm to test the dataset. The number of 

factors is 10, the number of training epochs is 50, and the initial learning rate is 1×10-4.  For the 
RippleNet, dimension of embeddings is 8, number of hops is 2, learning rate is 0.02, l2 weight is 

1×10-7, batch size is 1024. For the KGCN ReLU λ is 3×10-8, μ is 0.003, batch size is 1024, H is 

8, d is 64, S is 8. 
 

Table 2. Basic Hyper Parameter Setting for KGCN 

 

  10-Core 20-Core 30-Core MovieLens-20M 

Dimension of embeddings(d) 128 64 128 32 

Neighbor Sampling size(S) 8 8 8 4 

Depth of receptive field(H) 2 2 2 2 

L2 Regularize Weight(λ) 2×10
-9

 2×10
-9

 3×10
-5

 2×10
-7

 

Learning Rate(μ) 3×10
-3

 3×10
-3

 6×10
-4

 2×10
-2

 

Batch Size 1024 1024 1024 65536 

 

5. RESULT 
 
The results of click through rate are presented in Table 3.  We have the following observations: 

 

Among all the models, the KGCN Leaky ReLU-sum achieves the best performance on the 
average of the three datasets.  

 

In general, comparing with KG free model LibFM, we find that the improvements of KGCN 
Leaky ReLU-sum on 10-core and 20-core are 15% and 13% higher than 30-core. This 

demonstrates that KGCN Leaky ReLU-sum can well addres0.80.s sparse scenarios, since the 10-

core and 20-core datasets are sparser than 30-core. 

 
RippleNet shows strong performance compared with the KG-free baseline, because RippleNet 

also uses a multi-hop neighborhood structure, which also captures the proximity information 

from the KG. 
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Table 3. The results of AUC and F1 in CTR prediction 

 

  10-Core 20-Core 30-Core MovieLens-20M 

  AUC F1 AUC F1 AUC F1 AUC F1 

PyLibFm 0.715 0.674 0.723 0.671 0.702 0.655 0.955 0.903 

RippleNet 0.903 0.863 0.897 0.855 0.721 0.639 0.968 0.912 

KGCN-Leak-ReLU-Sum 0.914 0.854 0.896 0.835 0.791 0.674 0.979 0.934 

KGCN-Leak-ReLU-Concat 0.913 0.850 0.903 0.841 0.768 0.662 0.978 0.933 

KGCN-Leak-ReLU-

Neighbor 0.838 0.774 0.814 0.753 0.484 0.595 0.977 0.932 

KGCN-ELU-Sum 0.906 0.842 0.895 0.833 0.754 0.629 0.977 0.931 

KGCN-ELU-Concat 0.902 0.840 0.903 0.841 0.708 0.725 0.978 0.932 

KGCN-ELU-Neighbor 0.835 0.755 0.814 0.753 0.665 0.582 0.976 0.932 

KGCN-ReLU-Sum 0.912 0.851 0.891 0.833 0.765 0.650 0.978 0.932 

KGCN-ReLU-Concat 0.912 0.852 0.905 0.842 0.773 0.666 0.977 0.931 

KGCN-ReLU-Neighbor 0.838 0.779 0.814 0.751 0.454 0.495 0.977 0.932 

KGCN-Leak-ReLU Average 0.888 0.826 0.871 0.810 0.681 0.644 0.978 0.933 

KGCN-ELU Average 0.881 0.813 0.871 0.809 0.709 0.645 0.977 0.932 

KGCN-ReLU Average 0.887 0.827 0.870 0.809 0.664 0.604 0.977 0.932 

 

Among the three original KGCN aggregators, KGCN Sum and KGCN Concat perform 

significantly better than KGCN-Neighbour, and KGCN Neighbour shows a clear gap on 30-Core 
setting dataset; that may be because the KGCN Neighbour only aggregated the neighborhood’s 

representation and does not include the information from the entity itself. 

 
The last three lines of Table 3 represent the average performance of each non-linear function 

implementing on the three aggregators. We can see that Leaky ReLU function obtains the best 

results for all three datasets, which may be because Leaky ReLU overcomes the dead ReLU 
problem. When the representation values are negative, the Leaky ReLU returns a small 

fraction;in contrast, the ReLU always return 0. ELU function performs the worst among the three 

functions, which may be because for ELU, σ(x) = x when x > 0 and a · (e x − 1) when x < 0, 

KGCN is lack of ability to learn and update the value of a when the input value is negative. 
 

We conducted experiments on how hyper parameter influences the performance of a KGCN-

Leaky ReLU-Sum model. In Table 4, we can see the influence of the neighbor sampling size 
from 2 to 64. The model performs best when S=8. This is because a too small S does not have 

enough capacity to incorporate neighborhood information, while a too large S is prone to be 

misled by noises. 

 
Table 4. AUC Result of Leaky ReLU-Sum KGCN with Different Neighbour Sampling Size S 

 

S 2 4 8 16 32 64 

10-Core 0.886 0.895 0.913 0.910 0.912 0.912 

20-Core 0.872 0.886 0.903 0.903 0.899 0.892 

30-Core 0.770 0.764 0.769 0.757 0.792 0.789 
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We can see the influence of depth of receptive field H on the model by setting H from 1 to 4 in 
Table 5, which illustrates that the model reacts sensitively on the variation of H.  

 

The model performs best when H=2 and collapse dramatically when H is greater than 2, which 

may be because a larger H brings massive noises to the model and the too-long relation-chain 
makes little sense when inferring inter-item similarities. 

 
Table 5. AUC Result of Leaky ReLU-Sum KGCN with Different Depth of Receptive Field H 

 

H 1 2 3 4 

10-Core 0.878 0.904 0.504 0.505 

20-Core 0.875 0.897 0.507 0.507 

30-Core 0.785 0.770 0.382 0.385 

 
Table 6 displays the effects of dimension of embedding d on performance of the model. The 

result is intuitive: performance improves dramatically as the d increases; when d is 128, the 

model achieves the best performance, since the larger d can include more information of users 
and entities. When d is greater than 128, the model is drawn back by overfitting. 

 
Table 6. AUC result of KGCN with different dimension of embedding D 

 

D 4 8 16 32 64 128 256 

10-Core 0.820 0.858 0.893 0.900 0.903 0.914 0.903 

20-Core 0.824 0.827 0.886 0.892 0.890 0.894 0.898 

30-Core 0.780 0.817 0.806 0.753 0.751 0.785 0.773 

 

6. CONCLUSION AND FUTURE WORKS 
 
In this paper, we proposed an efficient and effective data preprocessing and knowledge graph 

generation tool, Knowledge Graph Processor (KGP). By using the KGP, we constructed a 

knowledge graph for a Yelp dataset. Our proposed KGP can process JSON, CSV, and text files. 
More features could be supported, such as automatically extracting information from well-build 

knowledge graph database.  

 
By testing KGCN on the Yelp knowledge graph and MovieLens-20M dataset with Leaky ReLU, 

ELU, and ReLU non-linear functions, Leaky ReLU is able to improve performance of the 

original KGCN for recommendation systems. The reason is because Leaky ReLU has an 

advantage on overcoming dead ReLU problem as well as its robust performance when the input 
values are negative.  

 

We point out two avenues for future work: 1) The knowledge graph’s content and quality can 
significantly affect the performance of KGCN. An interesting direction of future research is to 

quantify the quality of the knowledge graph dataset; 2) We investigated the influence of the 

nonlinear function in the first layer of the aggregator. Future work could explore the impact of the 

different nonlinear functions on the second layer, and the impact of the optimizer is also a 
valuable direction to study. 
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