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ABSTRACT 
 

KNN has the reputation of being a simple and powerful supervised learning algorithm used for 

either classification or regression. Although KNN prediction performance highly depends on the 

size of the training dataset, when this one is large, KNN suffers from slow decision making. This 

is because each decision-making process requires the KNN algorithm to look for nearest 

neighbors within the entire dataset. To overcome this slowness problem, we propose a new 

technique that enables the selection of nearest neighbors directly in the neighborhood of a given 

data point. The proposed approach consists of dividing the data space into sub-cells of a virtual 

grid built on top of the dataset. The mapping between data points and sub-cells is achieved 

using hashing. When it comes to selecting the nearest neighbors of a new observation, we first 

identify the central cell where the observation is contained. Once that central cell is known, we 

then start looking for the nearest neighbors from it and the cells around. From our experimental 
performance analysis of publicly available datasets, our algorithm outperforms the original 

KNN with a predictive quality as good and offers competitive performance with solutions such 

as KDtree. 
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1. INTRODUCTION AND MOTIVATIONS 
 
The K nearest neighbors or simply KNN is an algorithm that relies on a very simple principle: tell 

me who your neighbors are and I’ll tell you who you are(Figure 1). Therefore, to make a 

prediction, KNN does not rely on a statistical model, it learns nothing from the training data and 

has to carry the full dataset during its decision making. For this reason, KNN is categorized as a 
Lazy Learning algorithm. 

 

 
 

Figure 1: KNN example 

http://airccse.org/cscp.html
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The 𝐾 of KNN is not a parameter but a hyperparameter because, unlike conventional parameters, 
it will not be learned automatically by the algorithm from the training data. It is up to us to 

optimize it, using the test dataset. To generate a prediction for a new observation 𝑥, the algorithm 

searches for the 𝐾 closest instances to 𝑥 from the dataset. For these instances, the algorithm will 

be based on their target values to generate the output of the observation we want to predict. 
Accordingly: 

 

 If we are in a regression task, the prediction is the average or median of the K nearest 

instances’ labels. 

 If we are in a classification task, the prediction is commonly majority class among the K 
nearest instances’ labels. 

 

Figure 1 illustrates simple classification example with k = 3. We can clearly observe that among 

the 3 nearest data points, 2 belongs to class A. KNN will then output class A for the black data 
point. KNN is a supervised learning method with very good prediction accuracy, hence its wide 

use in several domains. In medicine, researchers proposed a KNN based drug classification 

approach used to categorize the different types of drug[1], it is also used for diagnosing Heart 
disease patients[2], cancer prediction and detection[3][4][5]. In computer vision, KNN work 

efficiently in image classification [6], face recognition [7]. The KNN algorithm is also present in 

cybersecurity where it is effectively used for credit card fraud detection[8], detection of intrusive 
attacks in a network system[9]. The strength of KNN is its simplicity and efficiency. However, 

behind this efficiency, it hides two big weaknesses that are: 

 

 The large size of the final model: since KNN is not a statistical model, all training 

datasets must be carried out during inferences. 

 Slow inferences: during inference, KNN must iterate through the dataset for distance 
calculations before selecting the nearest neighbors. This process has a time complexity of 

(𝑓𝑛)𝑙𝑜𝑔(𝑓𝑛) with 𝑛 the training dataset size and 𝑓 the number of features. 

 

In addition, KNN is also very sensitive to noise (outliers), highly dependent on the choice of𝐾 

and the distance metric. The slowness and model size weaknesses restrict the use of KNN with 

large training data. Since KNN runs in memory and as the RAM is limited, it will be difficult to 

keep a large dataset in memory. Due to the slowness that results, this algorithm is not suitable for 
real-time applications or applications having strict time limits requirements. In this paper, we 

focused on the slowness problem of KNN during predictions with big datasets. To improve the 

prediction time efficiency, we are proposing a new hashing-based algorithm called GHN: Grid 
Hashing Neighborhood. GHN approach consists of splitting the data space into sub-cells by 

building a virtual grid on top of it. The virtual grid is constructed in such a way that each data 

point in the dataset can be mapped to a specific grid cell with a hash function. Both the virtual 
grid and the mapping hash function are constructed at the learning phase and then used during 

inferences to speed up the nearest neighbors selection. During prediction, the nearest neighbors of 

a new observation are selected in two steps. First, the central cell to which the new observation 

belongs is identified using the mapping hash function. Second, we search for nearest neighbors 
from this central cell and cells around it layer by layer. Therefore, unlike the native KNN, which 

have to go through the entire training dataset, GHN is able to select the nearest neighbors directly 

in the neighborhood of a new observation. Our performance analysis shows that our approach is 
faster in making predictions than the native KNN. 

 

The rest of the paper is structured as follows. Section 2 reviews related work. Section 3 the 
methodology of GHN. Section 4 evaluates the performance of our implementation of GHN, the 
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original KNN, and KDtree on some publicly available datasets. Finally, the paper is concluded in 
Section 5. 

 

2. RELATED WORK 
 

The slowness of KNN predictions is not a new problem in machine learning, unlike humans who, 
just by looking at the data representation in 2D or 3D vector space, can intuitively guess the 

nearest neighbors of a data point, a computer requires more calculations for the same task. Three 

main groups emerge among the different techniques used to compute the nearest neighbors that 
are: data reduction approaches, hashing based approaches, and tree-based approaches. Most of 

the literature’s suggested solutions consist of data reduction strategies. These strategies try to 

reduce the size of the training data, therefore, reducing the number of distance calculations and 

the amount of memory needed by the model during prediction. Reducing the size of the training 
data can be effective for certain types of datasets that may still work accurately by only 

considering some special data points. Although they are quicker in prediction and enhance 

memory usage, these approaches are less adopted. It may be because data reduction usually does 
not lead to the same prediction accuracy as KNN. 

 

In [10],[11],[12],[13] concave and convex hulls-based techniques are proposed and used to 
reduce each class samples to their edge data points. In these techniques, only the edge points are 

used in the training datasets for classification. Hart et Al. proposed the condensed nearest 

neighbor(CNN)[14] which reduces its data by selecting prototypes U from the training data in a 

way that 1NN with U can classify the samples almost as precisely as 1NN does with the dataset. 

CNN works in 3 steps [15]: 1) Scans all the elements of the training data 𝑋, looking for an 

element 𝑥 whose nearest prototype from 𝑈 has a label different from 𝑥. 2) Remove 𝑥 from 𝑋 and 

add it to 𝑈. 3) Repeat the operation until no other prototype is added to 𝑈. In the end use 𝑈 

instead of 𝑋 to train the model. In the same perspective, Salvador et Al. introduce compressed 

kNN[16] which is a binary level data compression technique. The method proposes to compress 

observations into packets of a certain number of bits. In each packet, attributes are stored through 

binary level operations. This technique reduces the amount of RAM needed to maintain the 
training data in memory. An interesting feature of the compressed kNN approach is that the 

information can be decompressed, observation by observation on the fly and in real-time, without 

the need to decompress the entire dataset in memory. Unfortunately, compressed kNN also 
suffers from slowness and only works with categorical features. 

 

During our research, we noticed that there were only a few researches attempts to use hashing 

techniques to estimate the nearest neighbors. Hashing can be used to group similar data points in 
buckets. The most popular hashing based solution is the LSH(Locality Sensitive Hashing) family 

[17] [18] [19] [20]. LSH based solutions use random plane projections in the data space to divide 

that space into sub-regions. These sub-regions are then used as a bucket to build a hash function. 
Even if LSH based solutions improve prediction time, the strategy behind them is ineffective and 

does not guarantee to get the real nearest neighbors hence its low adoption. Gao et Al. try to face 

this problem by suggesting another family of hashing technique, DHT[21], which, unlike the 
LSH family, can maintain relationships between the nearest neighbors. Tree-based solutions are 

the most adopted in real-world problems when it comes to approximating the nearest neighbors. 

The most famous are KD tree[22][23] and Ball Tree[24][25]. They are data structures that 

organize training data like a tree. When searching for the nearest neighbors, we navigate the tree 
from top to bottom, hoping that the region we led in will contain the nearest neighbors. Just like 

with LSH, these tree-based solutions can easily miss the real nearest neighbors and they are 

mostly recommended for low dimensional space since they don’t perform well with multi-
dimensions. In conclusion, there is still no efficient solution to accurately estimate the KNN that 
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provides low computation and memory cost. The existing one suffers from drawbacks like 
accuracy degradation or the risk of having fake nearest neighbors. Our solution adopts a unique 

hashing-based approach that allows us to directly select our neighbors around the observation 

during prediction with relatively good performances. 

 

3. PROPOSED SOLUTION 
 

Compared to the other machine learning algorithms KNN does not have a learning phase, the 

dataset does not undergo any transformation and is entirely maintained in memory. It is during 
predictions that KNN does all of its computations (distances, nearest neighbors selection). Unlike 

KNN, GHN has a learning phase before the prediction one. Figure 2 illustrates the GHN 

algorithm. We work with the simple case of a two-dimensional space, i.e. when the training data 

only have two features since it is much easier to visualize and understand. However, it can be 
generalized to multiple dimensions. Figure 2.a contains the observations of two classes, the class 

A observations are the blue squares, that of class B are the green circles, and the new observation 

whose class is to be predicted is represented by a red cross. For this example, 𝑘 =  3, so our goal 
is to find the 3 nearest data points to our new observation. GHN algorithm consists mainly of two 

steps: 

 
1) Cells sampling: this phase is accomplished during training. We subdivide the data space 

into identical sub-cells by building on top of it a virtual grid as illustrated in Figure 2.b. A 

Hash function is used to map training data points to their corresponding sub-cells. 

2) Exploration: this phase consists of selecting the nearest neighbors of a given input. As 
shown in Figure 2.c, GHN firstly determines the sub-cell to which the new observation 

with unknown output belongs by using the mapping hash function. Secondly, it 

searchesnearest neighbors from data points in this central cell and cells in its 
neighborhood layers by layer. 

 

 
 

Figure 2: Different steps off GHN algorithm 
 

3.1. Cell sampling 
 

It is done during the model’s training phase. As said above, during this phase, we build a virtual 
grid on top of the data space to split it into sub-cells. Each sub-cell will contain the data point 

located in the area it covers. These cells represent the buckets of our hash table, they are identical 

but not necessarily equilateral. Before building the virtual grid, we start by deciding the cell 
measurements on each dimension. To do this, we divide the values range covered by the training 

data points on each dimension in the largest possible number of splits. The division has to be 

done in a way that each of the splits we obtain ends up with at least one data point. The cell 
measurements on the corresponding dimension will then be the split width. The cell sampling 

process is illustrated with Figure 3, in which the first dimension can have a maximum of 7 splits 
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and a maximum of 8 splits for the second dimension. The cell measurements will be respectively 

(𝑟𝑎𝑛𝑔𝑒1/7, 𝑟𝑎𝑛𝑔𝑒2/8) on the first and second dimensions. This way of determining the virtual 

grid’s cell measurements ensures an optimal distribution of the data points in cells, it also 

facilitates the lookup of nearest neighbors during exploration. Once the measurements for each 

dimension are determined, Equation 1 defines the hash function that maps a data point to its 
corresponding cell. The result of Equation 1 uniquely identifies each cell of the virtual grid. Data 

points that belong to the same cell have the same cell id. GHN hash table does not keep any 

information about empty cells for memory efficiency. The entire cell sampling process is 
simplified by Algorithm 1. 

 

 
 

 𝑐𝑒𝑙𝑙_𝑖𝑑 =  𝑃//𝑎 (1) 

 
Where: 

 

  

 𝑃: The data point. 

 //: Integer division. 

 𝑎: Cell Measurements 

 

 
 

Figure 3: Cell measurements 

 

3.2. Exploration 
 

The actual selection of neighbors data points is made during this exploration step. The idea is to 
start with the cell to which our new observation belongs. Using Equation 1, we can get its id, 

compute the ids of cells in its neighborhood to search for the nearest data points. The two steps of 

the exploration are as follows: 
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1) Get the central cell, the one that contains the new observation using Equation 1. 
2) Retrieve data points from the central cell and its neighbors layer by layer, as shown in the 

example of Figure 2.c. 

 

We use the breadth-first search [26] (BFS) techniques in our implementation to compute ids and 
visit cells around the central one. When a cell is visited, the data points it contains are collected in 

a buffer. The buffer here is a heap of size k and only keeps the k potential nearest element using 

heap sort mechanism[27]. The exploration stops when a layer is visited and there is no update 

among the buffer elements. In Figure 2.c, 𝐾 =  3, the three nearest data points are selected as 

follows: 

 

 Central cell exploration: The central cell only contains 1 data point. We add this 
observation to our buffer, and we explore the cells on the first layer since the buffer size 

is less than 3. 

 First layer Exploration: After visiting these 8 cells, from the data point collected from 

them, the buffer will only retain the 3 closest ones to our observation. 

 Second layer Exploration: the second layer consists of 16 cells. Visiting these cells does 

not provide any update among the data points in the buffer, so the exploration stops there. 
 

At the end of the exploration, the buffer will remain with the exact k elements that are our nearest 

neighbors. It is important to note that in some rare cases, the exploration may miss the real 
nearest neighbors due to the fact the virtual grid cells don’t have the same measurements for each 

dimension. The entire exploration process is illustrated by Algorithm 2. 

 

 
 

3.3. Performances Comparison with KNN 
 
The complexity of GHN mainly depends on the number of features and the exploration depth 

(visited layers) that is strongly influenced by the data distribution. GHN can achieve record 

performance with large training datasets compared to existing solutions. The more the data 
grows, the faster is GHN since it directly searches for neighbors in the observations’ 

neighborhood. Its performance is almost constant 𝑂(1) when the input is located in a densely 

populated area of the data space, otherwise, GHN will require a little more effort and more 

exploration. The time taken by GHN to make a prediction is the time taken by its exploration 
phases, added to the time needed to process the buffer that contains the k nearest elements: 
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𝑇𝑖𝑚𝑒 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =  𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 +  𝐵𝑢𝑓𝑓𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 
 

 Exploration time: Depends on the exploration depth and the number of data points 

processed from visited cells. Knowing the exploration depth, Equation 3 can help to 

define the total number of visited cells. 

 Buffer processing time: it takes 𝑂(𝑘) time to process the buffer because only k elements 

remain at the end of the exploration phase. 

 
During the exploration, the number of cells on each layer given by the following Equation 2, is 

proved in Appendix A. 

 
 𝑛 =  (2𝑙 +  1)𝑓  − (2𝑙 −  1)𝑓 (2) 

 
Where: 

 

 𝑙: the number of visited layers. 

 𝑓: the number of dimensions or features.  

 

Therefore, if the exploration stops after 𝑙 layers, the total number of cells from the central cell to 

the last layer is expressed by the following Equation 3. We also demonstrate it in Appendix B. 

 
 

 𝑆𝑐𝑒𝑙𝑙𝑠(𝑙)  =  (2𝑙 +  1)𝑓  –  1 (3) 

 

The number of features 𝑓 is fixed and does not change while using the model, only the 

exploration depth 𝑙 influences 𝑆𝑐𝑒𝑙𝑙𝑠(𝑙). It is difficult to extrapolate the different values of the 

exploration depth and the number of data points processed during the exploration phase since 
they depend on the dataset. For this reason, it is difficult to compare GHN directly with the 

KNN. Nevertheless, we will rather look at the best-case comparison of them. The best case 

that GHN allows is when the exploration is done in a very dense area and stop after 

exploring a single layer (𝑑𝑒𝑝𝑡ℎ =  𝑙 =  1) and collecting k data points. For this best-case 

scenario, the number of visited cells is calculated by setting 𝑙 =  1 in Equation 3 gives 𝑆1 =
3𝑓 − 1.Then the best-case complexity of is: 

 

𝑂(3𝑓 − 1) + 𝑂(𝑘) ≃ 𝑂(1) + 𝑂(1) ≃ 𝑂(1) 

 

 𝑂(3𝑓  −  1) is the cell exploration complexity.𝑓 can be neglected since it is a 

constant: 𝑂(3𝑓  −  1) ≃ 𝑂(1). 

 𝑂(𝑘) is the complexity for processing buffer. 𝑘 also is a constant and can be 

neglected. 

 

The proposed approach can achieve the best-case complexity of almost 𝑂(1), which is far 

better than the original KNN and which has not yet been possible with all the solutions 

proposed so far. With original KNN, the best and worst-case time complexity is 

𝑂(𝑛𝑓𝑙𝑜𝑔(𝑓𝑛))). Both GHN and KNN have a memory complexity of 𝑂(𝑓𝑛). Although GHN 

uses slightly more memory than KNN to store its hash table, the number of cells will never 

exceed the size of the training dataset 𝑛. GHN is the only proposed solution whose 

prediction time performance is not negatively influenced by the growth in the training data 
size. With existing solutions, the more the dataset size increases the slower they are but with 

our approach, the more the learning data increases, the better. 
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3.4. Discussion 
 

The proposed solution can be used for classifications as well as for regressions tasks as it is only 

intended to improve the selection of nearest neighbors. In the draft of Figure 4 we can notice that 
once the nearest neighbors selected, they are used as input of a classification model that is 

responsible for predicting the majority class by a vote or a regression model that will predict the 

average or the median of the k selected samples. Features in the training dataset may take their 
values from completely different scales of magnitude. It is recommended for the training data to 

be rescaled in order to set features on the same magnitude. This is carried out using data scaling 

techniques such as Standardization, Mean Normalization, Unit Vector, etc. GHN is not suitable 

for all types of datasets as it assumes that all data points converge in the same area of the data 
space. When the data points are far away from each other or when our observation is very far 

from the region where the data points are located, GHN’s performance degrades. As KNN, GHN 

is also subject to the curse of dimensionality [28]. This occurs when the number of states 
exponentially increases for a tiny increase in the number of dimensions or parameters due to a 

combinatory explosion. The phenomena can be observed in Equation 3. Each time the number of 

layers increases, the number of cells to explore is an exponential function of the dimensions. 
 

 
 

Figure 4: GHN Flow 

 

4. EXPERIMENTS AND RESULTS 
 

We evaluate the GHN performance against the original KNN and the popular KDTree. Our 
experiment target two main metrics, the prediction time which helps to evaluate the time 

efficiency, and the accuracy score which can tell us about how well the model is performing. Our 

tests are performed on 5 real dataset that we grab from different datasets repository [29], [30], 

[31], [32], [33], [34], these datasets are presented in Table 1. Each dataset is used for 
classification tasks only in order to facilitate comparisons. We scale the datasets and reduce their 

dimensions by using Principal component analysis(PCA). Our experiment is implemented in 

python 3.6 and the running environment is an Ubuntu laptop of processor Intel i7. 
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Table 1: Datasets 

 
Datasets Description 

Fashion MNIST [34] Fashion-MNIST is a dataset of Zalando’s article images. Each 
example is a 28x28 grayscale image, associated with a label from 

10 classes. 

MNIST [30] MNIST database of handwritten digits has a training set of 60,000 

examples. The digits have been size-normalized and centred in a 

fixed-size image. 

Pulsar Star [29], [33] Describes a sample of pulsar candidates collected during the High 

Time Resolution Universe Survey. 

Wine Quality [31] Data about various chemical combination of red wine. 

Russian Demography 

[32] 

Russian Demography (1990-2017) Dataset. It contains 

demographic features like natural population growth, birth rate, 

population, etc. 

 
We have collected in Table 2 the time taken by each model to evaluate the test data for each 

dataset. 

 
Table 2: Prediction Times(ms) on various datasets 

 
Datasets GHN KDTree KNN 

Fashion MNIST 84.29 52.40 228.77 

MNIST 10.00 5.22 111.48 

Pulsar Star 9.09 15.00 60.20 

Wine Quality 0.27 0.87 2.46 

Russian 

Demography 

0.19 0.90 2.92 

 
For each dataset, 80% is used for training and the remaining 20% for testing. In the results of 
Figure 5, GHN and KDtree are much faster than the original KNN on the 5 datasets. We also 

notice that KDT is slightly faster than GHN on image data type, this is due to the effect of the 

curse of dimensionality faced by GHN during the exploration since a flattened image end up with 

a high dimensional vector. This problem is mitigated by using PCA to bring the dimensions to a 
good balance between speed and accuracy. On the contrary, for other types of data, GHN is faster 

than KDtree. By analysing Table 2 data and Figure 5 results, GHN is the best choice for real-time 

applications if we must choose between GHN and KNN. 
 

 
 

Figure 5: Comparison of prediction times on various datasets 

 

In Table 3 and Figure 6, we compare accuracies of GHN, KDTree and KNN on all datasets. 
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Table 3: Accuracies on various datasets 

 
Datasets GHN KDTree KNN 

Fashion MNIST 0.86 0.80 0.88 

MNIST 0.74 0.74 0.74 

Pulsar Star 0.99 0.99 0.99 

Wine Quality 0.65 0.65 0.65 

Russian 

Demography 

0.50 0.49 0.52 

 
With these results, we can conclude that all solutions accuracies are almost identical except for 

some slight variations. GHN offers better accuracy than KDtree on Russian Demography data 
and Fashion MNIST. 

 

 
Figure 6: Comparison of accuracies on various datasets 

 

Our experiment confirmed the fact that GHN can improve the time efficiency during predictions. 

It displays an accuracy as concurrent as that of KNN and KDTree. The main goal of GHN is to 

improve the prediction time by selecting the nearest neighbors directly in the neighborhood of 
our observation. Like KNN, GHN is sensitive to noise and is also subject to the curse of 

dimensionality. On the other hand, compared with proposed solutions till now that deal with the 

slowness of KNN, GHN is the only one capable of achieving almost constant time performance 
when the observations are in a densely populated area of the data space. 

 

5. CONCLUSION 
 

This paper proposes a new technique for picking the nearest neighbors that improve the 

prediction time for KNN, which turns out to be very slow. The algorithm works in two steps: Cell 
sampling and Exploration. During the first step, a hash function maps the data points with cells of 

a virtual grid built on top of the data space. Finally, the second step running during predictions 

consists of exploring and selecting the nearest data points. The experimental results validate the 
superior speed of GHN against KNN on all our testing datasets. GHN is compatible for both 

regression and classification tasks with a prediction efficiency as good as that of KNN. However, 

because the curse of dimensionality effect that exponentially increases the number of cells to 

explore from layer to layer, GHN is only recommended for low dimensional data spaces. 
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APPENDIX A  
 

PROOF OF EQUATION 2 

 

How many cells are on a given layer 𝑙? To answer this question,let’s define by: 

• 𝑎 : cell measurements 

• 𝑙 : the layer 

• 𝑓 : the number of features 
By looking at the Figure 2.c, we can deduce that the area from the central cell to a layer l is: 

𝐴(𝑙)  =  [(2𝑙 +  1)𝑎]𝑓 

To only obtain the area covered by cells on layer 𝑙 only, we must, therefore, deduct from 𝐴(𝑙) the 

area 𝐴(𝑙 −  1): 

𝐴(𝑙)  −  𝐴(𝑙 − 1)  =  [(2𝑙 +  1)𝑎]𝑓  − [(2(𝑙 −  1) +  1)𝑎]𝑓 

Now we can compute the number of cells on layer l. For that we just have to divide 𝐴(𝑙) − 𝐴(𝑙 −
1) by the cell volume 𝑎𝑓: 

𝑁 𝑐𝑒𝑙𝑙𝑠 =  
𝐴(𝑙) −  𝐴(𝑙 −  1)

𝑎𝑓
 

𝑁 𝑐𝑒𝑙𝑙𝑠 =  
[(2𝑙 +  1)𝑎]𝑓 − [(2(𝑙 −  1) +  1)𝑎]𝑓

𝑎𝑓
 

𝑁 𝑐𝑒𝑙𝑙𝑠 =  (2𝑙 +  1)𝑓 − (2𝑙 − 1)𝑓 

Hence Equation 2. 

 

APPENDIX B  
 

PROOF OF EQUATION 3 

 

In this Appendix, we want to find the number of cells from the first layer to a layer 𝑙. 
We obtain the area from the first to layer 𝑙 by deducing from 𝐴(𝑙) defined in Appendix A the 
volume of the central cell: 

𝐴(𝑙)  −  𝑎𝑓  =  [(2𝑙 +  1)𝑎]𝑓  − 𝑎𝑓 

Dividing this volume with the cell area gives us the total number of cells: 

𝑆𝑐𝑒𝑙𝑙𝑠(𝑙)  =
 𝐴(𝑙)  − 𝑎𝑓

𝑎𝑓
 

𝑆𝑐𝑒𝑙𝑙𝑠(𝑙) =
[(2𝑙 +  1)𝑎]𝑓 −  𝑎𝑓

𝑎𝑓
 

𝑆𝑐𝑒𝑙𝑙𝑠(𝑙) = (2𝑙 + 1)𝑓 − 1 

Which gives Equation 3. 
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