
David C. Wyld et al. (Eds): CCSIT, SIPP, PDCTA, AISC, NLPCL, BIGML, NCWMC - 2021

pp. 83-95, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.110708

A NEW HASHING BASED NEAREST

NEIGHBORS SELECTION TECHNIQUE
FOR BIG DATASETS

Jude Tchaye-Kondi, Yanlong Zhai and Liehuang Zhu

School of Computer Science, Beijing Institute of Technology, Beijing, China

ABSTRACT

KNN has the reputation of being a simple and powerful supervised learning algorithm used for

either classification or regression. Although KNN prediction performance highly depends on the

size of the training dataset, when this one is large, KNN suffers from slow decision making. This

is because each decision-making process requires the KNN algorithm to look for nearest

neighbors within the entire dataset. To overcome this slowness problem, we propose a new

technique that enables the selection of nearest neighbors directly in the neighborhood of a given

data point. The proposed approach consists of dividing the data space into sub-cells of a virtual

grid built on top of the dataset. The mapping between data points and sub-cells is achieved

using hashing. When it comes to selecting the nearest neighbors of a new observation, we first

identify the central cell where the observation is contained. Once that central cell is known, we

then start looking for the nearest neighbors from it and the cells around. From our experimental
performance analysis of publicly available datasets, our algorithm outperforms the original

KNN with a predictive quality as good and offers competitive performance with solutions such

as KDtree.

KEYWORDS

Machine learning, Nearest neighbors, Hashing, Big data.

1. INTRODUCTION AND MOTIVATIONS

The K nearest neighbors or simply KNN is an algorithm that relies on a very simple principle: tell

me who your neighbors are and I’ll tell you who you are(Figure 1). Therefore, to make a

prediction, KNN does not rely on a statistical model, it learns nothing from the training data and

has to carry the full dataset during its decision making. For this reason, KNN is categorized as a
Lazy Learning algorithm.

Figure 1: KNN example

http://airccse.org/cscp.html
http://airccse.org/csit/V11N07.html
https://doi.org/10.5121/csit.2021.110708

84 Computer Science & Information Technology (CS & IT)

The 𝐾 of KNN is not a parameter but a hyperparameter because, unlike conventional parameters,
it will not be learned automatically by the algorithm from the training data. It is up to us to

optimize it, using the test dataset. To generate a prediction for a new observation 𝑥, the algorithm

searches for the 𝐾 closest instances to 𝑥 from the dataset. For these instances, the algorithm will

be based on their target values to generate the output of the observation we want to predict.
Accordingly:

 If we are in a regression task, the prediction is the average or median of the K nearest

instances’ labels.

 If we are in a classification task, the prediction is commonly majority class among the K
nearest instances’ labels.

Figure 1 illustrates simple classification example with k = 3. We can clearly observe that among

the 3 nearest data points, 2 belongs to class A. KNN will then output class A for the black data
point. KNN is a supervised learning method with very good prediction accuracy, hence its wide

use in several domains. In medicine, researchers proposed a KNN based drug classification

approach used to categorize the different types of drug[1], it is also used for diagnosing Heart
disease patients[2], cancer prediction and detection[3][4][5]. In computer vision, KNN work

efficiently in image classification [6], face recognition [7]. The KNN algorithm is also present in

cybersecurity where it is effectively used for credit card fraud detection[8], detection of intrusive
attacks in a network system[9]. The strength of KNN is its simplicity and efficiency. However,

behind this efficiency, it hides two big weaknesses that are:

 The large size of the final model: since KNN is not a statistical model, all training

datasets must be carried out during inferences.

 Slow inferences: during inference, KNN must iterate through the dataset for distance
calculations before selecting the nearest neighbors. This process has a time complexity of

(𝑓𝑛)𝑙𝑜𝑔(𝑓𝑛) with 𝑛 the training dataset size and 𝑓 the number of features.

In addition, KNN is also very sensitive to noise (outliers), highly dependent on the choice of𝐾

and the distance metric. The slowness and model size weaknesses restrict the use of KNN with

large training data. Since KNN runs in memory and as the RAM is limited, it will be difficult to

keep a large dataset in memory. Due to the slowness that results, this algorithm is not suitable for
real-time applications or applications having strict time limits requirements. In this paper, we

focused on the slowness problem of KNN during predictions with big datasets. To improve the

prediction time efficiency, we are proposing a new hashing-based algorithm called GHN: Grid
Hashing Neighborhood. GHN approach consists of splitting the data space into sub-cells by

building a virtual grid on top of it. The virtual grid is constructed in such a way that each data

point in the dataset can be mapped to a specific grid cell with a hash function. Both the virtual
grid and the mapping hash function are constructed at the learning phase and then used during

inferences to speed up the nearest neighbors selection. During prediction, the nearest neighbors of

a new observation are selected in two steps. First, the central cell to which the new observation

belongs is identified using the mapping hash function. Second, we search for nearest neighbors
from this central cell and cells around it layer by layer. Therefore, unlike the native KNN, which

have to go through the entire training dataset, GHN is able to select the nearest neighbors directly

in the neighborhood of a new observation. Our performance analysis shows that our approach is
faster in making predictions than the native KNN.

The rest of the paper is structured as follows. Section 2 reviews related work. Section 3 the
methodology of GHN. Section 4 evaluates the performance of our implementation of GHN, the

Computer Science & Information Technology (CS & IT) 85

original KNN, and KDtree on some publicly available datasets. Finally, the paper is concluded in
Section 5.

2. RELATED WORK

The slowness of KNN predictions is not a new problem in machine learning, unlike humans who,
just by looking at the data representation in 2D or 3D vector space, can intuitively guess the

nearest neighbors of a data point, a computer requires more calculations for the same task. Three

main groups emerge among the different techniques used to compute the nearest neighbors that
are: data reduction approaches, hashing based approaches, and tree-based approaches. Most of

the literature’s suggested solutions consist of data reduction strategies. These strategies try to

reduce the size of the training data, therefore, reducing the number of distance calculations and

the amount of memory needed by the model during prediction. Reducing the size of the training
data can be effective for certain types of datasets that may still work accurately by only

considering some special data points. Although they are quicker in prediction and enhance

memory usage, these approaches are less adopted. It may be because data reduction usually does
not lead to the same prediction accuracy as KNN.

In [10],[11],[12],[13] concave and convex hulls-based techniques are proposed and used to
reduce each class samples to their edge data points. In these techniques, only the edge points are

used in the training datasets for classification. Hart et Al. proposed the condensed nearest

neighbor(CNN)[14] which reduces its data by selecting prototypes U from the training data in a

way that 1NN with U can classify the samples almost as precisely as 1NN does with the dataset.

CNN works in 3 steps [15]: 1) Scans all the elements of the training data 𝑋, looking for an

element 𝑥 whose nearest prototype from 𝑈 has a label different from 𝑥. 2) Remove 𝑥 from 𝑋 and

add it to 𝑈. 3) Repeat the operation until no other prototype is added to 𝑈. In the end use 𝑈

instead of 𝑋 to train the model. In the same perspective, Salvador et Al. introduce compressed

kNN[16] which is a binary level data compression technique. The method proposes to compress

observations into packets of a certain number of bits. In each packet, attributes are stored through

binary level operations. This technique reduces the amount of RAM needed to maintain the
training data in memory. An interesting feature of the compressed kNN approach is that the

information can be decompressed, observation by observation on the fly and in real-time, without

the need to decompress the entire dataset in memory. Unfortunately, compressed kNN also
suffers from slowness and only works with categorical features.

During our research, we noticed that there were only a few researches attempts to use hashing

techniques to estimate the nearest neighbors. Hashing can be used to group similar data points in
buckets. The most popular hashing based solution is the LSH(Locality Sensitive Hashing) family

[17] [18] [19] [20]. LSH based solutions use random plane projections in the data space to divide

that space into sub-regions. These sub-regions are then used as a bucket to build a hash function.
Even if LSH based solutions improve prediction time, the strategy behind them is ineffective and

does not guarantee to get the real nearest neighbors hence its low adoption. Gao et Al. try to face

this problem by suggesting another family of hashing technique, DHT[21], which, unlike the
LSH family, can maintain relationships between the nearest neighbors. Tree-based solutions are

the most adopted in real-world problems when it comes to approximating the nearest neighbors.

The most famous are KD tree[22][23] and Ball Tree[24][25]. They are data structures that

organize training data like a tree. When searching for the nearest neighbors, we navigate the tree
from top to bottom, hoping that the region we led in will contain the nearest neighbors. Just like

with LSH, these tree-based solutions can easily miss the real nearest neighbors and they are

mostly recommended for low dimensional space since they don’t perform well with multi-
dimensions. In conclusion, there is still no efficient solution to accurately estimate the KNN that

86 Computer Science & Information Technology (CS & IT)

provides low computation and memory cost. The existing one suffers from drawbacks like
accuracy degradation or the risk of having fake nearest neighbors. Our solution adopts a unique

hashing-based approach that allows us to directly select our neighbors around the observation

during prediction with relatively good performances.

3. PROPOSED SOLUTION

Compared to the other machine learning algorithms KNN does not have a learning phase, the

dataset does not undergo any transformation and is entirely maintained in memory. It is during
predictions that KNN does all of its computations (distances, nearest neighbors selection). Unlike

KNN, GHN has a learning phase before the prediction one. Figure 2 illustrates the GHN

algorithm. We work with the simple case of a two-dimensional space, i.e. when the training data

only have two features since it is much easier to visualize and understand. However, it can be
generalized to multiple dimensions. Figure 2.a contains the observations of two classes, the class

A observations are the blue squares, that of class B are the green circles, and the new observation

whose class is to be predicted is represented by a red cross. For this example, 𝑘 = 3, so our goal
is to find the 3 nearest data points to our new observation. GHN algorithm consists mainly of two

steps:

1) Cells sampling: this phase is accomplished during training. We subdivide the data space

into identical sub-cells by building on top of it a virtual grid as illustrated in Figure 2.b. A

Hash function is used to map training data points to their corresponding sub-cells.

2) Exploration: this phase consists of selecting the nearest neighbors of a given input. As
shown in Figure 2.c, GHN firstly determines the sub-cell to which the new observation

with unknown output belongs by using the mapping hash function. Secondly, it

searchesnearest neighbors from data points in this central cell and cells in its
neighborhood layers by layer.

Figure 2: Different steps off GHN algorithm

3.1. Cell sampling

It is done during the model’s training phase. As said above, during this phase, we build a virtual
grid on top of the data space to split it into sub-cells. Each sub-cell will contain the data point

located in the area it covers. These cells represent the buckets of our hash table, they are identical

but not necessarily equilateral. Before building the virtual grid, we start by deciding the cell
measurements on each dimension. To do this, we divide the values range covered by the training

data points on each dimension in the largest possible number of splits. The division has to be

done in a way that each of the splits we obtain ends up with at least one data point. The cell
measurements on the corresponding dimension will then be the split width. The cell sampling

process is illustrated with Figure 3, in which the first dimension can have a maximum of 7 splits

Computer Science & Information Technology (CS & IT) 87

and a maximum of 8 splits for the second dimension. The cell measurements will be respectively

(𝑟𝑎𝑛𝑔𝑒1/7, 𝑟𝑎𝑛𝑔𝑒2/8) on the first and second dimensions. This way of determining the virtual

grid’s cell measurements ensures an optimal distribution of the data points in cells, it also

facilitates the lookup of nearest neighbors during exploration. Once the measurements for each

dimension are determined, Equation 1 defines the hash function that maps a data point to its
corresponding cell. The result of Equation 1 uniquely identifies each cell of the virtual grid. Data

points that belong to the same cell have the same cell id. GHN hash table does not keep any

information about empty cells for memory efficiency. The entire cell sampling process is
simplified by Algorithm 1.

 𝑐𝑒𝑙𝑙_𝑖𝑑 = 𝑃//𝑎 (1)

Where:

 𝑃: The data point.

 //: Integer division.

 𝑎: Cell Measurements

Figure 3: Cell measurements

3.2. Exploration

The actual selection of neighbors data points is made during this exploration step. The idea is to
start with the cell to which our new observation belongs. Using Equation 1, we can get its id,

compute the ids of cells in its neighborhood to search for the nearest data points. The two steps of

the exploration are as follows:

88 Computer Science & Information Technology (CS & IT)

1) Get the central cell, the one that contains the new observation using Equation 1.
2) Retrieve data points from the central cell and its neighbors layer by layer, as shown in the

example of Figure 2.c.

We use the breadth-first search [26] (BFS) techniques in our implementation to compute ids and
visit cells around the central one. When a cell is visited, the data points it contains are collected in

a buffer. The buffer here is a heap of size k and only keeps the k potential nearest element using

heap sort mechanism[27]. The exploration stops when a layer is visited and there is no update

among the buffer elements. In Figure 2.c, 𝐾 = 3, the three nearest data points are selected as

follows:

 Central cell exploration: The central cell only contains 1 data point. We add this
observation to our buffer, and we explore the cells on the first layer since the buffer size

is less than 3.

 First layer Exploration: After visiting these 8 cells, from the data point collected from

them, the buffer will only retain the 3 closest ones to our observation.

 Second layer Exploration: the second layer consists of 16 cells. Visiting these cells does

not provide any update among the data points in the buffer, so the exploration stops there.

At the end of the exploration, the buffer will remain with the exact k elements that are our nearest

neighbors. It is important to note that in some rare cases, the exploration may miss the real
nearest neighbors due to the fact the virtual grid cells don’t have the same measurements for each

dimension. The entire exploration process is illustrated by Algorithm 2.

3.3. Performances Comparison with KNN

The complexity of GHN mainly depends on the number of features and the exploration depth

(visited layers) that is strongly influenced by the data distribution. GHN can achieve record

performance with large training datasets compared to existing solutions. The more the data
grows, the faster is GHN since it directly searches for neighbors in the observations’

neighborhood. Its performance is almost constant 𝑂(1) when the input is located in a densely

populated area of the data space, otherwise, GHN will require a little more effort and more

exploration. The time taken by GHN to make a prediction is the time taken by its exploration
phases, added to the time needed to process the buffer that contains the k nearest elements:

Computer Science & Information Technology (CS & IT) 89

𝑇𝑖𝑚𝑒 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 + 𝐵𝑢𝑓𝑓𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔

 Exploration time: Depends on the exploration depth and the number of data points

processed from visited cells. Knowing the exploration depth, Equation 3 can help to

define the total number of visited cells.

 Buffer processing time: it takes 𝑂(𝑘) time to process the buffer because only k elements

remain at the end of the exploration phase.

During the exploration, the number of cells on each layer given by the following Equation 2, is

proved in Appendix A.

 𝑛 = (2𝑙 + 1)𝑓 − (2𝑙 − 1)𝑓 (2)

Where:

 𝑙: the number of visited layers.

 𝑓: the number of dimensions or features.

Therefore, if the exploration stops after 𝑙 layers, the total number of cells from the central cell to

the last layer is expressed by the following Equation 3. We also demonstrate it in Appendix B.

 𝑆𝑐𝑒𝑙𝑙𝑠(𝑙) = (2𝑙 + 1)𝑓 – 1 (3)

The number of features 𝑓 is fixed and does not change while using the model, only the

exploration depth 𝑙 influences 𝑆𝑐𝑒𝑙𝑙𝑠(𝑙). It is difficult to extrapolate the different values of the

exploration depth and the number of data points processed during the exploration phase since
they depend on the dataset. For this reason, it is difficult to compare GHN directly with the

KNN. Nevertheless, we will rather look at the best-case comparison of them. The best case

that GHN allows is when the exploration is done in a very dense area and stop after

exploring a single layer (𝑑𝑒𝑝𝑡ℎ = 𝑙 = 1) and collecting k data points. For this best-case

scenario, the number of visited cells is calculated by setting 𝑙 = 1 in Equation 3 gives 𝑆1 =
3𝑓 − 1.Then the best-case complexity of is:

𝑂(3𝑓 − 1) + 𝑂(𝑘) ≃ 𝑂(1) + 𝑂(1) ≃ 𝑂(1)

 𝑂(3𝑓 − 1) is the cell exploration complexity.𝑓 can be neglected since it is a

constant: 𝑂(3𝑓 − 1) ≃ 𝑂(1).

 𝑂(𝑘) is the complexity for processing buffer. 𝑘 also is a constant and can be

neglected.

The proposed approach can achieve the best-case complexity of almost 𝑂(1), which is far

better than the original KNN and which has not yet been possible with all the solutions

proposed so far. With original KNN, the best and worst-case time complexity is

𝑂(𝑛𝑓𝑙𝑜𝑔(𝑓𝑛))). Both GHN and KNN have a memory complexity of 𝑂(𝑓𝑛). Although GHN

uses slightly more memory than KNN to store its hash table, the number of cells will never

exceed the size of the training dataset 𝑛. GHN is the only proposed solution whose

prediction time performance is not negatively influenced by the growth in the training data
size. With existing solutions, the more the dataset size increases the slower they are but with

our approach, the more the learning data increases, the better.

90 Computer Science & Information Technology (CS & IT)

3.4. Discussion

The proposed solution can be used for classifications as well as for regressions tasks as it is only

intended to improve the selection of nearest neighbors. In the draft of Figure 4 we can notice that
once the nearest neighbors selected, they are used as input of a classification model that is

responsible for predicting the majority class by a vote or a regression model that will predict the

average or the median of the k selected samples. Features in the training dataset may take their
values from completely different scales of magnitude. It is recommended for the training data to

be rescaled in order to set features on the same magnitude. This is carried out using data scaling

techniques such as Standardization, Mean Normalization, Unit Vector, etc. GHN is not suitable

for all types of datasets as it assumes that all data points converge in the same area of the data
space. When the data points are far away from each other or when our observation is very far

from the region where the data points are located, GHN’s performance degrades. As KNN, GHN

is also subject to the curse of dimensionality [28]. This occurs when the number of states
exponentially increases for a tiny increase in the number of dimensions or parameters due to a

combinatory explosion. The phenomena can be observed in Equation 3. Each time the number of

layers increases, the number of cells to explore is an exponential function of the dimensions.

Figure 4: GHN Flow

4. EXPERIMENTS AND RESULTS

We evaluate the GHN performance against the original KNN and the popular KDTree. Our
experiment target two main metrics, the prediction time which helps to evaluate the time

efficiency, and the accuracy score which can tell us about how well the model is performing. Our

tests are performed on 5 real dataset that we grab from different datasets repository [29], [30],

[31], [32], [33], [34], these datasets are presented in Table 1. Each dataset is used for
classification tasks only in order to facilitate comparisons. We scale the datasets and reduce their

dimensions by using Principal component analysis(PCA). Our experiment is implemented in

python 3.6 and the running environment is an Ubuntu laptop of processor Intel i7.

Computer Science & Information Technology (CS & IT) 91

Table 1: Datasets

Datasets Description

Fashion MNIST [34] Fashion-MNIST is a dataset of Zalando’s article images. Each
example is a 28x28 grayscale image, associated with a label from

10 classes.

MNIST [30] MNIST database of handwritten digits has a training set of 60,000

examples. The digits have been size-normalized and centred in a

fixed-size image.

Pulsar Star [29], [33] Describes a sample of pulsar candidates collected during the High

Time Resolution Universe Survey.

Wine Quality [31] Data about various chemical combination of red wine.

Russian Demography

[32]

Russian Demography (1990-2017) Dataset. It contains

demographic features like natural population growth, birth rate,

population, etc.

We have collected in Table 2 the time taken by each model to evaluate the test data for each

dataset.

Table 2: Prediction Times(ms) on various datasets

Datasets GHN KDTree KNN

Fashion MNIST 84.29 52.40 228.77

MNIST 10.00 5.22 111.48

Pulsar Star 9.09 15.00 60.20

Wine Quality 0.27 0.87 2.46

Russian

Demography

0.19 0.90 2.92

For each dataset, 80% is used for training and the remaining 20% for testing. In the results of
Figure 5, GHN and KDtree are much faster than the original KNN on the 5 datasets. We also

notice that KDT is slightly faster than GHN on image data type, this is due to the effect of the

curse of dimensionality faced by GHN during the exploration since a flattened image end up with

a high dimensional vector. This problem is mitigated by using PCA to bring the dimensions to a
good balance between speed and accuracy. On the contrary, for other types of data, GHN is faster

than KDtree. By analysing Table 2 data and Figure 5 results, GHN is the best choice for real-time

applications if we must choose between GHN and KNN.

Figure 5: Comparison of prediction times on various datasets

In Table 3 and Figure 6, we compare accuracies of GHN, KDTree and KNN on all datasets.

92 Computer Science & Information Technology (CS & IT)

Table 3: Accuracies on various datasets

Datasets GHN KDTree KNN

Fashion MNIST 0.86 0.80 0.88

MNIST 0.74 0.74 0.74

Pulsar Star 0.99 0.99 0.99

Wine Quality 0.65 0.65 0.65

Russian

Demography

0.50 0.49 0.52

With these results, we can conclude that all solutions accuracies are almost identical except for

some slight variations. GHN offers better accuracy than KDtree on Russian Demography data
and Fashion MNIST.

Figure 6: Comparison of accuracies on various datasets

Our experiment confirmed the fact that GHN can improve the time efficiency during predictions.

It displays an accuracy as concurrent as that of KNN and KDTree. The main goal of GHN is to

improve the prediction time by selecting the nearest neighbors directly in the neighborhood of
our observation. Like KNN, GHN is sensitive to noise and is also subject to the curse of

dimensionality. On the other hand, compared with proposed solutions till now that deal with the

slowness of KNN, GHN is the only one capable of achieving almost constant time performance
when the observations are in a densely populated area of the data space.

5. CONCLUSION

This paper proposes a new technique for picking the nearest neighbors that improve the

prediction time for KNN, which turns out to be very slow. The algorithm works in two steps: Cell
sampling and Exploration. During the first step, a hash function maps the data points with cells of

a virtual grid built on top of the data space. Finally, the second step running during predictions

consists of exploring and selecting the nearest data points. The experimental results validate the
superior speed of GHN against KNN on all our testing datasets. GHN is compatible for both

regression and classification tasks with a prediction efficiency as good as that of KNN. However,

because the curse of dimensionality effect that exponentially increases the number of cells to

explore from layer to layer, GHN is only recommended for low dimensional data spaces.

Computer Science & Information Technology (CS & IT) 93

APPENDIX A

PROOF OF EQUATION 2

How many cells are on a given layer 𝑙? To answer this question,let’s define by:

• 𝑎 : cell measurements

• 𝑙 : the layer

• 𝑓 : the number of features
By looking at the Figure 2.c, we can deduce that the area from the central cell to a layer l is:

𝐴(𝑙) = [(2𝑙 + 1)𝑎]𝑓

To only obtain the area covered by cells on layer 𝑙 only, we must, therefore, deduct from 𝐴(𝑙) the

area 𝐴(𝑙 − 1):

𝐴(𝑙) − 𝐴(𝑙 − 1) = [(2𝑙 + 1)𝑎]𝑓 − [(2(𝑙 − 1) + 1)𝑎]𝑓

Now we can compute the number of cells on layer l. For that we just have to divide 𝐴(𝑙) − 𝐴(𝑙 −
1) by the cell volume 𝑎𝑓:

𝑁 𝑐𝑒𝑙𝑙𝑠 =
𝐴(𝑙) − 𝐴(𝑙 − 1)

𝑎𝑓

𝑁 𝑐𝑒𝑙𝑙𝑠 =
[(2𝑙 + 1)𝑎]𝑓 − [(2(𝑙 − 1) + 1)𝑎]𝑓

𝑎𝑓

𝑁 𝑐𝑒𝑙𝑙𝑠 = (2𝑙 + 1)𝑓 − (2𝑙 − 1)𝑓

Hence Equation 2.

APPENDIX B

PROOF OF EQUATION 3

In this Appendix, we want to find the number of cells from the first layer to a layer 𝑙.
We obtain the area from the first to layer 𝑙 by deducing from 𝐴(𝑙) defined in Appendix A the
volume of the central cell:

𝐴(𝑙) − 𝑎𝑓 = [(2𝑙 + 1)𝑎]𝑓 − 𝑎𝑓

Dividing this volume with the cell area gives us the total number of cells:

𝑆𝑐𝑒𝑙𝑙𝑠(𝑙) =
 𝐴(𝑙) − 𝑎𝑓

𝑎𝑓

𝑆𝑐𝑒𝑙𝑙𝑠(𝑙) =
[(2𝑙 + 1)𝑎]𝑓 − 𝑎𝑓

𝑎𝑓

𝑆𝑐𝑒𝑙𝑙𝑠(𝑙) = (2𝑙 + 1)𝑓 − 1

Which gives Equation 3.

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers for their insightful suggestions. This research work

is supported by the Natural Key R&D of China (No.2018YFC0830104).

REFERENCES

[1] J. Akhil, B. Deekshatulu, and P. Chandra, “Classification of heart disease using k- nearest neighbor

and genetic algorithm,” Procedia Technology, vol. 10, p. 85–94, 12 2013.

[2] M. Shouman, T. Turner, and R. Stocker, “Applying k-nearest neighbour in diagnosing heart disease

patients,” International Journal of Information and Education Technology, vol. 2, pp. 220–223, 01

2012.

94 Computer Science & Information Technology (CS & IT)

[3] S. A. Medjahed, T. A. Saadi, and A. Benyettou, “Breast cancer diagnosis by using k-nearest neighbor

with different distances and classification rules,” International Journal of Computer Applications, vol.

62, no. 1, 2013.

[4] K. Machhale, H. B. Nandpuru, V. Kapur, and L. Kosta, “Mri brain cancer classification using hybrid

classifier (svm-knn),” in 2015 International Conference on Industrial Instrumentation and Control
(ICIC), May 2015, pp. 60–65.

[5] M. Jabbar, “Prediction of heart disease using k-nearest neighbor and particle swarm optimization,”

Biomed. Res, vol. 28, no. 9, pp. 4154–4158, 2017.

[6] G. Amato and F. Falchi, “knn based image classification relying on local feature similarity,” in

Proceedings of the Third International Conference on SImilarity Search and APplications. ACM,

2010, pp. 101–108.

[7] H. Ebrahimpour and A. Kouzani, “Face recognition using bagging knn,” in International Conference

on Signal Processing and Communication Systems (ICSPCS’2007) Australia, Gold Coast, 2007, pp.

17–19.

[8] V. R. Ganji and S. N. P. Mannem, “Credit card fraud detection using anti-k nearest neighbor

algorithm,” International Journal on Computer Science and Engineering, vol. 4, no. 6, pp. 1035–1039,

2012.
[9] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier for intrusion detection,” Computers

& security, vol. 21, no. 5, pp. 439– 448, 2002.

[10] W. M. Getz and C. C. Wilmers, “A local nearest-neighbor convex-hull construction of home ranges

and utilization distributions,” Ecography, vol. 27, no. 4, pp. 489–505, 2004. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10. 1111/j.0906-7590.2004.03835.x

[11] Z. Szymanski and M. Dwulit, “Improved k-nearest neighbor´ classifier for biomedical data based on

convex hull of inversed set of points,” in Photonics Applications in Astronomy, Communications,

Industry, and High-Energy Physics Experiments 2010, R. S. Romaniuk, Ed., vol. 7745, International

Society for Optics and Photonics. SPIE, 2010, pp. 324 – 331. [Online]. Available:

https://doi.org/10.1117/12.873054

[12] A. Moreira and M. Santos, “Concave hull: A k-nearest neighbours approach for the computation of
the region occupied by a set of points.” 01 2007, pp. 61–68.

[13] J.-S. Park and S.-J. Oh, “A new concave hull algorithm and concaveness measure for n-dimensional

datasets,” Journal of Information Science and Engineering, vol. 29, pp. 379–392, 03 2013.

[14] P. Hart, “The condensed nearest neighbor rule (corresp.),” IEEE transactions on information theory,

vol. 14, no. 3, pp. 515–516, 1968.

[15] k-nearest neighbors algorithm. https://en.wikipedia.org/wiki/Knearest neighbors algorithm. Accessed:

2020-1-10.

[16] J. Salvador, Z. Ruiz, and J. Garcia, “Compressed knn: K-nearest neighbors with data compression,”

2019.

[17] J. Pan and D. Manocha, “Fast gpu-based locality sensitive hashing for k-nearest neighbor

computation,” in Proceedings of the 19th ACM SIGSPATIAL international conference on advances

in geographic information systems. ACM, 2011, pp. 211–220.
[18] Y.-M. Zhang, K. Huang, G. Geng, and C.-L. Liu, “Fast knn graph construction with locality sensitive

hashing,” in Joint European Conference on Machine Learning and Knowledge Discovery in

Databases. Springer, 2013, pp. 660–674.

[19] S. Bagui, A. K. Mondal, and S. Bagui, “Improving the performance of knn in the mapreduce

framework using locality sensitive hashing,” International Journal of Distributed Systems and

Technologies (IJDST), vol. 10, no. 4, pp. 1–16, 2019.

[20] G. Wu, Z. Zhao, G. Fu, H. Wang, Y. Wang, Z. Wang, J. Hou, and L. Huang, “A fast knn-based

approach for time sensitive anomaly detection over data streams,” in International Conference on

Computational Science. Springer, 2019, pp. 59–74.

[21] J. Gao, H. V. Jagadish, W. Lu, and B. C. Ooi, “Dsh: data sensitive hashing for high-dimensional k-

nnsearch,” in Proceedings of the 2014 ACM SIGMOD international conference on Management of
data. ACM, 2014, pp. 1127–1138.

[22] R. F. Sproull, “Refinements to nearest-neighbor searching inkdimensional trees,” Algorithmica, vol.

6, no. 1-6, pp. 579–589, 1991.

[23] K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-time kdtree construction on graphics hardware,” ACM

Trans. Graph., vol. 27, no. 5, pp. 126:1–126:11, Dec. 2008. [Online]. Available:

http://doi.acm.org/10.1145/1409060.1409079

Computer Science & Information Technology (CS & IT) 95

[24] S. M. Omohundro, Five balltree construction algorithms. International Computer Science Institute

Berkeley, 1989.

[25] T. Liu, A. W. Moore, and A. Gray, “New algorithms for efficient high-dimensional nonparametric

classification,” Journal of Machine Learning Research, vol. 7, no. Jun, pp. 1135–1158, 2006.

[26] A. Elmasry, T. Hagerup, and F. Kammer, “Space-efficient basic graph algorithms,” 2015.
[27] R. Schaffer and R. Sedgewick, “The analysis of heapsort,” Journal of Algorithms, vol. 15, no. 1, pp.

76–100, 1993.

[28] A. Hinrichs, E. Novak, and H. Wozniakowski, “The curse of´ dimensionality for monotone and

convex functions of many variables,” arXiv preprint arXiv:1011.3680, 2010.

[29] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online]. Available:

http://archive.ics.uci.edu/ml

[30] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,” ATT Labs [Online].

Available: http://yann. lecun. com/exdb/mnist, vol. 2, 2010.

[31] Data tells various chemical combination of redwine. https://

www.kaggle.com/sh6147782/winequalityred. Accessed: 2020-1-29.

[32] Russian demography data (1990-2017). https://www.kaggle.com/dwdkills/russian-demography.

Accessed: 2020-1-29.
[33] Predicting a pulsar star. https://www.kaggle.com/pavanraj159/ predicting-a-pulsar-star. Accessed:

2020-1-29.

[34] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image dataset for benchmarking

machine learning algorithms.

AUTHORS

Jude Tchaye-Kondi: Received the BS degree from the Department of Computer

Science, Catholic University of West Africa. He joins in 2017 Beijing Institute of

Technology, China as a graduate student and is now pursuing a Ph.D. program. His

research interest includes parallel and distributed computing, edge computing, machine

learning. Currently, his research projects focus on applying artificial intelligence

algorithms in the edge computing environment.

Yanlong Zhai: Received the B.Eng. degree and Ph.D. degree in computer science from

Beijing Institute of Technology, Beijing, China, in 2004 and 2010. He is an Assistant

Professor in the School of Computer Science, Beijing Institute of Technology. He was a
Visiting Scholar in the Department of Electrical Engineering and Computer Science,

University of California, Irvine. His research interests include cloud computing and big

data.

Liehuang Zhu: Received the B.Eng. and Master Degrees in computer application from

Wuhan University, Wuhan, Hubei, China, in 1998 and 2001 respectively. He received

the Ph.D. degree in computer application from Beijing Institute of Technology, Beijing,

China, in 2004. He is currently a Professor in the Department of Computer Science,

Beijing Institute of Technology, Beijing, China. He is selected into the Program for New

Century Excellent Talents in University from Ministry of Education, China. His research
interests include internet of things, cloud computing security, internet, and mobile

security.

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	Abstract
	Keywords
	Machine learning, Nearest neighbors, Hashing, Big data.

