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ABSTRACT 
 
This research recasts the network attack dataset from UNSW-NB15 as an intrusion detection 

problem in image space. Using one-hot-encodings, the resulting grayscale thumbnails provide 

a quarter-million examples for deep learning algorithms. Applying the MobileNetV2’s 

convolutional neural network architecture, the work demonstrates a 97% accuracy in 

distinguishing normal and attack traffic. Further class refinements to 9 individual attack 

families (exploits, worms, shellcodes) show an overall 56% accuracy. Using feature 

importance rank, a random forest solution on subsets show the most important source-

destination factors and the least important ones as mainly obscure protocols.  The dataset is 

available on Kaggle. 
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1. INTRODUCTION 
 

This work updates the UNSW-NB15 attack dataset [1-4] and extends the popular intrusions 

detection system (IDS) originally inspired by the KDD-99/DARPA challenge [5-7]. The details 
of the UNSW-NB15 dataset are published in a series of previous papers [1-4] which described 

the raw network packet captures, generated features on labeled attacks, and scored statistical 

methods for identifying each attack family. As illustrated in Figure 1, the current approach aims 
to map scaled numerical features to images, a method likened to traditional spectrogram methods. 

These fingerprinting techniques have proven useful when image-based neural networks have 

solved similar but challenging time-dependent [8] or audio [9] problems. We test the capabilities 
for mapping tabular features to build fast image classifiers. One advantage of this hierarchical 

method arises from the unique power of transfer learning to high accuracy, even when the 

underlying patterns prove difficult for humans to understand or classify. The dataset is available 

on Kaggle [10].  
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Figure 1. Nine attack types and one normal traffic dataset. We map the tabular features to grayscale 

thumbnails. 
 

2. METHODS 
 

 
 

Figure 2. Layout temp late for one hot encoded images. 
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The use of convolutional neural networks for network attack classification depends on first 
converting all tabular feature sets into thumbnail images. We, therefore, recast the UNSW-NB15 

tabular set of features as scaled image thumbnails [11] to solve for 9 attack types. This version of 

the dataset renders the corresponding UNSW attack set as 256-pixel grayscale images (16 x16). 

We employ one-hot-encoding [12] for the categorical inputs and rescale all numerical inputs as 
grayscale pixel values (0-255) between the training set’s minimum and maximum values. The 

baseline UNSW-NB15 dataset [1-4] yields 194 values and the images are right padded with all 

black (255) values for any unused pixels (62) identically for all attack labels. This padding assists 
deep learning approaches [13] which have a stride length in powers of 2.  The column labels are 

also included in the train and test sets as tabular formats (comma-separated value files) to 

compare image-based classification methods to more statistical approaches like decision trees, 
random forest, and support vector machines. The expectation is that all the legacy algorithms of 

both deep learning and statistical machine learning may assist in the new task after mapped to 

images of feature sets. This approach shares many characteristics with the traditional MNIST 

dataset [14-20] and thus can build quickly on those findings for algorithmic comparisons. Several 
image-based problems to solve include simply binary classifiers for attack vs. normal traffic. Like 

MNIST digits [14], there are 10 categories shown (0=normal; 1-9 various attacks). As shown in 

Figure 2, the original 42 network features expand to 194 when one-hot-encoded [12]. This 
process converts all categorical data (services, protocols, and states) into individual columns with 

their presence marked by 1 and absence by 0.  For instance, protocol_http becomes pixel value 

255 at the appropriate grayscale image location (row=3, column = 13) if the attack used hypertext 
transfer protocol. Conversely, the same pixel maps to 0 if the protocol was not used. Each row of 

the UNSW thus renders 256 features (of which 194 follow directly from the tabular set).  

 

 
 

Figure 3. Training and testing count per attack family count 
 

We leave unchanged the train/test split of the original UNSW-NB15 dataset at a 1:2 ratio [1-4]. 
The detailed counts for each class are shown in Figure 3. It is worth noting that the UNSW-NB15 

dataset updates and statistically rebalances some of the KDD99 counts based on their analysis of 

duplicates and potential data leakage between training and test sites. The ratio of 1:2 for training 
and test presents a challenging amount of previously unseen data when an algorithm gets scored 

or deployed. In total, we created almost a quarter-million images as 256-pixel thumbnails using 

ImageMagick [11].  The largest training class (normal traffic: 37,000) outnumbers the smallest 

attack class (worms: 44) by nearly 1000:1 as a ratio of cases. 
 

To explore whether transfer learning from a convolutional neural network can identify network 

attacks, we tested the small (2 Mb) MobileNetV2 model [13] as pre-trained, then introduced both 
the binary and multi-class problems. The binary classifier determines whether a given image 

pattern represents normal or attack traffic. The multi-class problem identifies one of the 10 
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possible families (9 attacks in Figure 3 vs. normal).  The multi-class example shares an analogous 
data setup to the traditional MNIST handwriting dataset [14] and thus may benefit from the 

various state-of-the-art approaches developed to handle those 10 classes. We solve both the 

binary and multi-class cases with a standard set of hyper-parameters (epochs:50, batch size:16, 

learning rate: 0.001). Slower learning rates disrupt the pre-trained layers of the neural network 
and preserve some of its beneficial weights for feature extraction in the images. We also explore 

the effects of smaller dataset size (<10,000 training examples vs. the full 250k) [22]. 

 
To explore the feature importance for detecting attacks, we applied a random forest algorithm 

(Figure 4) to the binary classifier [23]. The rank order for the top 14 contributors is shown using 

the Gini Index (or impurity) which effectively gauges the factors contributing to a decision split 
between normal and attack [23]. The highest contributors include 1) the Source to destination 

time to live value (sttl); 2) Number for each state (dependent protocol, e.g. ACC, CLO, CON) 

according to a specific range of values for source/destination time to live (ct_state_ttl); and 3) 

Number of connections of the same source and the destination address in 100 connections 
according to the last time (ct_dst_src_ltm).  Not shown in Figure 4 are the least important which 

somewhat surprisingly include most of the one-hot-encoded protocol features that are more 

exotic than ordinary TCP (e.g. zero, XTP, XMN.IDP, WSN, etc.). In addition to providing a 
future path to reduce the intrusion detector’s dimensionality, this feature importance rank defines 

what cannot be safely ignored in attack datasets like UNSW-NB15 [1-4].  

 

 
 

Figure 4. Feature information (GINI) Contribution to Attack Detection 

 

3. RESULTS 
 

As shown in Figures 4-6, the results for transfer learning with a deep convolutional neural 

network (MobileNetV2 [13]) demonstrate that the image-based binary classifier achieves greater 
than 97% accuracy in identifying whether an attack occurs (Figure 5).  

 

 
 

Figure 5. Binary classifier results 
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In Figure 6, the specific identification of an attack family averages 54% accuracy between the 10 
classes, with large deviations between the best (normal and generic traffic: 96+%) and the worst 

(worms and analysis <19%). Figure 6 shows the error matrix of which attack images confuse the 

neural network (worms misclassed as exploits).  It is worth noting that the majority class 

(normal) loses no performance as more attack classes get added from the binary to the multi-
classification example. 

 

 
 

Figure 6. Multi class results 

 
One contribution to this variance is the relative sparsity of UNSW-NB15 examples for the lower 

performing classes. To test this hypothesis, we performed the same experiment on asmaller 

subset (<4000) of images with a hold-out test and validation set that represents 20% of the 
training set (as opposed to 200% in the original UNSW-NB15 split). By better balancing, the 

dataset, undetectable worms, and other lesser represented classes could be detected in Figure 6 

(second column). Mapping attacks to images shows the dependence of accuracy on both class 

size and imbalance [23]. 
 

One interesting outcome of using these image-based detection maps is their portability to small 

hardware appliances. The small MobileNetV2 architecture [13] is tailored to run on edge devices 
[24], such as mobile phones. Simple network detectors thus render a complex matrix of packet 

features into a rapid classifier capable of running in near real-time imagery (e.g. 30 frames -or 

attacks- per second). The reduction of the model to use tflite (Tensorflow) as a set of stored 

weights represents a standard model [25] for deploying deep learning to edge devices. 
 

 
 

Figure 7. Confusion matrix by class 
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4. DISCUSSION AND CONCLUSIONS 
 
The results demonstrate a viable path of converting tabular feature data to image thumbnails, then 

applying convolutional neural networks to classify attack families. One potential shortcoming in 

our approach is any dependencies on the parametric ordering in the table format. For instance, 

CNNs tend to highlight close neighbors as being related in the image [26], yet there is no obvious 
relationship in the generated images between protocols, services, or states that justify making 

them into a particular attack fingerprint.  One could address this flaw quantitatively by shuffling 

the order and determining the change of accuracy (if any). Future work should compare 
alternative statistical methods borrowed from the extensive machine learning literature devoted to 

the MNIST (and its derivative [14-21]) dataset of handwriting recognition.  One can anticipate 

that like MNIST solutions, there exist high accuracy decision trees (like extreme gradient boosted 

trees – XGBoost [27]) that generate both accuracy and inference speeds comparable to the deep 
learning approach here. Further work could also use the image dataset [28] to design new attacks 

(and defenses) based on the techniques of generative adversarial networks (GANs [28]). The 

dataset is available on Kaggle [10]. 
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