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ABSTRACT 
 

Given the impact of Machine Learning (ML) on individuals and the society, understanding how 

harm might be occur throughout the ML life cycle becomes critical more than ever. By offering 
a framework to determine distinct potential sources of downstream harm in ML pipeline, the 

paper demonstrates the importance of choices throughout distinct phases of data collection, 

development, and deployment that extend far beyond just model training. Relevant mitigation 

techniques are also suggested for being used instead of merely relying on generic notions of 

what counts as fairness.  
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1. INTRODUCTION 
 

Algorithms do not “decide” or “guide” or “theorize”—the human-beings developing those 

algorithms do. Yet, developers and software engineers are often unable to anticipate the 

consequences that arise when their code and embedded assumptions interact with a complex (and 
unequal) world, and how that interaction will reinforce (or misguide) our interpretations of 

human behaviour. Algorithms, in other words, do not only help us parse data; they also generate 

data that will then be analysed as resulting from human behaviour.  
 

This paper provides a framework for understanding different sources of harm throughout the ML 

life cycle in order to offer techniques for mitigations based on an understanding of the data 

generation and development processes rather than relying on generic assumptions of what being 
fair means.  

 

2. EXISTING WORK 
 
An ML algorithm aims to find patterns in a (usually massive) dataset, and to apply that 

knowledge to make a prediction about new data points (e.g: photos, job applicant profiles, 

medical records etc.) (Cusumano et al., 2019; Parker, van Alstyne, & Choudary, 2016). As a 

result, problems can arise during the data collection, model development, and deployment 
processes that can lead to different harmful downstream consequences.  

 

This paper refers to the concept of “harm” or “negative consequences” caused by ML systems. 
ML (Machine Learning) can be defined as the overall process inferring in a statistical way from 

existing data in order to generalize to new, unseen data.  

 

http://airccse.org/cscp.html
http://airccse.org/csit/V11N19.html
https://doi.org/10.5121/csit.2021.111916
https://onlinelibrary.wiley.com/doi/10.1002/poi3.263#poi3263-bib-0020
https://onlinelibrary.wiley.com/doi/10.1002/poi3.263#poi3263-bib-0090


196       Computer Science & Information Technology (CS & IT) 

Deep reinforcement learning—where machines learn by testing the consequences of their 
actions—combines deep neural networks with reinforcement learning, which together can be 

trained to achieve goals over many steps. Most machine learning algorithms are good at 

perceptive tasks such as recognizing a voice or a face. Yet, deep reinforcement learning can learn 

tactical sequences of actions, things like winning a board game or delivering a package. In the 
real world, human-beings are able to very quickly parse complex scenes where simultaneously 

many aspects of common sense related to physics, psychology, language and more are at play.  

 
A high-level overview of a ML-based model might look as follows: 

 

Data Collection  
 

Before any analysis or learning happens, data must first be collected. Compiling a dataset 

involves identifying a target population (of people or things), as well as defining and measuring 

features and labels from it. Often, ML practitioners use existing datasets rather than going 
through the data collection process. 

 

Data Preparation  
 

Depending on the data modality and task, different types of preprocessing may be applied to the 

dataset before using it.  
 

As Figure 1 displays, the data generation process begins with data collection. This process 

involves defining a target population and sampling from it, as well as identifying and measuring 

features and labels. This dataset is split into training and test sets. Data is also collected (perhaps 
by a different process) into benchmark datasets.  

 

Model Development  
 

Models are then built using the training data (not including the held-out validation data).  

 

As seen in Figure 1, a model is defined, and optimized on the training data. Test and benchmark 
data is used to evaluate it, and the final model is then integrated into a real-world context. This 

process is naturally cyclic, and decisions influenced by models affect the state of the world that 

exists the next time data is collected or decisions are applied. The red color indicate where in this 
pipeline different sources of downstream harm might arise. 

 

  
 

https://bdtechtalks.com/2019/08/05/what-is-artificial-neural-network-ann/
https://bdtechtalks.com/2019/05/28/what-is-reinforcement-learning/
https://bdtechtalks.com/2017/08/28/artificial-intelligence-machine-learning-deep-learning/
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Fig. 1. Overview of ML data generation and model development 

 

When it comes to building models for images, a training dataset can be developed for a particular 

detection model by manually labelling images. In case of a low precision and recall, for example 
due to the variety of natural and artificial features, following methods can be utilized to improve 

performance:  

 

- The use of mix-up as a regularization method, where random training images are blended 
together by taking a weighted average. Though mix-up is originally proposed for image 

classification, it can be used for semantic segmentation. Regularization is important in 

general for segmentation task, as even with 100k training images, the training data might 
not capture the full variation of terrain, atmospheric and lighting conditions that the 

model is presented with at test time, and hence, there is a tendency to overfit.  

 

- Another method is the use of unsupervised self-training in which the output of the best 
detection model from the previous stage is used as a ‘teacher’ to then train a ‘student’ 

model that makes similar predictions from augmented images. In practice, this could 

reduce false positives and sharpen the detection output. In order to overcome the issue of 

“blobby” detections, one can use distance weighting to adapt the loss function for making 
correct predictions near boundaries. During training, distance weighting places greater 

emphasis at the edges by adding weight to the loss — particularly where there are 

instances that nearly touch.  
 

https://en.wikipedia.org/wiki/Precision_and_recall
https://arxiv.org/abs/1710.09412
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When visually inspecting the detections for low-scoring images, various causes can be noted such 
as problematic label errors. In order to shed light onto which methods contribute most to the final 

performance, mean average precision (mAP) can be measured. Distance weighting, mixup and 

the use of ImageNet pre-training are most common factors for the performance of the supervised 

learning baseline.  
 

Model Evaluation  

 
After the final model is chosen, the performance of the model on the test data is reported. The test 

data is not used before this step, to ensure that the model’s performance is a true representation of 

how it performs on unseen data. Aside from the test data, other available datasets — also called 
benchmark datasets — may be used to demonstrate model robustness or to enable comparison to 

other existing methods.  

 

Model Post-processing  
 

Once a model has been trained, there are various post-processing steps that may needed. For 

example, if the output of a model performing binary classification is a probability, but the desired 
output to display to users is a categorical answer, there remains a choice of what threshold(s) to 

use to round the probability to a hard classification. 

 
Model Deployment  

 

There are many steps that arise in deploying a model to a real-world setting. For example, the 

model may need to be changed based on requirements for explainability or apparent consistency 
of results, or there may need to be built-in mechanisms to integrate real-time feedback. 

Importantly, there is no guarantee that the population a model sees as input after it is deployed 

(here, we will refer to this as the use population) looks the same as the population in the 
development sample. 

 

The algorithms used to parse and analyze those data become commercial black boxes. Barocas et 

al. [4] provide a useful framework for thinking about how these consequences actually manifest, 
splitting them into allocative harms (when opportunities or resources are withheld from certain 

people or groups) and representational harms (when certain people or groups are stigmatized or 

stereotyped). For example, algorithms that determine whether someone is offered a loan or a job 
[12, 36] risk inflicting allocative harm. We, human-beings are fallible in making unbiased 

decisions ourselves and algorithms can actually help us detect human-generated (and socially 

reinforced) discrimination (Kleinberg et al., 2020; Mullainathan, 2019). 
 

There’s a large body of work on testing common sense and reasoning in AI systems. Many of 

them are focus on natural language understanding, including the famous Turing 

Test and Winograd schemas. In contrast, the AGENT project focuses on the kinds of reasoning 
capabilities humans learn before being able to speak. The idea behind the AGENT (Action, Goal, 

Efficiency, coNstraint, uTility) test by DeepMind Team is to assess how well AI systems can 

mimic this basic skill, what they can develop psychological reasoning capabilities, and how well 
the representations they learn generalize to novel situations.  

 

According to the DeepMind Team, the AGENT test takes place in two phases:  
 

- First, the AI is presented with one or two sequences that depict the agent’s behavior. 

These examples should familiarize the AI with the virtual agent’s preferences.  

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision
https://image-net.org/
https://onlinelibrary.wiley.com/doi/10.1002/poi3.263#poi3263-bib-0054
https://onlinelibrary.wiley.com/doi/10.1002/poi3.263#poi3263-bib-0075
https://en.wikipedia.org/wiki/Turing_test
https://en.wikipedia.org/wiki/Turing_test
https://en.wikipedia.org/wiki/Winograd_schema_challenge
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- After the familiarization phase, the AI is shown a test sequence and it must determine 

whether the agent is acting in an expected or surprising manner. 
 

The designers of the tests have included human inductive biases, which means the agents and 

environment are governed by rules that would be rational to humans (e.g., the cost of jumping or 

climbing an obstacle grows with its height). This decision helps make the challenges more 
realistic and easier to evaluate.  

 

The Deepmind researchers tested the AGENT challenge on two baseline AI models. The first 
one, Bayesian Inverse Planning and Core Knowledge (BIPaCK), is a generative model that 

integrates physics simulation and planning. 

 

 
 

Fig. 2. Overview of BIPaCK Model 

 

As seen Figure 2., the BIPaCK model uses planner and physics engines to predict the trajectory 

of the agent. The model uses the full ground-truth information provided by the dataset and feeds 

it into its physics and planning engine to predict the trajectory of the agent. However, in the real 
world, AI systems don’t have access to precisely annotated ground truth information and must 

perform the complicated task of detecting objects against different backgrounds and lighting 

conditions. 
 

https://i2.wp.com/bdtechtalks.com/wp-content/uploads/2021/07/BIPaCK-model.jpg?ssl=1
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Fig. 3. Overview of ToMnet-G model 

 

The ToMnet-G model uses graph neural networks and LSTMs to embed scene representations 
and predict agent behavior (Fig. 3). The contrast between the two models highlights the 

challenges of the simplest tasks that humans learn without any instructions. 

 

In order for an ML model to work well, the following simple steps can be implemented: 
 

1. Train a classifier on labeled data. 

2. The bigger classifier model then infers pseudo-labels on a much larger unlabeled 
dataset. 

3. Then, it trains a larger classifier on the combined labeled and pseudo-labeled 

data, while also adding noise. 

4. (Optional) Going back to step 2, the smaller model may be used a new classifier. 
 

One can view this as a form of self-training, because the model generates pseudo-labels with 

which it retrains itself to improve performance. One underpinning hypothesis is that the noise 
added during training not only helps with the learning, but also makes the model more robust. 

This approach is similar to knowledge distillation, which is a process of transferring knowledge 

from a large model to a smaller model. The goal of distillation is to improve speed in order to 
build a model that is fast to run in production without sacrificing much in quality compared to the 

bigger model.  

 
 

Fig. 4. Simple illustrations of the model and knowledge distillation. 

 

https://i0.wp.com/bdtechtalks.com/wp-content/uploads/2021/07/ToMnet-G.jpg?ssl=1
https://arxiv.org/abs/1503.02531
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Knowledge distillation does not add noise during training (e.g., data augmentation or model 
regularization) and typically involves a smaller inference model. In contrast, one can think of it as 

the process of “knowledge expansion”. One strategy for training production models is to apply 

training twice (Fig. 4):  

 
- first to get a larger inference model T’ and then  

- to derive a smaller model S.  

 
In some cases, the training may need data augmentation, yet, in certain applications, e.g., natural 

language processing, such types of input noise are not readily available. For those applications, 

the training model can be simplified to have no noise. In that case, the above two-stage process 
becomes a simpler method:  

 

- First, the bigger model infers pseudo-labels on the unlabeled dataset from which is a new 

model (T’) that is of equal-or-larger size than the original model being trained.  
- The self-training phase is then followed by knowledge distillation to produce a smaller 

model for production. 

 

3. SOURCES OF HARM IN ML 
 

This section explores each potential source of harm in-depth. Each subsection will detail where 

and how in the ML pipeline problems might arise, as well as a characteristic example. These 

categories are not mutually exclusive; however, identifying and characterizing each one as 
distinct makes them less confusing and easier to tackle.  

 

3.1. Historical Bias  
 

Historical bias arises even if data is perfectly measured and sampled, if the world as it is or was 

leads to a model that produces harmful outcomes. Such a system, even if it reflects the world 
accurately, can still inflict harm on a population. Considerations of historical bias often involve 

evaluating the representational harm (such as reinforcing a stereotype) to a particular group. 

 

3.2. Representation Bias  

 
Representation bias occurs when the development sample under-represents some part of the 

population, and subsequently fails to generalize well for a subset of the use population. 

Representation bias can arise in several ways:  
 

(1) When defining the target population, if it does not reflect the use population. Data that is 

representative of Boston, for example, may not be representative if used to analyze the 

population of Indianapolis.  
(2) When defining the target population, if contains under-represented groups. Say the target 

population for a particular medical dataset is defined to be adults aged 18-40. There are 

minority groups within this population: for example, people who are pregnant may make 
up only 5% of the target population.  

(3) When sampling from the target population, if the sampling method is limited or uneven. 

For example, the target population for modeling an infectious disease might be all adults, 

but medical data may be available only for the sample of people who were considered 
serious enough to bring in for further screening. As a result, the development sample will 

represent a skewed subset of the target population. In statistics, this is typically referred 

to as sampling bias. 
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3.3. Measurement Bias  

 
Measurement bias occurs when choosing, collecting, or computing features and labels to use in a 
prediction problem. For example, “creditworthiness” is an abstract construct that is often 

operationalized with a measureable proxy like a credit score. Proxies become problematic when 

they are poor reflections or the target construct and/or are generated differently across groups, 

which can happen when:  
 

(1) The proxy is an oversimplification of a more complex construct. Consider the prediction 

problem of deciding whether a student will be successful (e.g., in a college admissions 
context). Algorithm designers may resort to a single available label such as “GPA” [28], 

which ignores different indicators of success present in different parts of the population.  

(2) The method of measurement varies across groups. For example, consider factory workers 
at several different locations who are monitored to count the number of errors that occur 

(i.e., observed number of errors is being used as a proxy for work quality). This can also 

lead to a feedback loop wherein the group is subject to further monitoring because of the 

apparent higher rate of mistakes [5, 17].  
(3) The accuracy of measurement varies across groups. For example, in medical 

applications, “diagnosed with condition X” is often used as a proxy for “has condition 

X.” However, structural discrimination can lead to systematically higher rates of 
misdiagnosis or underdiagnosis in certain groups [23, 32, 35]. 

 

3.4. Aggregation Bias  
 

A particular dataset might represent people or groups with different backgrounds, cultures or 

norms, and a given variable can mean something quite different across them. Aggregation bias 
can lead to a model that is not optimal for any group, or a model that is fit to the dominant 

population (e.g., if there is also representation bias). 

 

3.5. Learning Bias  
 

Learning bias arises when modeling choices amplify performance disparities across different 
examples in the data [24]. For example, an important modeling choice is the objective function 

that an ML algorithm learns to optimize during training. Typically, these functions encode some 

measure of accuracy on the task (e.g., cross-entropy loss for classification problems or mean 

squared error for regression problems).  
 

3.6. Evaluation Bias  
 

Evaluation bias occurs when the benchmark data used for a particular task does not represent the 

use population. Evaluation bias ultimately arises because of a desire to quantitatively compare 

models against each other. Such generalizations are often not statistically valid [38], and can lead 
to overfitting to a particular benchmark.  

 

3.7. Deployment Bias  
 

Deployment bias arises when there is a mismatch between the problem a model is intended to 

solve and the way in which it is actually used. This often occurs when a system is built and 
evaluated as if it were fully autonomous, while in reality, it operates in a complicated socio-

technical system moderated by institutional structures and human decision-makers (Selbst et al. 

[39] refers to this as the “framing trap”).  
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4. A FRAMEWORK FOR DATA GENERATION AND ML PIPELINE 
 

 
 

Fig. 5. A data generation and ML pipeline viewed as a series of mapping functions. 

 
There is a growing body of work on “fairness-aware algorithms” that modify some part of the 

modelling pipeline to satisfy particular notions of “fairness.” Consider the data transformations 

for a dataset as depicted in Figure 5. The upper part of the diagram of Figure 2 deals with data 
collection and model building, while the bottom half describes the evaluation and deployment 

process.  

 

The data transformation sequence can be abstracted into a general process 𝐴. Let 𝑋 and 𝑌 be the 

underlying feature and label constructs we wish to capture where 𝑠 : 𝑋𝑁 → 𝑋𝑛 is the sampling 

function. 𝑋 ′ and 𝑌 ′ are the measured feature and label proxies that are chosen to build a model, 

where 𝑟 and 𝑡 are the projections from constructs to proxies, i.e., 𝑋 → 𝑋 ′ and 𝑌 → 𝑌 ′.  

 

The function 𝑓ideal : 𝑋 → 𝑌 is the target function—learned using the ideal constructs from the 

target population—but 𝑓actual : 𝑋 ′ → 𝑌 ′ is the actual function that is learned using proxies 

measured from the development sample. Then, the function 𝑘 computes some evaluation 

metric(s) 𝐸 for 𝑓actual on data 𝑋 ′𝑚, 𝑌 ′𝑚 (possibly generated by a different process, e.g., 𝐴eval in 

Figure 2).  

 

Finally, given the learned function 𝑓actual, a new input example 𝑥, and any external, 

environmental information 𝑧, a function ℎ governs the real-world decision 𝑑 that will be made 

(e.g., a human decision-maker taking a model’s prediction and making a final decision). 
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5. MITIGATION TECHNIQUES 
 
The aim of this section is to understand and motivate mitigation techniques in terms of their 

ability to target different sources of harm to get a better understanding when and why different 

approaches might help, and what hidden assumptions they make.  

 

As an example, measurement bias is related to how features and labels are generated (i.e., how 𝑟 

and 𝑡 are instantiated). Historical bias is defined by inherent problems with the distribution of 𝑋 

and/or 𝑌 across the entire population. Therefore, solutions that try to adjust 𝑠 by collecting more 

data (that then undergoes the same transformation to 𝑋 ′ ) will likely be ineffective for either of 

these issues. However, it may be possible to combat historical bias by designing 𝑠 to 

systematically over- or under-sample 𝑋 and 𝑌, leading to a development sample with a different 

distribution that does not reflect the same undesirable historical biases. In the case of 

measurement bias, changing 𝑟 and 𝑡 through more thoughtful, context-aware measurement or 

annotation processes (e.g., as in Patton et al. [34]) may work.  

 

In contrast, representation bias stems either from the target population definition (𝑋𝑁 , 𝑌𝑁 ) or the 

sampling function (𝑠). In this case, methods that adjust 𝑟 or 𝑡 (e.g., choosing different features or 

labels) or 𝑔 (e.g., changing the objective function) may be misguided. Importantly, solutions that 

do address representation bias by adjusting 𝑠 implicitly assume that 𝑟 and 𝑡 are acceptable and 

that therefore, improving 𝑠 will mitigate the harm.  
 

Learning bias is an issue with the way 𝑓 is optimized, and mitigations should target the defined 

objective(s) and learning process [24]. In addition, some sources of harm are connected: e.g., 

learning bias can exacerbate performance disparities on under-represented groups, so changing 𝑠 

to more equally represent different groups/examples could also help prevent it.  

 

Deployment bias arises when ℎ introduces unexpected behaviour affecting the final decision 𝑑. 
Dealing with deployment bias is challenging since the function ℎ is usually determined by 

complex real-world institutions or human decision-makers. Mitigating deployment bias might 

involve instituting a system of checks and balances in which users balance their faith in model 
predictions with other information and judgements [26]. This might be facilitated by choosing an 

𝑓 that is human-interpretable, or by developing interfaces that help users understand model 

uncertainty and how predictions should be used. Evaluation and aggregation bias are discussed in 
more detail below. 

 

To supplement user reporting, platforms have algorithms that flag content for human review. 

Several platforms currently use image recognition tools and natural language processing 
classifiers to help moderators filter and prioritize possible objectionable content for evaluation.  

 

Such prompts have at least three virtues. First, they may help users pause and engage in what 
Daniel Kahneman calls “system 2” thinking—higher-level cognitive reflection. In fact, research 

has shown that pop-up warnings requiring user interaction to dismiss them can positively change 

user behavior. Second, if such self-moderation occurs, it would be in advance of posting, before 

potentially harmful material can spread. Finally, these prompts preserve users’ freedom of 
expression, as they allow users to ignore the warnings and post the questionable material anyway. 

 

Finally, there is a risk of exploitation by bad actors. Those who intentionally and willfully post 
misleading or dangerous material will not be deterred by an algorithmic warning. Instead, they 

could use the warnings to help them craft harmful posts that fall just below the threshold of 

algorithmic detection.  
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User prompts are designed to reduce the spread of harmful content while respecting freedom of 
expression and are immediate and reasonably effective. The precedent for user prompts already 

exists, and the technology needed to expand them into new contexts is available. All that remains 

is for platforms to take action. 

 

6. RECOMMENDATIONS 
 

Bringing convolutional neural networks (CNNs) to any industry through means of AI 

algorithms—whether it be medical imaging, robotics, or some other application entirely—has the 
potential to enable new functionalities and reduce the compute requirements for existing 

processes as a single CNN can replace more computationally expensive image processing, 

denoising, and object detection algorithms. However, there might be some challenges and 

difficulties while moving an idea from conception to productization. Here is an overview of some 
challenges and potential solutions regarding the development and deployment of AI model. 

 

Leverage existing models 
 

As existing models already exist for almost every application, rather than reinventing the wheel, 

it’s often much easier to start with a network based on one of these architectures. Moreover, 
starting with a known model will reduce the amount of time, data, and effort to train a model, 

since it’s possible to retrain existing models in a process called ‘transfer learning.’   

 

Simple models are effective 
 

For most applications, there is no need for a latest and greatest in CNN architectures. For 

example, if an application only requires detecting the difference between a few different objects 
with high certainty, even simple detectors can do the task. Users can benefit greatly once they 

realize that their applications can be solved for a fraction of the computational complexity with 

much simpler models than what’s on the forefront of research. The goal is to not make the 
migration to CNNs any harder than it has to be. 

 

Integrate quantization early 

 
Quantizing a model down from multi-byte precisions to a single-byte can multiply inference 

speed with little to no degradation in accuracy. For example, frameworks such as PyTorch expose 

their own methods for quantizing models, but they’re not always compatible with each other. 
Regardless of the approach taken, the aim should be to quantize from the outset of developing the 

model in a consistent way. 

 

7. CONCLUSION 
 
This paper provides a framework for understanding the sources of downstream harm caused by 

ML systems to facilitate productive communication around potential issues. By framing sources 

of downstream harm through the data generation, model building, evaluation, and deployment 
processes, we encourage application-appropriate solutions rather than relying on broad notions of 

what is fair. Fairness is not one-size-fits-all; knowledge of an application and engagement with its 

stakeholders should inform the identification of these sources.  

 
Finally, the paper illustrates that there are important choices being made throughout the broader 

data generation and ML pipeline that extend far beyond just model training. In practice, ML is an 

iterative process with a long and complicated feedback loop. This paper highlighted problems 
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that manifest through this loop, from historical context to the process of benchmarking models to 
their final integration into real-world processes. 
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