
Automated Testing of Data Survivability and

Restorability

Sylvain Muller and Ciarán Bryce

University of Applied Sciences (HES-SO),
Geneva, Switzerland

Abstract. Regular data backups are fundamental for protection against cyber-attacks and dam-
age to infrastructure. To ensure a successful restoration, backed up data must be tested regularly
for restorability to the company’s current environment. Cloud providers generally test their backed-
up data, but a testing framework is also required for locally stored files and databases. The paper
proposes an automated test framework that validates the continued usability of backed up data for
target restoration environments. The framework tests backups of Excel files, MySQL and Postgres
databases, PDF documents and flat files.

Keywords Security, backup, automation, testing, infrastructure-as-code.

1 Introduction

Data is a company’s most valuable asset. However, cyber-security attacks like ran-
somware or physical events like damage, loss or theft are serious threats to data in
all companies. Effecting data backups is fundamental to companies’ security and
survivability since this is the only way company data can survive a physical or
cyber-emergency [4].

Many companies have a regrettable tendency to forget that backup is only half
of the matter. Restoration must be an efficient and well practiced process since,
contrary to backups, restorations are initiated in emergency conditions and failure
to restore correctly undoes the benefit of doing the backup in the first place.

Two conditions must be met for a data restoration to succeed. First, the backed
up data, or snapshot , must survive until the restoration, and be readable during
the operation. Second, the environment in which the snapshot is restored must be
able to accommodate the restored data. The data may be unreadable in a different
environment to the one in which the snapshot is made due to incorrect software
versions. This can happen if a company moves location after an emergency or if
there is a significant change in the environment between backup and restoration.

Companies have been moving to the cloud over the past decade, partly to dele-
gate data backup and restoration issues. However, not all SMEs trust or are ready
to move to the cloud. They prefer to manage data locally, and consequently, require
a means to ensure backup and restoration for their files and databases.

David C. Wyld et al. (Eds): MLDS, NECO, SEMIT, IBCOM, SPPR, SCAI, CSIA, ICCSEA - 2021
pp. 111-126, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.111810

http://airccse.org/cscp.html
http://airccse.org/csit/V11N18.html
https://doi.org/10.5121/csit.2021.111810

Fig. 1. Overview of Approach.

This paper proposes a framework where snapshots can be automatically tested
for their usability, and for restorability with respect to target environments. The
framework currently works on snapshots of Excel documents, Postgres and MySQL
databases and flat files (standard directories). An overview of our approach is shown
in Figure 1. The key features are the following:

– The business defines the crucial data files and databases that must survive.

– When a snapshot is created, a test scenario is generated for the backup data. An
example test for an Excel file could verify the number of sheets in the document
or the values of specific cells. The test for a database can verify the number of
tables, column names and the values of certain database entries.

– A snapshot’s usability is verified by loading the snapshot into a folder and
running the tests. In the case of MySQL and Postgres, where the snapshot
must be processed before running the tests, the snapshot is loaded into a Docker
environment. The environment can be thrown away after running the test suite.
The snapshot is considered usable only if all tests pass.

– We test the restorability of the snapshot by tweaking different properties of
the Docker environment, e.g., by replacing Ubuntu 18 by Ubuntu 20 to test for
restorability to a more recent Ubuntu environment.

Our aim is a simple automated framework that can be used as easily as possible.
This means minimal competence to use the tool. For instance, the tests generated
can mostly be generated automatically, even though the data manager can extend
the suite with further tests. The approach is inspired by automated testing frame-
works used in software development environments, e.g., [5, 8].

The remainder of this paper is organized as follows. We delve more deeply into
the backup challenge in Section 2. We present the data testing model in Section 3
and its implementation in Section 4. Related work is described in Section 5. Con-
clusions and future work are presented in Section 6.

Computer Science & Information Technology (CS & IT)112

2 Backup and Restoration Challenges

We begin by clarifying the terminology used in the remainder of this paper:

– Business data refers to company data under normal operation. This data must
survive a physical or cyber-emergency, so needs to get backed up and safely
restored. Business data is only and precisely that data of value to a company
in files and databases, so generally is a subset of the all data owned.

– A snapshot is a copy of business data for restoration. A restoration is made
from a snapshot, so the snapshot must be stored separately from business data.
In this way, damage to business data in an emergency does not impact snapshots.
For instance, a ransomware that infects business data must not infect snapshots.

– A backup is a verb capturing the act of creating a snapshot from business data.

– A restoration is the act of replacing business data with a snapshot.

– An archive designates historical or non-current data. We do not consider
archives here. Archives are generally read-only, stored on different media types
and perhaps in different formats. The role of an archive is to index some his-
torical event in the company’s history, such as an old tax declaration, and not
to provide data for use in a restoration following an incident.

Backup operations are universally considered essential to operational security in
every company [13]. However, backups are only part of the story. The real challenge
is to execute a successful restoration. Notably, backups are done under normal
company operation. If a backup fails, it can simply be restarted. In contrast, a
restoration is done in an emergency, and if it fails, the backup operation was all for
nothing [17]. Companies therefore require simple frameworks to support restoration.

When a company manages its backups, restorations might fail for three reasons.

R1 The backup operation fails, so there is no usable data to restore.

R2 The snapshot becomes unusable.

R3 The environment in which the restoration is made cannot accommodate the
snapshot.

Reason R1 is the failure of the backup operation. This can be due to a config-
uration error (related to permissions or access paths), a storage or network error,
write during copy, etc [1]. Another common reason for backup failure is human
error, or where a company forgets or postpones the backup [20].

Concerning Reason R2, a snapshot is unusable if it cannot be read during a
restoration. This happens if the snapshot data gets infected by a cyber-attack, if

Computer Science & Information Technology (CS & IT) 113

the storage media gets lost or damaged, or if the credentials to access a backup
service where the snapshot is stored get lost or expire.

Definition Snapshot survivability is the property that the snapshot is usable for a
subsequent restoration operation.

Some infrastructures test survivability by simply creating a message digest of
a newly created snapshot; verifying that the snapshot digest remains unchanged
is considered sufficient for survivability. However, this approach does not catch all
errors. For instance, the message digest is not available on a cloud service that
stores the backups. Also, the initial snapshot might be erroneous so the message
digest is in fact a digest of invalid data. Finally, the approach requires us to be able
to securely store the message digest.

Reason R3 for restoration failure is that the environment in which the restora-
tion is made cannot accommodate the backup. An extreme example of this is a
restoration to a different environment to the one in which the backup was created,
e.g., a company forced to move after an incident at its main office, and where the
backup office has a different network or software infrastructure. Automating tests
in these scenarios is hard. Nonetheless, we can test for restoration environments
where software versions have changed since the backup environment.

Definition Snapshot restorability with respect to an environment E is the property
that the snapshot can be restored within E.

A backup and restoration model for SMEs must be applicable to a variety
of small company environments. Their infrastructures can be basic but diverse.
The storage devices used include cloud boxes, hard disks, USB keys and external
drives, as well as Cloud services (e.g., Dropbox, GoogleDrive, etc.). The applications
that generate the data to be backed up include classical office applications (e.g.,
MS Excel and Word), databases (e.g., MySQL and MongoDB in cases where the
database is part of a full-stack solution), flat files and folders, as well as custom
business applications such as a payroll application or applications linked to company
equipment (e.g., a dentist’s radiography machine’s application). The implication
of this is that snapshots should be file based (rather than server images), that
space considerations are important, and that snapshot testing must be neutral
with respect to the storage media chosen for snapshots.

There are also emerging financial motivations for companies to achieve surviv-
ability and restorability. The first is the EU General Data Protection Regulation,
which requires companies holding personal data belonging to EU citizens to imple-
ment secure backups. A second motivation is cyber-insurance. Following a cyber

Computer Science & Information Technology (CS & IT)114

or physical incident, cyber-protection insurance contracts can pay for restorations.
Therefore, it is important to make the restoration as reliable as possible to reduce
costs for insurers and reduce insurance premiums for companies.

3 Model

Our goal is to automate the testing of business data. Implicit in this approach is the
idea that the data manager – the person in the company responsible for the data
– first identifies that data of high value to the company, and whose survival needs
to be assured, c.f., Figure 1. After snapshot creation, a test scenario is generated
by the data manager.

Fig. 2. Overview of Approach.

The snapshot can be tested for survivability just after it is created, to ensure
that the backup operation was successful, and at regular intervals to ensure that
the snapshot is still accessible from its repository. Restoration tests, where we test
that data is usable in changed environments, can be done at regular intervals.

3.1 Survivability Testing

The natural way to test snapshot survivability is simply to restore the snapshot to
a temporary environment and to examine the restored contents. This approach is
taken here, where automated tests check the contents of restored data, c.f., Figure 2.

A shared folder is created in which the snapshot is copied and the tests are run.
For MySQL and Postgres databases, an initialization phase transforms the snapshot
into a queryable data structure. For this reason, the tests are run in a Docker-based
virtual environment with the snapshot folder being shared with Docker.

Computer Science & Information Technology (CS & IT) 115

The environment created for the survivability test is defined in a Hashicorp Lan-
guage based scenario file, and an example is given in Figure 3. The locally data dir
element defines where the snapshot being tested is stored.

1 module = "world"

2

3 version = "0.1.0"

4

5 local_data_dir = "backup"

6

7 environment database {

8 resource mysql {

9 image = "mysql :5.7.33"

10 envs = {

11 MYSQL_ROOT_PASSWORD = "root"

12 MYSQL_DATABASE = "world"

13 }

14 ports = {

15 mysql = 3306

16 }

17 }

18 }

19

Fig. 3. Test Scenario Description in HCL.

The image clause specifies the application image loaded into the Docker envi-
ronment, which is a MySQL database in this example. The default Docker image
for MySQL uses Debian Buster-Slim and PostgreSQL uses either Alpine Linux or
Debian. Our default Docker container runs an Alpine Linux operating system.

The test framework is inspired by automated test frameworks used in mod-
ern software development environments like Java and Ruby/Rails, e.g., JUnit [2],
RSpec [8], etc. The framework currently permits tests to be written that verify
the contents of MS Excel and its OpenOffice cousin, as well as PDF documents,
MySQL and Postgres dumps, as well as flat files.

The basic test operators of our framework are given in the Tables 1, 2, 3 and 4.
A test scenario is written using these operators – and the expected contents of the
snapshot. An example of tests written for an SQL snapshot is shown in Figure 4; a
PDF file test is in Figure 5. These simply examine contents of the file (e.g., database
entries) or examine structure (e.g., author names, names of columns or tables, etc.).

3.2 Restoration Testing

The survivability tests for databases restore data to a minimal environment, created
within a Docker virtual container running with an Alpine or Buster Debian Linux.
As we reject newly created snapshots that do not pass survivability tests, we know

Computer Science & Information Technology (CS & IT)116

Table 1. Operation list for MySQL

Test Description

AssertColumnsExist(table, column names) Verify columns in table
AssertColumnMatch(table, column name, regex) Verify column values match regex

AssertRowCount(table, min, max) Verify row count in range
Query(query, return values) Query table for specified values

Table 2. Operation list for Excel

Test Description

AssertSheetsExist(sheet names) Check for sheet names
AssertCellsMatch(sheet, range, expr, type) range can be A1;B5,

type can be value, formula or link
AssertRowCount(sheet, min, max) Verify that row count is in range

AssertColumnCount(sheet, min, max) Verify that column count is in range

Table 3. Operation list for PDF files

Test Description

AssertPageCount(min, max) Number of document pages
AssertImagePageCount(page, min, max) Number of images on page

AssertHasWatermark() Document watermark
AssertTitleMatch(regex) Document title
AssertAuthorMatch(regex) Document author

AssertContentMatch(page, regex) Content match to regex on page

Table 4. Operation list for folders

Test Description

AssertFileCount(min, max) Count the number of pages in the document
AssertFileNameMatch(regex) Match file names to regex expressions

AssertFileExists(name) File exists?
AssertFileSize(name, min, max) File size

AssertDirExists(name) Directory exists?

Computer Science & Information Technology (CS & IT) 117

1 // Valid the structure and consistency of city table.

2 export function testCityTable () {

3 mysql.assertColumnsExist(this , ’city’, [’ID’, ’Name’, ’CountryCode ’, ’

District ’, ’Population ’])

4 mysql.assertRowsCount(this , ’city’, 4000, 4500)

5 mysql.assertColumnMatch(this , ’city’, ’Population ’, ’[0-9]+’)

6 }

7

8 // Valid the structure and consistency of country table.

9 export function testCountryTable () {

10 const columns = [

11 ’Code’, ’Name’, ’Continent ’, ’Region ’,

12 ’SurfaceArea ’, ’IndepYear ’, ’Population ’, ’LifeExpectancy ’,

13 ’GNP’, ’GNPOld ’, ’LocalName ’, ’GovernmentForm ’,

14 ’HeadOfState ’, ’Capital ’, ’Code2’

15]

16 mysql.assertColumnsExist(this , ’country ’, columns)

17 mysql.assertRowsCount(this , ’country ’, 239, 239)

18 mysql.assertColumnMatch(this , ’country ’, ’Code’, ’^[A-Z]{3}$’)

19 }

20

21 // Valid the structure and consistency of language table.

22 export function testLanguageTable () {

23 mysql.assertColumnsExist(this , ’countrylanguage ’, [’CountryCode ’, ’Language

’, ’IsOfficial ’, ’Percentage ’])

24 mysql.assertRowsCount(this , ’countrylanguage ’, 980, 1000)

25 mysql.assertColumnMatch(this , ’countrylanguage ’, ’IsOfficial ’, ’^[^TF]*(T|F

){1}[^TF]*$’)

26 }

Fig. 4. Example Tests for a MySQL database.

Computer Science & Information Technology (CS & IT)118

1 export function setup () {

2 document = new pdf.Open(’paper.pdf’)

3 }

4

5 export function testPageCount () {

6 document.assertPagesCount(this , 10, 15)

7 }

8

9 export function testWatermark () {

10 document.assertHasWatermarks(this)

11 }

12

13 export function testAuthorMatch () {

14 document.assertAuthorMatch(this , ’Sylvain Muller and Ciaran Bryce ’)

15 }

16

17 export function testTitleMatch () {

18 document.assertTitleMatch(this , ’Automated Testing of Data Survivability

and Restorability ’)

19 }

20

21 export function testImageCount () {

22 document.assertImagesCount(this , 2, 1, 1)

23 }

Fig. 5. Example Tests for a PDF file

that there does exist a minimum, Environment Zero, in which data can be restored.
Further, this environment is reproducible over time since it is created from the same
set of configuration parameters.

Restoration testing is really just a special case of survivability testing. The key
feature with restoration testing is to test with different software environments and
versions, e.g., testing restoration to an older or future version of the database, or
to a different operating system. This is done by defining a different HCL scenario
file with a different Docker image.

Concretely, a Docker image file is downloaded from hub.docker.com using the
Dockerfile that specifies the environment. For instance, the Dockerfile could specify
“FROM mysql:8.0.18”, as in the Dockerfile of Figure 6, meaning that the restoration
test is made with version 8.0.18 of MySQL. The test can be replicated with different
scenarios for different software environments. For instance, if MySQL 10.0 is made
available, a new agent can be created with a Dockerfile with “FROM mysql:10.0”.

The Docker framework can test restoration with different environmental set-
tings. This is done by creating a shared folder between the calling environment and
Docker in which system files can be transferred. This allows us to test the restora-
tion against these new system files. For instance, consider the command: docker run
–name=psql -U softpeel -d -v /pgdata:/var/lib/pgsql/data -p 5000:3306 psql. This
runs the Postgres server in a Docker environment with the particularity that the

Computer Science & Information Technology (CS & IT) 119

1 FROM golang:alpine as builder

2

3 WORKDIR /app

4

5 RUN mkdir -p /data

6 RUN CGO_ENABLED =0 GOOS=linux GOARCH=amd64 go build github.com/tigerwill90/

replicas/cmd/mysql

7

8 FROM mysql :8.0.18

9

10 ENTRYPOINT ["/mysql"]

11 EXPOSE 5000

Fig. 6. An edited Dockerfile importing an Ubuntu OS image.

configuration folder in the Docker environment is replaced by the psgdata folder in
the host environment.

3.3 Discussion

We believe that the framework presented here is quite flexible with respect to how
it integrates into a company’s data backup process.

When should snapshots be made? We do not specifically address this question in our
framework. Our aim is simply to make it possible to test the snapshots. Issues such
as the frequency of snapshot creation, conservation duration, number of snapshots,
etc., is a business decision that company owners must make for themselves based
on the value of their data and calculated risks to data. On the other hand, the
framework does not impose any particular rhythm on the backup operations.

Who writes tests, and when? A test suite for a snapshot should be generated any
time after the snapshot is created. A good rule of thumb is to write and run the
test suite just after snapshot creation since this permits detection of snapshots
corrupted during creation.

As suggested in the examples in Figures 4 and 5, our aim is to support the
automatic generation of tests from business data. This is because most tests simply
examine random content from the business data, or verify structure like the number
of sheets in an Excel file, the names of tables and columns in a Postgres database,
etc. On the other hand, a data manager is able to extend the test suite with his own
tests. This approach is now common practice in automated software testing [8].

What should be done when a test suite fails? A test suite failure means that the
snapshot cannot be restored in the environment described in the Docker-based
environment. If this is the current working environment of the organization, then

Computer Science & Information Technology (CS & IT)120

this means that the snapshot is no longer usable – unless some environment can be
found and tested that permits restoration.

In reality, a test failure underlies the advantage of our model, since it pinpoints
snapshots that cannot be restored before an emergency where a real restoration
from the snapshot is needed.

How does the testing framework integrate in the backup process? Snapshot test-
ing is an independent brick in the process of saving and restoring business data.
Tests can be launched manually or automatically via a cron job. Tests can also be
triggered via REST calls to our test motor’s HTTP server. The latter allows us
to integrate testing into an automated backup process based on the open-source
Restic framework (see Restic.net). Restic automates the copy of file repositories
that include both local folders as well as Cloud providers (e.g., Amazon, Google
Cloud, MicroSoft Azure), FTP servers and REST-enabled Web servers.

What is particular about restoration tests? Fundamentally, there is no real differ-
ence between a survivability and restoration test from the perspective of using the
framework. Only the restoration environment described in the scenario file changes.

An ideal situation is where we can test that snapshots can be restored in a wholly
different environment, as can happen when a company foresees the need to change
location after a major incident or when a software migration is being prepared for
at the local site. Testing for major environmental changes is a challenge, since there
are so many parameters to consider: machine hardware and network configurations,
software licenses, user permissions, etc. This is beyond the scope of our current
framework, but does merit further research.

4 Implementation

The framework is a motor written in Golang that runs on Linux, Mac OS X and
Windows. The motor is accessed via a REST API that also includes encapsulates a
command line interface. The only external dependency of the tool is with Docker1

which provides the virtual containers in which survivability and restorability tests
are run on database snapshots. This has the advantage that the tests do not have
a side effect on the rest of the system. Further, the snapshot itself does not get
modified in the real environment; only in the virtual environment. In this way, the
snapshot is immutable for its whole lifetime.

The tests are written in JavaScript; the template is shown in Figure 7. Test
programmers simply add the tests they require to the test scenario. Added test
functions simply need to begin with “test” and respect Camel casing.

A test can be run from the command line and specific tests can also be executed:

1 www.docker.com

Computer Science & Information Technology (CS & IT) 121

1 import { sleep } from "scenario";

2

3 // Setup allow to do extra setup before testing like recover a database

4 export function setup() {

5 console.log(’recovering date’)

6 sleep (30)

7 }

8

9 // Each test name must begin by the suffix ’test ’.

10 export function testShouldFail () {

11 this.fail(’failed ’)

12 }

13

14 // Teardown allow you to perform clean up operation

15 export function teardown () {

16 // some clean up

17 }

Fig. 7. JavaScript test template.

– scenario run – run all test methods in the suite
– scenario testShould[A-z]+$ – run all test methods that match the argument.

The setup method reads the data from the folder where the snapshot is stored.
The example of Figure 8 comes from the test of a MySQL database.

The framework is written in just over 10 thousand lines of Golang code. The
kernel of the framework implements assertions for database and other content types,
as well as the link to Docker for starting the test environment.

From a performance perspective, the majority of the execution time is on loading
the data into the Docker environment. For instance, the MySQL example of Figure 4
takes 30 seconds on a 400 kB database. This includes the time to create the Docker
container with the required image, unzip the database, load it into the container
and then run the tests. The time is comparable to that needed to start a database
server in a production environment.

5 Related Work

All standard operating systems come with tools for backup and restoration [14].
Windows for instance allows for incremental and differential backups of the file
system. Files and folders possess an archive flag that is set whenever the file is
modified, and in need of backup. This bit is reset when an incremental or full backup
is made. The idea behind this approach is to facilitate a full system restoration. In
contrast, the goal of our approach is to permit an SME to identify a critical set
of business data that needs to be restorable, and then to handle the backup and
restoration of just that data. This allows the SME to optimize backup storage and
to focus on the company-critical data. Further, our method supports restoration in
environments different to those in which backups are done.

Computer Science & Information Technology (CS & IT)122

1 import { sleep , retry } from "scenario"

2 import archive from "scenario/archive"

3 // import { unzip } from "scenario/archive"

4 import docker from "scenario/docker"

5 import sql from "scenario/assert/sql"

6

7 const config = {

8 user: ’softpeel ’,

9 password: db.postgres.envs.POSTGRES_PASSWORD ,

10 db_name: db.postgres.envs.POSTGRES_DB ,

11 port: db.postgres.getPort(’postgres ’),

12 ip: db.postgres.getIp ()

13 }

14

15 const postgres = new sql.Client(’postgres ’, config)

16

17 export function setup () {

18 // Exponential backoff retry that ping world database it is ready

19 retry(function () {

20 return postgres.ping()

21 }, 30)

22

23 const zip = archive.Zip(’softpeel.sql.zip’, {overwrite: true})

24 zip.extract ()

25 const f = open(’softpeel.sql’)

26

27 // MySQL cli config to recover sql dump.

28 const config = {

29 cmd: [’psql’, ’-U’, ’softpeel ’, ’-d’, db.postgres.envs.POSTGRES_DB],

30 envs: [‘POSTGRES_PASSWORD=${db.postgres.envs.POSTGRES_PASSWORD }‘],

31 stdin: f,

32 }

33

34 // Execute command on mysql resource

35 const code = docker.exec(db.postgres , config)

36 if (code != 0) {

37 throw (’recovery fail’)

38 }

39 }

Fig. 8. The setup method creates reads the data for the enclosing Docker environment

Computer Science & Information Technology (CS & IT) 123

With the advent of the cloud, an emerging approach to handle backups is to
save a snapshot of each virtual machine’s current image, e.g., [19]. This contrasts
with the file-based backup because all application code and data is backed up. Most
cloud providers implement this technique. There are several challenges nonetheless.
First, the image is not certain to have been taken at a moment when the data
is consistent; for instance, a transaction may have been running on the database.
Second, the solution requires a lot of storage space, which makes indexing and
deduplication harder, e.g., [7]. In contrast, the file-based approach such as the one
taken in this paper encourages users to identify business critical data, is more
economical in storage space, and snapshots can be restored to a wider range of
environments.

Recent research in data storage generally looks at issues like storage area net-
works design, performance and security, e.g., [6, 1], backup techniques, e.g., [9], or
specific angles of backups like minimizing service outage during backups [18, 11] or
deduplication [12]. However, the issues of survivability and restorability are less fre-
quently treated. This needs to change as regulations increasingly require companies
to conserve data and comply to external requests for data conservation.

Frameworks with scripts that automate backups have appeared, e.g., restic.net,
and are accessible to SMEs. This is a positive development since automating the
backup and restoration procedure reduces the margin of error in the operations. We
have used our test framework in Restic scripts where the tests are invoked in the
script after the snapshot is created., but it can be added to any automated backup
system.

A related field is infrastructure-as-code (IaC), e.g., [3, 15, 10]. IaC is the De-
vOps [16] idea where developers and operators use automated scripts for the pro-
vision of software systems in their company. IaC greatly facilitates software system
updates since the process is made as efficient as possible. Importantly, it is easier
to do a rollback if the system is discovered to have post-deployment bugs since the
steps taken by human operators are removed or reduced. IaC was invented for code
deployment but the principles are just as applicable to data backups and restora-
tions. Further, it is natural to be able to add a test framework such as the one
presented in this paper to these IaC scripts since data, like code and services, are
fast-class entities in company infrastructures.

6 Conclusions

This paper has presented a framework for the methodical testing of file-based data
backups. The file-based approach optimizes backup storage space and allows com-
panies to focus on their critical business data. The approach can also be used by
companies that run virtual servers on the cloud, even though the cloud provider
creates backup snapshots of the virtual machines. Storing data in the cloud does
not remove responsibility from companies to control and test their backed up data.

Computer Science & Information Technology (CS & IT)124

Automated testing works for MicroSoft and Open Office (spread-sheet and docu-
ment) files, MySQL exports, flat files and PDF documents. Future work will extend
test coverage to image files and encrypted files. To test encrypted snapshots, we
need to extend the framework to run the tests in a sandboxed environment, such
as that supported by Linux AppArmor, and for which Docker can be run [21].

References

1. George Amvrosiadis and Medha Bhadkamkar. Getting back up: Understanding how enter-
prise data backups fail. In 2016 USENIX Annual Technical Conference, USENIX ATC 2016,
Denver, CO, USA, June 22-24, 2016., pages 479–492, 2016.

2. Yoonsik Cheon and Gary T. Leavens. A simple and practical approach to unit testing: The
JML and junit way. In ECOOP 2002 - Object-Oriented Programming, 16th European Confer-
ence, Malaga, Spain, June 10-14, 2002, Proceedings, pages 231–255, 2002.

3. Clauirton de Siebra, Rosberg Lacerda, Italo Cerqueira, Jonysberg P. Quintino, Fabiana Flo-
rentin, Fabio Q. B. da Silva, and André L. M. Santos. From theory to practice: The challenges
of a devops infrastructure as code implementation. In Proceedings of the 13th International
Conference on Software Technologies, ICSOFT 2018, Porto, Portugal, July 26-28, 2018., pages
461–470, 2018.

4. Vasiliki Diamantopoulou, Aggeliki Tsohou, and Maria Karyda. From ISO/IEC 27002: 2013
information security controls to personal data protection controls: Guidelines for GDPR com-
pliance. In Sokratis K. Katsikas, Frédéric Cuppens, Nora Cuppens, Costas Lambrinoudakis,
Christos Kalloniatis, John Mylopoulos, Annie I. Antón, Stefanos Gritzalis, Frank Pallas, Jörg
Pohle, M. Angela Sasse, Weizhi Meng, Steven Furnell, and Joaqúın Garćıa-Alfaro, editors,
Computer Security - ESORICS 2019 International Workshops, CyberICPS, SECPRE, SPOSE,
and ADIoT, Luxembourg City, Luxembourg, September 26-27, 2019 Revised Selected Papers,
volume 11980 of Lecture Notes in Computer Science, pages 238–257. Springer, 2019.

5. Thomas Fehlmann and Eberhard Kranich. A framework for automated testing. In Murat
Yilmaz, Jörg Niemann, Paul M. Clarke, and Richard Messnarz, editors, Systems, Software
and Services Process Improvement - 27th European Conference, EuroSPI 2020, Düsseldorf,
Germany, September 9-11, 2020, Proceedings, volume 1251 of Communications in Computer
and Information Science, pages 275–288. Springer, 2020.

6. Kazuo Goda. Storage area network. In Encyclopedia of Database Systems, Second Edition.
2018.

7. Jianxin Li, Yangyang Zhang, Jingsheng Zheng, Hanqing Liu, Bo Li, and Jinpeng Huai. Towards
an efficient snapshot approach for virtual machines in clouds. Inf. Sci., 379:3–22, 2017.

8. Myron Marston and Ian Dees. Effective Testing with RSpec 3: Building Ruby Apps with
Confidence. The Pragmatic Bookshelf, 2017.

9. Donghee Min, Taegye Hwang, Joonhyouk Jang, Yookun Cho, and Jiman Hong. An efficient
backup-recovery technique to process large data in distributed key-value store. In Proceedings
of the 30th Annual ACM Symposium on Applied Computing, Salamanca, Spain, April 13-17,
2015, pages 2072–2074, 2015.

10. Kief Morris. Infrastructure as Code. O’Reilly, 2016.

11. Pratik Mukherjee and Valentina Salapura. Challenges of DB2 restore in a distributed systems
environment and engineered solutions. In 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops, DSN Workshops 2018, Luxembourg, June
25-28, 2018, pages 38–42, 2018.

12. J. K. Periasamy and B. Latha. Efficient hash function-based duplication detection algorithm
for data deduplication deduction and reduction. Concurr. Comput. Pract. Exp., 33(3), 2021.

Computer Science & Information Technology (CS & IT) 125

13. Antònia Mas Picahaco, Antoni Llúıs Mesquida, Esperança Amengual Alcover, and Bartomeu
Fluxà. ISO/IEC 15504 best practices to facilitate ISO/IEC 27000 implementation. In ENASE
2010 - Proceedings of the Fifth International Conference on Evaluation of Novel Approaches
to Software Engineering, Athens, Greece, July 22-24, 2010, pages 192–198, 2010.

14. W. Curtis Preston. Backup and recovery - inexpensive backup solutions for open systems:
covers Windows, Linux, Unix, and OS X. O’Reilly, 2007.

15. Akond Rahman, Rezvan Mahdavi-Hezaveh, and Laurie Williams. A systematic mapping study
of infrastructure as code research. Information & Software Technology, 108:65–77, 2019.

16. James Roche. Adopting devops practices in quality assurance. Commun. ACM, 56(11):38–43,
2013.

17. Jibran Saleem, Bamidele Adebisi, Ruth Ande, and Mohammad Hammoudeh. A state of the
art survey - impact of cyber attacks on sme’s. In Proceedings of the International Conference
on Future Networks and Distributed Systems, ICFNDS 2017, Cambridge, United Kingdom,
July 19-20, 2017, page 52, 2017.

18. Xiaoyan Yin, Javier Alonso, Fumio Machida, Ermeson C. Andrade, and Kishor S. Trivedi.
Availability modeling and analysis for data backup and restore operations. In IEEE 31st
Symposium on Reliable Distributed Systems, SRDS 2012, Irvine, CA, USA, October 8-11,
2012, pages 141–150, 2012.

19. Lingfang Zeng, Shijie Xu, and Yang Wang. Vmbackup: an efficient framework for online virtual
machine image backup and recovery. Concurr. Comput. Pract. Exp., 28(9):2630–2643, 2016.

20. Lingfang Zeng, Shijie Xu, and Yang Wang. Data backup: Do business want to measure recovery
potential? Issues in Information Systems, 19(1):20–28, 2018.

21. Hui Zhu and Christian Gehrmann. Lic-sec: an enhanced apparmor docker security profile
generator. IACR Cryptol. ePrint Arch., 2020:1147, 2020.

Computer Science & Information Technology (CS & IT)126

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

http://airccse.org

