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ABSTRACT 
 
Extractive summarization aims to select the most important sentences or words from a 

document to generate a summary. Traditional summarization approaches have relied 
extensively on features manually designed by humans. In this paper, based on the recurrent 

neural network equipped with the attention mechanism, we propose a data-driven technique. We 

set up a general framework that consists of a hierarchical sentence encoder and an attention-

based sentence extractor. The framework allows us to establish various extractive 

summarization models and explore them. Comprehensive experiments are conducted on two 

benchmark datasets, and experimental results show that training extractive models based on 

Reward Augmented Maximum Likelihood (RAML)can improve the model’s generalization 

capability. And we realize that complicated components of the state-of-the-art extractive models 

do not attain good performance over simpler ones. We hope that our work can give more hints 

for future research on extractive text summarization. 
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1. INTRODUCTION 
 

Automatic text summarization is one of the challenging and interesting tasks of natural language 
processing, which can help people to obtain important and relevant information from a large 

number of documents in a short period. It has gained its popularity due to the importance it has in 

different information access applications such as search engines, information retrieval, 
recommendation systems, question answering, etc. When it comes to automatic text 

summarization, there are two approaches extractive text summarization and abstractive text 

summarization. While in the extractive summarization approaches the most salient sentences or 

words from the document are selected and concatenated to form a summary, in the abstractive 
summarization approaches the sentences in the document are paraphrased to make the summary. 

Even though the abstractive summarization approaches have made steps in recent years, the 

extractive approaches are still attractive since they can generate coherent and grammatically 
correct summaries and are computationally efficient [1]. Thus, in this work, we focus on 

extractive summarization. 

 
A main requirement for the extractive summarization approach is to have a good method to 

determine the important contents that represent the important information in the document [2]. 

http://airccse.org/cscp.html
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Several traditional techniques have been used to extract the important sentences to be included in 
the summary.  

 

These techniques can be categorized into greed-based [3], graph-based [4], hidden Markov 

models[5], and constraint optimization[6],etc. These traditional extractive techniques use human-
crafted features and are complicated. Moreover, they mostly fail to build a good representation of 

the document. This leads them to fail to generate good summaries.  

 
In recent years, deep learning-based models have been used for extractive text summarization. 

These models can learn from the input text data directly, and they have attained state-of-the-art 

results. To create representation of the sentences and documents, neural network-based extractive 
models are basically constructed using recurrent neural networks [1,7], convolutional neural 

networks [8,9], the combination of convolutional and recurrent neural networks [10,11] or 

transformers[12]. While there has been great effort dedicated to designing neural network-based 

extractive summarization models, there is still a need to explore what makes them work well and 
how they can be improved. Therefore, in this paper, we present a recurrent neural network-based 

extractive model that consists of a hierarchical sentence encoder and an attention-based 

sequence-to-sequence sentence extractor. And we closely explore how the choice of sentence 
encoder can influence the model’s performance. 

 

Since there is little work that has been done on learning approaches for neural extractive 
summarization, we also examine how different learning approaches can contribute to the 

performance and generalization of the model. Existing neural-based extractive summarization 

systems fail to generalize better on the data they have not seen. We introduce the use of the 

RAML approach to the summarization task with the expectation that it can improve the 
generalization ability of the model. 

 

The main contributions of this work are: (1) we adopt the RAML optimization approach to the 
task of extractive summarization; (2) we present two hierarchical neural structures (Avg-

Seq_to_Seq and Rnn-Seq_to_Seq) for the extractive summarization task; (3) we perform a multi-

domain test, which allows us to better understand how biases in different datasets influence the 

performance of our models;(4) we analyze the generalization capability of the models on out-of-
domain datasets. For example, we train a model on the CNN dataset and test it on the PubMed 

dataset to see how the model can generalize to other datasets. Additionally, we demonstrate the 

effect of the position of the sentences on the performance of our models. 
 

The rest of the paper is organized as follows. Section 2 describes the related work. Section 3 

demonstrates our model. Section 4 describes our experiments and results. Section 5 demonstrates 
our discussion. Section 6 concludes our work. 

 

2. RELATED WORK 
 

To identify and select the most important sentences in a document or set of documents to make a 
summary, researchers have used several methods. These methods can be classified into statistical, 

graph, machine learning, deep learning-based approaches, etc. In this section, we demonstrate 

some of these approaches. 
 

2.1. Statistical-Based Summarization Approaches 
 
These approaches mainly use statistical features such as term frequency, sentence position, 

sentence length, TF-IDF (Term Frequency-Inverse Document Frequency), sentence to centroid 
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similarity, etc., to score the sentences. Then the sentences with high scores are selected to make 
the summary. Similarity to centroid sentence was used in [17] to score sentences. In their work 

TF-IDF is used to get centroid sentence then based on the cosine similarity between each 

sentence and centroid sentence, each sentence is given a score. Eleven features including 

document frequency, sentence position, normalized sentence length, proper noun, topic 
frequency, numerical data, headline frequency, start cluster frequency, and skip Bi-gram topic 

frequency are used in [18] to score sentences and then sentences with high scores are selected 

until reaching the length limit of the summary. One of the advantages of statistical-based 
approaches is that they do not require training data or complex linguistic processing. And one of 

the limitations of them is that they can generate summaries with redundant information because 

similar sentences with high scores can be included in the summary. 
 

2.2. Graph-Based Summarization Approaches 
 
Researchers have also used graph-based summarization approaches to perform extractive 

summarization. In the graph-based method, sentences are represented using nodes of a weighted 

graph. And the similarities between sentences are represented using edges. Sentence similarity 
values are obtained based on the overlapping phrases or words between sentences, then the 

sentences which have high similarity with the other ones are selected to generate the final 

summary. Two well-known graph-based approaches are Lex Rank and Text Rank. Text Rank 

was introduced by Mihalcea [4] to extract sentences and keywords from a single document. 
LexRank was introduced by Erkan [19] to compute the importance of the sentence based on the 

idea of eigenvector centrality in the sentence representation graph. Graph-based approaches 

generate summaries with less redundant information and they do not require annotated corpora. 
One of the disadvantages of these methods is that they do not take into account the importance of 

the words. They treat the weights of the words equally equal.  

 

2.3. Machine Learning-Based Summarization Approaches 
 

Different machine learning methods have been used to carry out extractive text summarization 
task. Some of those methods are Support Vector Machine(SVM) [20], Naïve Bayesian [21], 

Hidden Markov Models [5], etc. A binary classifier is proposed in [21] to score sentences using 

Bayes’ rule. In their work, the probability of each sentence to be included in the summary is 

obtained by using manually crafted features. In [5] hidden Markov model algorithm identifies the 
likelihood of each sentence to be select for the summary. SVM is used in [20] for query-based 

summarization to declare appropriate sentences to put in the summary. The advantage of machine 

learning-based approaches is that they can explore many features and can represent documents in 
a better way than statistical and graphical approaches but they also need human crafted features 

to generate summaries with high accuracy and they need large labeled corpora. 

 

2.4. Deep Learning-Based Summarization Approaches 
 

In recent years, deep learning-based approaches have gained popularity over the above-
mentioned traditional approaches because they can directly learn from the data. Neural network-

based extractive summarization models have achieved state-of-the-art results. For instance, 

SummaRuNNer [1] uses bidirectional RNNs at the word level to encode sentences and another 
bidirectional RNNs at the sentence level to predict which sentences are to be extracted. In their 

work, the sentence extractor generates document representations and calculates distinct scores for 

novelty, location and salience of the sentences. In [7], authors propose convolutional neural 

network (CNN)-based model to encode sentences at the word level and design an extractor to 
predict which sentence should be included in the summary at the sentence level. Authors [13] 

propose an end-to-end neural extractive summarization model that learns to score and select 
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sentences jointly. In their work to obtain sentence representations, they use a hierarchical 
encoder, and then the output summary is obtained by extracting one sentence at a time. Based on 

the previous works that used hierarchical architectures [7, 13, 15], we also present a recurrent 

neural network-based model that consists of hierarchical sentence encoder and sequence-to-

sequence based sentence extractor.  
 

Although neural extractive summarization models have achieved great performance, most of the 

existing works, during training of these models use MLE. MLE approach maximizes the 
likelihood of the ground truth labels and disregards the structure of the output space by taking all 

the output which do not match the ground truth labels as equally wrong, irrespective of their 

structural closeness to the ground truth target. This leads to the inconsistency between training 
and testing objectives (i.e., during training the model learns to maximize the likelihood of the 

ground truth labels while during testing the objective is to generate the summaries with a high 

ROUGE score concerning the reference summary). This inconsistency can cause the overfitting 

of the ground truth labels and leads to poor generalization capability on test datasets. Some 
researchers have tried to eliminate this inconsistency by optimizing task reward (ROUGE 

evaluation metric) directly using Reinforcement learning (RL) approaches. For example, authors 

[10] proposed an approach that optimizes the ROUGE metric globally and use reinforcement 
learning objective to rank sentences that can be included in the summary. Authors [11] proposed 

a consistency model that takes syntactic coherence and cross-sentence semantic patterns. They 

used the RL objective to train their model. In their work, the output of the model and the reward 
calculated using the ROUGE package are combined to capture the cross-sentence consistent 

patterns. The limitation of the reinforcement learning approaches is that they suffer from 

problems of high variance in the gradients and poor sample effectiveness (sampling from a non-

stationary model distribution). In this paper, we adopt a learning approach called RAML to the 
task of extractive summarization with the expectation that it can improve the performance and 

generalization of our models. RAML approach was proposed by [16] to include task reward into 

Maximum-likelihood training. It was successfully applied to machine translation task and speech 
recognition. It combines the straightforwardness and computational effectiveness of MLE with 

the advantages of maximizing task reward. Unlike MLE that maximizes the log-likelihood of the 

ground-truth labels, RAML can sample from the exponentiated payoff distribution which permits 

the estimation of anticipated maximum likelihood. In this paper, we not only train our models 
based on the MLE approach but also, train them based on the RAML approach. 

 

3. NEURAL NETWORK-BASED EXTRACTIVE SUMMARIZATION MODEL 
 
In this paper, we treat the task of extractive summarization as a sequence labeling problem or a 

classification problem. Given a document d consists of n sentences d = {s1, s2, s3……., sn}. we 

aim to generate a summary by predicting the corresponding labels of sequencesy1, y2, y3……, yn ∈ 

{0, 1} n, where yj=1 denotes that the jth sentence should be included in the summary, otherwise 
yj=0. Based on the extraction probabilities, sentences are selected until reaching the length limit 

of the output summary. Since each sentence itself is a sequence of words sj = {w1, w2, w3……., 

wL}, we set word budget 𝑏 ∈ ℕ to put a constraint on the limit length of the output summary 
∑ 𝑦𝑗

𝑛
𝑗  . 𝐿 ≤ 𝑏. Generally, our proposed model is suitable for a single document. It consists of the 

following components, as shown in Figure 1.  
 

3.1. Embedding Layer  
 
The embedding layer is the first layer in our model. It converts positive integers (indices) of the 

words in the training dataset into dense vector representations of fixed size. These dense vector 

representations capture the syntactic and semantic potential meaning of the words. Instead of 
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training our dense vector representation of the words, we initialize the embedding layer with 
glove pre-trained word embeddings with 200 dimensions.  

 

3.2. Sentence Encoder 
 

The sentence encoder converts the sequence of word embeddings of each sentence into a fixed-

length vector. We get sentence representations using two different approaches the first one is by 
using a Recurrent neural network (Rnn) and another one is simply by averaging word 

embeddings (Avg). By using the Rnn approach, at each time step, a Bidirectional Recurrent 

Neural Network (Bi-RNN) runs at the word level of each sentence and then constructs sentence 

representation 𝑠𝑗 . We employ a Bidirectional Gated Recurrent Unit (Bi-GRU) [24] as RNN cells. 

Bi-directional GRU consists of forwarding and backward GRU. Forward GRU reads the word 

embeddings in a sentence from left to write to generate a sequence of hidden states (ℎ1
⃗⃗⃗⃗ , ℎ2,

⃗⃗⃗⃗  ⃗ℎ3
⃗⃗⃗⃗ ,

… . ,  ℎ𝐿
⃗⃗⃗⃗  ⃗). The backward GRU reads word embeddings in the sentence from right to left to form 

another sequence of hidden states (ℎ1
⃖⃗⃗⃗⃗, ℎ2

⃖⃗⃗⃗⃗, ℎ3
⃖⃗⃗⃗⃗, … , ℎ𝐿

⃖⃗⃗⃗⃗). 
 

ℎ𝑗
⃗⃗  ⃗ = 𝐺𝑅𝑈⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗(𝑤𝑗 , ℎ𝑗−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )                  (1) 

 

ℎ𝑗
⃖⃗⃗⃗ = 𝐺𝑅𝑈⃖⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (𝑤𝑗 , ℎ𝑗+1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗)                  (2) 

 

Where the initial state of forwarding Bi-GRU is set to zero vector (h1
⃗⃗⃗⃗ = 0 )as well as the initial 

state of backward Bi-GRU (ℎ𝐿
⃖⃗⃗⃗⃗ = 0).After reading the words in the sentence, the sentence 

representation at the word level is constructed by concatenating the hidden states of last forward 
and backward GRU: 

 

𝑠𝑗 = [ℎ𝐿
⃗⃗⃗⃗  ; ℎ1

⃖⃗⃗⃗⃗]                        (3) 
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Figure 1. Overview of the two different hierarchical architectures (Rnn- Seq_to_Seq architecture or Avg- 

Seq_to_Seq architecture) for extractive summarization. 

 

In Figure 1 vertical brown blocks present the sentence encoder's hidden states. ⊙ presents 
concatenation.  Vertical green blocks indicate the output of the sentence encoder. White block 

(q0
f) presents forward learned embeddings (“begin decoding”) and white block (q0

b) presents 

backward learned embeddings. Vertical pink boxes present hidden states of the encoder part of 
the sentence extractor. Vertical blue boxes indicate hidden states of the decoder part of the 

sentence extractor. ⨁ presents attention layer. Horizontal purple blocks indicate multi-layer 

perceptron. Yellow ovals indicate the candidate summary. 

 

By using the averaging approach, each sentence representation 𝑠𝑗  is obtained by averaging its 

word embeddings: 
 

𝑠𝑗 =
1

𝐿
∑ 𝑤𝑗

𝐿
𝑗=1                 (4) 

 

3.3. Sentence Extractor  
 

Sentence extractors take in sentence hidden vectors s1: n and generate the sequence of labels y1: n. 
We use the attention-based sequence-to-sequence sentence extractor (Seq_to_Seq) which consists 

of an encoder, a decoder, an attention layer, and multi-layer perceptrons. 
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3.3.1. Encoder Part of Sentence Extractor  

 

The encoder part of the sentence extractor takes sentence representations (𝑠1, 𝑠2, 𝑠3, …., 𝑠𝑛 ) 

from the sentence encoder as inputs and encodes them using Bi-GRU. Forward and backward 

hidden states of Bi-GRU are concatenated to produce a sequence of contextualized sentence 

representations (sentence embedding 𝑠𝑗
′). 

 

𝑠𝑗⃗⃗ =  𝐺𝑅𝑈𝑒𝑛𝑐
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑠𝑗, 𝑠𝑗−1⃗⃗ ⃗⃗ ⃗⃗  ⃗)              (5) 

 

𝑠𝑗⃖⃗⃗ = 𝐺𝑅𝑈𝑒𝑛𝑐
⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑠𝑗, 𝑠𝑗+1⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ )                 (6) 

 

We set the initial state of forward Bi-GRU to zero vectors (𝑠1⃗⃗  ⃗ = 0 ). As well as the initial state of 

backward Bi-GRU( 𝑠𝑛⃖⃗ ⃗⃗ =0). Sentence representation hidden vectors at sentence level: 
 

𝑠𝑗
′ = [𝑠𝑗⃗⃗ ;  𝑠𝑗⃖⃗⃗]                                (7) 

 

3.3.2. Decoder Part of Sentence Extractor  

 
The decoder part of the sentence extractor takes in the sentences from the sentence encoder as 

inputs and then transforms them into a query vector that sees to the output of the encoder part of 

the sentence extractor. 
 

𝑞𝑗⃗⃗  ⃗ = 𝐺𝑅𝑈𝑑𝑒𝑐
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑠𝑗, 𝑞𝑗−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )               (8) 

 

𝑞𝑗⃖⃗ ⃗⃗ = 𝐺𝑅𝑈𝑑𝑒𝑐
⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑠𝑗, 𝑞𝑗+1⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗)                  (9) 

 

𝑞𝑗 = [𝑞𝑗⃗⃗  ⃗;  𝑞𝑗⃖⃗ ⃗⃗ ]                                    (10) 

 

The final outputs of the forward and backward encoder are fed to the first decoder steps. q0
f, q0

b 

are learned vectors of the first step of the decoder (i.e., start decoding).  
 

3.3.3. Attention Layer 

 

The attention mechanism is commonly used in abstractive summarization [25] and neural 
machine translation [26]. It plays a role in enabling models to concentrate on important 

information of the input while predicting the next output. In the attention layer of our model, 

given a query vector representation q and a sequence of sentence embeddings [𝑠1
′ , 𝑠2

′ , 𝑠3
′ , …, 𝑠𝑛

′ ], 

the attention mechanism computes an alignment score between q and each sentence 𝑠𝑗
′. The 

scores are transformed into probabilities by using a SoftMax function. These probabilities are 

used as weights to sum all sentences and create a contextual embedding for q. 
 

𝛼𝑗,𝑖 =
𝑒𝑥𝑝(𝑞𝑗  .  𝑠𝑖)

∑ 𝑒𝑥𝑝(𝑞𝑗 .  𝑠𝑖)
𝑛
𝑖

                  (11) 

 

𝑠𝑗
′′ = ∑ (𝛼𝑗,𝑖

𝑛
𝑖=1 𝑠𝑖)                    (12) 

 

3.3.4. Multi-Layer Percetrons 

 
Multi-layer perceptrons (MLP) take in a concatenation of the attention-weighted encoder output 

and decoder output as input to compute the probability of extracting each sentence.   
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𝑎𝑗 = 𝑅𝑒𝑙𝑢(𝑈 ∙ [𝑠𝑗
′′; 𝑞𝑗] + 𝑢)                       (13) 

 

𝑝(𝑦𝑗 = 1|𝑠𝑗) = 𝜎(𝑉 ∙  𝑎𝑗  + 𝑣)                   (14) 

 

where U and V are learned weights, u and v are learned bias. 
 

3.4. Model Training 
 

We first train our model by maximizing the likelihood of the ground truth labels. To achieve this 

objective, the cross-entropy loss is minimized as follows: 

 

ℒ𝑀𝐿𝐸(𝜃) =  −∑ ∑ 𝑙𝑜𝑔 𝑝 (𝑦𝑗
(𝑑)

|𝑛
𝑗

𝐷
𝑑=1 𝑠𝑗

(𝑑)
; 𝜃)           (15) 

 

Where D represents the total number of documents in the training dataset. 𝑠(𝑑) represents the 

contextualized sentence vectors, n symbolizes the total number of sentences in the document. 

𝑦(𝑑) is each document's label vector. 𝜃 represents model parameters. When minimizing the above 
objective, the conditional probability of the output targets is escalated, and at the same time, the 

conditional probability of alternative wrong outputs is decreased. This can lead to overfitting on 

target outputs and decreases the generalization capability. To solve this issue, we train our model 
based on the RAML approach which was proposed in [16]. RAML simply attaches a step of 

sampling on top of the ordinary maximum likelihood estimation objective. And it can sample 

from an output distribution called exponentiated payoff distribution which serves as a central to 

linking between MLE and RL objectives, and is defined as follows:  
 

𝑞(𝑦|𝑦′; 𝜏) =
1

𝑍(𝑦′;𝜏)
𝑒𝑥𝑝 {

𝑟(𝑦,𝑦′)

𝜏
}                             (16) 

 

where𝑍(�̂�; 𝜏) = ∑ exp {
𝑟(𝑦,𝑦′)

𝜏
}𝑦∈𝑌 , hyper-parameter 𝜏that controls the smoothness of the best 

distribution around correct labels. 
 

The RAML objective is defined as follows: 

 

ℒ𝑅𝐴𝑀𝐿(𝜃; 𝜏) = ∑ {−∑ 𝑞(𝑦|𝑦′; 𝜏)𝑦𝜖𝑌 𝑙𝑜𝑔 𝑝(𝑦|𝑠 ; 𝜃)}           𝐷
𝑑=1 (17) 

 
As stated by [16] RAML approach can be treated as a hybrid between MLE and RL. The 

connection can be seen by rewriting ℒ𝑀𝐿𝐸 , ℒ𝑅𝐿, 𝑎𝑛𝑑 ℒ𝑅𝐴𝑀𝐿   using Kullback-Leibler Divergence: 

 

ℒ𝑀𝐿𝐸(𝜃) = ∑ 𝐷𝐾𝐿(𝛿(𝑦, 𝑦′)||𝑝(𝑦|𝑠 ; 𝜃))𝑦𝜖𝑌                                      (18) 

 
1

𝜏⁄ . ℒ𝑅𝐿(𝜃; 𝜏) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  ∑ 𝐷𝐾𝐿𝑦∈𝑌 (𝑝(𝑦|𝑠; 𝜃)||𝑞(𝑦|𝑠; 𝜏))    (19) 

 

ℒ𝑅𝐴𝑀𝐿(𝜃; 𝜏)+ constant = ∑ 𝐷𝐾𝐿𝑦∈𝑌 (𝑞(𝑦|𝑠; 𝜏)||𝑝(𝑦|𝑠; 𝜃))                        (20) 

 

Though the core capability of the RAML approach lies in sampling from a static distribution, that 
distribution is difficult to define and we think that the training process can be destabilized when 

the sampling is introduced during computing gradients. Therefore, in this paper, instead of 

sampling, we pre-calculate the reward (ROUGE R1 score) for each possible output summary of 

each document as R1(y, 𝑦′). Then after normalizing the scores, the top-scored candidates T (we 
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use T=25 in our experiments) are used to calculate the weighted cross-entropy loss. During 
optimization, the weighted cross-entropy loss is defined as follows:  

 

ℒ(𝑦, 𝑦′) = ∑ −𝑤𝑖
𝑇
𝑖=1  . ∑ 𝑦𝑗

𝑖𝑛
𝑗=1  𝑙𝑜𝑔𝑦𝑗

′         (21) 

 

where 𝑦′ ∈  {0,1}𝑛 demonstrates the vector of predicted sentences to be included in the 

summary,𝑦𝑖 ∈  {0,1}𝑛  denotes candidate(i) labels, and 𝑤𝑖 represents weighted vector of the 

Rouge scores: 

 

𝑤𝑖 = 
𝑅𝑜𝑢𝑔𝑒𝑅1(𝑦′ ,𝑦)

∑ 𝑅𝑜𝑢𝑔𝑒𝑅1(𝑦′,𝑦)𝑗
                               (22) 

 

4. EXPERIMENTS  
 
The purpose of our experiments is to answer the following questions: (1) how different 

architectures of our models influence their performance? (2) how sentence positions affect the 

performance of the models? (3) how the MLE and RAML influence the generalization capability 
of the model on out-of-domain datasets? (4) how our models perform compared to the state-of-

the-art baselines on CNN and PubMed datasets?  

 

4.1. Datasets 
 

We conduct experiments on two well know datasets from different domains (CNN and PubMed) 
to evaluate how different biases in each domain can affect the performance of our models. the 

statistics of the datasets are shown in Table 1. 

 
Table 1. statistics of the datasets used in our experiments (CNN, PubMed): train, valid, and test split. The 

average number of words in the document and in the summary and the domain they belong to. 

 

Datasets 
Number-of-documents Average Number-of-tokens 

Domain 
Train Validation Test Document Summary 

CNN 90,152 1,220 1,093 761 46 News 

PubMed 115,498 6,562 6,602 3,224 203 Scientific paper 

 

CNN  is a dataset that was first created by [27] for question answering, then was modified for 

text summarization task by [28]. This dataset is composed of news articles that are paired with 
human-generated summaries. For the data preprocessing, the non-anonymized version of the 

dataset is used in our experiments as in [25]. 

 

PubMed is the dataset that was introduced by [29]. the dataset is collected from scientific 
repositories PubMed.com. The statistics of the dataset are shown in Table 1. In our experiments, 

we use about 3%  of PubMed as validation data and about another 3% for the test; the rest is used 

for training as in [29]. 
 

4.2. Implementation  
 
In our experiments, each document is truncated to 50 sentences and we use padding to keep the 

lengths of documents. we use pre-trained Glove vectors with 200-dimensions to initialize word 

embeddings. Weperform mini-batch training with a batch size of 32 documents for 15 training 
epochs. In the Rnn-based sentence encoder, for each direction, we use a single-layer GRU with 

300-dimensional hidden layers, and dropout is applied to GRU with drop probability equals 0.25. 

In the sentence extractor, for each direction, a single-layered GRU is used with a hidden layer 
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size of 300. We set the hidden layer size for MLP to 100. The model parameters in the sentence 
encoder and sentence extractor are initialized using a normal distribution with the Xavier scheme 

[30]. Our models are optimized using  Adam optimizer [31] with an initial learning rate of 

0.0001, and momentum parameters 𝛽1 = 0.9, 𝛽2 = 0.999. We use gradient clipping to 

regularize our models. All our experiments are implementedusing Pytorch on the computer that 
has 256 RAM and NVIDIA GeForce RTX 2080 Ti GPU. 

 

4.3. Evaluation  
 

We use the Rouge metric [32]to evaluate the quality of the summaries. In the reported 

experimental results, unigram and bigram overlap (R-1, R-2) are reported as a means of 
evaluating in formativeness. And longest common subsequence (R-L) is reported as means of 

evaluating the fluency. 

 

4.4. Model Comparison 

 

We compare the performance of our models with other well-known extractive models including: 
 

 LSA[33]:  Extractive model that uses latent semantic analysis approach to discover 

important sentences 

 SumBasic[34]: A summarization model which can generate summaries for single and 

multi-document. 

 LexRank[35]: Based on the idea of eigenvector centrality in a graph representing sentences, 

this model computes the importance of the sentences. 

 NN-SE[7]: A neural network-based extractive model, which can be used to extract words 
and sentences. 

 Refresh[10]: A neural network-based summarization model trained using Reinforcement 

learning objective to globally optimize evaluation metric(ROUGE). 

 Banditsum[36]: A neural extractive summarization model that treats extractive 

summarization as a context bandit problem.  
 

4.5. Results and Analysis 
 

4.5.1. Influence of Different Architectures on the Performance of the Model.  

 

To understand how different architectures can influence the performance of the model, we 
examine the performance of Avg (averaging word embeddings) and the Rnn approach to encode 

sentences at the word level. As it is shown in Figure 2 the approach of averaging word 

embeddings of each sentence to obtain its representation performs slightly better than the Rnn 

based sentence representation on the CNN dataset. Whereas on PubMed dataset, the averaging 
approach results in high performance than the Rnn. Moreover, the time taken to train our 

averaging word embedding-based model is less than the time taken to train our Rnn based 

sentence encoder. This implies that it is not always necessary to build very complex architectures 
to get good performance. 
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Figure 2. Performance comparison of sentence encoders on CNN and PubMed datasets. 

 

4.5.2. Impact of the Position of the Sentences  

 

When it comes to the extractive summarization for news, the position of the sentence is a very 

important feature [37]. When deep learning-based summarization models are trained on news 
datasets, these models mostly select the first sentences in the document and this causes the 

problem of lead bias. To answer the question (2), we test the performance of our models when the 

order of the sentences in the document is kept intact and when we shuffle them. As it is shown in 
Table 2, when sentences are shuffled during training the performance of our model trained based 

on MLE (Avg-Seq_to_Seq-MLE) drops significantly on CNN and PubMed datasets. This implies 

that the model has learned the position feature in PubMed/CNN datasets even though the model 

has no explicit position features. On the other hand, Figure 3 shows that the performance of our 
model trained using RAML(Avg-Seq_to_Seq-RAML) on shuffle sentences is not significantly 

dropped. The reason could be that this model is forced to learn from richer distribution of labels. 

Thus, it is less vulnerable to the lead bias. 
 

Table 2.  performance of our models on CNN and PubMed test set using full-length ROUGE F1 scores 

when using shuffled and in-order sentences during model training. 

 

Models 
Sentence 

shuffling 

CNN PubMed 

R-1 R-2 R-3 R-1 R-2 R-3 

Avg-Seq_to_Seq-MLE 

 

shuffled 52.84 20.14 45.16 39.71 14.53 29.82 

normal 56.84 24.04 51.15 42.71 17.33 30.82 

Avg-Seq_to_Seq-RAML 

shuffled 56.69 23.76 51.06 42.55 17.26 30.77 

normal 56.71 23. 97 51.09 42.69 17.29 30.79 
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Figure 3.  performance of our model trained using MLE approach on CNN and PubMed test set.  where 

shuffled or in-order sentences are used during model training. 

 

 
 
Figure 4.  performance of our model trained using RAML approach on CNN and PubMed test set.  where 

shuffled or in-order sentences are used during model training. 

 

4.5.3. Generalization Capability on Out of Domain Dataset 

 

Domain transfer is when a model is trained on one dataset but needs to have a better performance 

on the other datasets from different domains. Most of the time we want to train the model on a 
particular domain and be able to reuse it in another domain without retraining it. Let's say, for 

example we train our model to summarize a dataset of news articles. we do not want to retrain the 

model if we want to summarize research papers, personal stories, blogs, etc. To answer question 
(3), we first choose the Avg-Seq_to_Seq model and then train it on the CNN dataset using the 

MLE approach then transfer this model to the PubMed dataset. As it is shown in Table 3, our 

Avg-Seq_to_Seq model trained on the CNN dataset achieves 56.84% according to the R-
1(ROUGE-1) measure on the test set of the CNN dataset. And the model achieves 35.17% on 

PubMed test data. The performance of the model drops almost 21.67%. Training models based on 

the MLE approach tend to cause poor generalization because these models mostly tend to overfit 

particular features in the training set that might not be in other datasets. We then train our model 
based on the RAML approach with the expectation that the model will perform better than its 

counterpart trained based on vanilla Maximum likelihood estimation. RAML approach can 

incorporate reward task into MLE training and this can improve the generalization ability of the 
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model. To our surprise, the model trained on the CNN dataset using RAML has slightly better 
performance on the PubMed dataset compared to the model trained on the CNN dataset using 

MLE and transferred to PubMed.  

 
Table 3. experiment results for domain transfer, where we transfer a model trained on CNN dataset to 

PubMed dataset. Meaning we train a model using CNN dataset and test it using the PubMed dataset. 

 
Models (CNN to PubMed) R-1 R-2 R-3 

Avg-Seq_to_Seq-MLE 35.17 11.59 25.26 

Avg-Seq_to_Seq-RAML 35.61 11.73 25.41 

 

4.5.4. Performance Comparison of the Summarization Models 

 
To answer the fourth question (4), we inspect the ROUGE scores of the summaries generated by 

our models (Avg-Seq_to_Seq, Rnn- Seq_to_Seq trained using MLE or RAML) and the baselines 

that have achieved state-of-the-art results on CNN and PubMed datasets. As it is shown in Table 
4, our models have attained significant results in terms of R-1,2, L on CNN dataset compared to  

Refresh [10], Banditsum [36], and NN-SE [7]. These results approve the efficacy of our models. 

Our sentence encoder (Avg or Rnn) followed by the attention-based sequence-to-sequence 
sentence extractor helps to get better representations of the documents and generate good 

summaries. We also examine our models on the PubMed dataset and compare our results with 

other summarization models. As it is also shown in Table 4, NN-SE [7] has slightly outperformed 

our models. This might be caused by the fact that during training, the NN-SE model takes into 
account previous predictions to inform future predictions while our models do not. 

 
Table 4. the performance comparison of our models with other different extractive summarization 

modelson the CNN and PubMed test set using full-length ROUGE F-1 scores. 

  

Models 
CNN 

R-1          R-2         R-L 
PubMed 

R-1        R-2        R-L 

SumBasic+[34] 

LSA+[33] 

LexRank+[35] 

 –                –          –   

 –                –           –    

–                –          –     

    37.15      11.36     33.43 

    33.89      9.93       29.70 

    39.19      13.89     34.59 

Refresh*[10] 

Banditsum*[36] 

NN-SE*(~)[7] 

30.40      11.70      26.90 

30.70      11.60      27.40 

28.40      10.00      25.00 

        –             –           – 

        –             –           – 

    43.89      18.78     30.17 

Avg- Seq_to_Seq (ours) 

Rnn- Seq_to_Seq (ours) 

Avg-Seq_to_Seq-RAML (ours) 

56.84      24.04      51.16 

56.18      23.27      50.35 

56.71      23. 97     51.09 

    42.71      17.33     30.82 

    38.95      14.04     26.70 

    42.69      17.29     30.79 

 
In Table 4, the result with * are obtained from [36], results with + are gotten from [29], –  

illustrates that the correlated result is not reported. and results with *~ are reported from [36] for 

CNN and from [38] for PubMed respectively.  The top section of the table represents traditional 

approaches; the second and the third sections represent other deep learning-based extractive 
models and our models respectively. 

 

4.5.5. Run Time Comparison of Our Models based on Sentence Encoder 

 

To train Avg-Seq_to_Seq onCNN and PubMed took8 and 10 hours respectively on a single GPU. 

Training Rnn-Seq_to_Seq on CNN dataset took 12 hours and 15 hours on PubMed (i.e., training 
Rnn-Seq_to_Seq took about 1.5 times as much time as training Avg-Seq_to_Seq). Moreover, our 

models trained using RAML took much time compared to when we train them based on MLE. 
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5. DISCUSSION 
 
On the CNN dataset, our models generate summaries with sentences from the top of the 

document rather than from other parts. This means that they are severally hindered by lead bias. 

We think the lead bias problem is caused by the fact that in news documents most important 

information is mostly at the beginning of the document, and the details come after. Our RNN-
based sequence-to-sequence extractor eagerly learns the position features and heavily relied on 

them. Shuffling sentences in documents reduces the lead bias however, the overall performance 

of the models drops; without position, our models are not capable to identify important sentences 
in news domain. Additionally, there is a drop in the performance of our models on the PubMed 

dataset. The reason of this, is that the PubMed dataset contains long documents. Our models were 

not able to learn better representation for these long documents. Graph-based neural network 

approach and incorporating semantic units such as latent topics, entities and queries can improve 
extractive summarizer on long documents. We leave this for our future work. Results shown in 

Table 3 show that our model trained with RAML has potential because it seems to perform better 

on out-of-domain datasets compared to the model trained with MLE. However, more work is 

needed to fine-tune𝜏  hyper-parameter that controls the smoothness of the best distribution 

around correct labels. 

 

6. CONCLUSIONS 
 
In this paper, we develop a recurrent neural network-based extractive text summarization model 

and investigate two kinds of hierarchical network structures, to see the effect of different model 

architectures on the performance of the model. Our experimental results on two datasets from 
different domains show that our model attains results that are comparable to other deep learning-

based state-of-the-art extractive models as well as the state-of-the-art models that use manually 

engineered features. By comparing the two different approaches of sentence encoders, the 
performance of Avg-Seq_to_Seq architecture is slightly better than that of Rnn-Seq_to_Seq 

architecture. We adopt the RAML approach to the task of extractive summarization expecting 

that it can improve the performance and generalization of our models. Though the RAML 

approach does not improve the performance of our models over the MLE approach, it poses a 
potential behavior of improving the generalization ability of the models on out-of-domain 

datasets. In the future, we plan to investigate more on how different learning criteria used to train 

neural summarization models influence the generalization and performance of the model. Also, 
we want to join the extractive approach and abstractive approach to build a model which can 

generate abstractive summaries. Moreover, we plan to explore more on how different deep 

learning architectures such as CNNs, RNNs, and transformers influence the performance of other 

different NLP tasks. 
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